Formal Specification and Verification of a Data
Replication Approach in Distributed Systems

ALIREZA SOURI
Department of Computer Engineering,Hadishahr Branch,Islamic Azad University,
Hadishahr,Iran

Data replication is an important optimization phase to manage large data by replicating data in various distributed
systems. In distributed systems, reliability and performance are two important factors for using data replication.
Also model checking techniques can be used to verify the correctness of these systems. In this paper, a Data
Replication approach has been proposed. This paper presents a behavioral modeling the proposed approach
with the goals of providing correctness and reducing verification time and memory consumption. Evaluating and
analyzing the logical problems such as deadlock free, reachability and fairness for the considered data replication
approach are provided. For verifying the behavioral models of the proposed data replication approach the NuSMV
model checker is employed. The verification results are compared by user graphical interface and Kripke model
verification methods.

Keywords: Distributed systems, Data replication, Formal verification, Behavioral model, Model
checking.

1. INTRODUCTION

Distributed systems are popular in the industries and technology, as well as economy, manage-
ment, research centers, military and medical organizations [Garcia-Garcia et al. 2012]. One of
the important factors in distributed system architecture is the presence of multiple replicas of
big quantities of data [Gray and Reuter 1992]. In an active distributed system, when a sequence
updates happen, the newness term of a replica is critical [1]. Also some articles and researches
evaluate their approaches only without considering a specific replication model using simulation
and traditional experiments. On the one hand, in these experiments they cannot specify that
how replication model and its performance are suitable for data replication architecture exactly
[Souri and Rahmani 2014]. On the other hand, by using the simulation results the all of the state
spaces of the problem is not checked and analyzed well. So, to resolving these problems formal
verification as a powerful method for verifying and model checking of distributed systems is an
appropriate methodology. Formal verification of software and hardware systems is an important
subject in the many researchers studies them.

The model checking technique is very marvelous because of its simplicity of use joint with a
compact theoretical foundation on verification approach. While it does not require high skilled
specialists as usually needed for theorem proving, it offers a very expressive resource for proper-
ties specification through temporal logic. Also Model checking is an important technique for the
verifying the distributed and software systems [Clarke Jr. et al. 1999]. It has some advantages
over testing, simulation and empirical reasoning. The model checking procedure contains three
phases: Modeling, Specification, and Verification. In first phase, the proposed model is normally
created using an FSM-based formalism by a model checking tool such as PAT [Souri and Norouzi
2015] [Liu et al. 2010], Spin [Holzmann 1997], UPPAAL [Hammal et al. 2015] and SMV [McMillan
1992]. Then, a set of expected properties of the system define to satisfy these properties by using
some temporal logic languages [Dwyer et al. 1998]. After checking an expected property, there
are two possible conditions: the property is satisfied by the model that means the model does
not contain any misbehavior, and the property violated by the model means that one behavior

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 19

in the model is not authorized by the specification. Then, the model checker tools generate a
counter-example as output, which shows the behavior that violated the property [Manna and
Pnueli 1995][Souri and Jafari Navimipour 2014].

Formal verification is used to mathematical demonstration of the correctness for a system. For-
mal verification methods have an important role in validation processes of systems [Safarkhanlou
et al. 2015]. Formal verification of consistent replication approach is important by means of it
can perceive strategy flaws that lead to propagation failure [Zhu and Wang 2010].

For example, Prez, Garca-Carballeira [Pérez et al. 2010] proposed a new replication method,
called the Branch Replication Scheme (BRS) in large-scale distributed systems such as data grid.
An analytical model of the replication structure and replica updating structure are formally de-
scribed in this research. Using this model, operations such as write, read or process of a replica
are examined. In the proposed model, each replica is composed of a different set of sub-replicas
organized using a hierarchical topology. They simulated the proposed model using Omnet++ *
tool . Simulation results demonstrated the probability of BRS, they display that the proposed
replication system increases data access, equaled by other replication systems such as hierar-
chical and server replication that normally used in data grids. Their method provided three
main advantages over traditional approaches: optimizing storage usage, by creating sub-replicas;
increasing data access approach, by relating parallel input or output techniques; and providing
the possibility to modify the replicas, by preserving consistency amid updates in a competent
method. The disadvantage of this research, using a simulator for showing experimental results,
because all of the state-space of model cannot analyzed very well. This research has not specified
the data update procedure in sub-replicas. Also the authors are not discussed about consis-
tency models guarantee. So, it is not specified that how consistency model is support by their
model. Abawajy and Mat Deris [Abawajy and Mat Deris 2013] proposed a new quorum-based
data replication protocol with the objectives of minimizing the data update rate, in case great
accessibility and data consistency. They compared the proposed approach with Grid structure
and Read-Only-Write-All approaches using reply time, data availability, data consistency and
communication costs. First, they formulated the data replication problem and designed a dis-
tributed data replication algorithm with consistency guarantee for data grid. So, they presented
a replica placement policy, which determines how many replicas to create and where to place the
replaces; A replica consistency control policy, which determines the level of consistency among
data replicas; Investigate various tradeoffs in terms of cost, availability and algorithm complexity
of the proposed replication scheme; and compare both theoretically and empirically, the response
time, availability, communication overhead, and consistency guarantees of the proposed protocol
with two other protocols. First advantage of this research is using quorum-based data replication
protocol for guaranteeing all of read and write operations in a system with failure. Of course,
they used GridSim 2 tool for showing experimental results. But, they did not specified that
how consistency model is support by their model. Also the guaranteeing consistency between
read and write operation in failure condition is not shown. In our research, we considered timed
atomic broadcast and deferred update protocols for semi-active data replication protocol that
the consistency guarantees supports when a failure or leader death is occurred. Principally for
the update replication methods, most researchers discuss about proofs of their methods in a
natural language report [Kemme and Alonso 2000][Garcia et al. 2011]. By notice the complexity
of protocols and concurrency problems in execution of database systems, a formal verification
approach is necessary. Armendriz-ligo, Gonzlez de Mendvil [Armendériz-Inigo et al. 2009] pre-
sented a formal description and correctness proof for replication database systems. Also they
explain database replicas and the causal replication protocol. They consider specifications for
atomic broadcast communication as non-serialize methods and database consistency provided
by a certification-based protocol. They used I/O automata to illustrate behavior system and

Lwww.omnetpp.org
2www.buyya.com/gridsim simulator

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

20 . Alireza Souri

verifying system properties.

To the best of our knowledge and as discussed and mentioned in this section, all the related
works and researches on this scope have some defects [Souri and Pashzadeh 2014][Alami Milani
and Jafari Navimipour 2016]. First is that there are not any detailed papers and research that
considered the replica failure using formal verification and behavioral modeling in data repli-
cation protocols. Also in all works and research of distributed systems are evaluated only by
simulation or traditional case study, therefore, it is possible that some part of the state spaces of
the problem is not analyzed and checked well. To overcome this defect, formal verification and
behavioral modeling approaches as a powerful technique for the verification of the systems are
employed in our research. This paper presents behavioral modeling of a Combined Semi-Active
Data Replication approach (CSADR) by using model checking techniques in distributed systems.
This approach is based on combination of the Atomic Broadcast (AB), View Synchronous Broad-
cast (VSB) and Deferred Update Replication (DUR) protocols to ensuring correct progress of the
replicas. In particular, this paper separates data replication behaviors into two types: propaga-
tion behavior and logical behavior based on behavioral modeling approaches [Hansen et al. 2003].
The relations between the two behaviors are modeled as mapping process. By analyzing logical
problems and checking behavior specifications, it is possible to verify the CSADR approach. Es-
pecially, the contributions of this paper are:

—Proposing a Combined Semi-Active Data Replication approach (CSADR) based on the Atomic
Broadcast (AB), View Synchronous Broadcast (VSB) and Deferred Update Replication (DUR)
Protocols.

—Presenting a behavior model to separating propagation and logical behavior of CSADR ap-
proach. The separation of these behaviors enables the procedure of verification, maintenance
and development of the data replication approach.

—LFEnabling the mapping process between two behaviors by means of the formal verification
approach based on Binary Decision Diagram (BDD) [Clarke Jr. et al. 1999]. This formal
method excerpts the expected properties of the data replication approach from logical behavior
in the form of Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) formulas, and
verifies the properties in the propagation behavior expansively.

—FEvaluating the logical problems such as reachability, fairness and deadlock free for the consid-
ered data replication approach.

—Verifying the behavior models of the proposed approach by using the NuSMV model checker.

The rest of this paper is organized as follows. Section 2 presents a data replication approach
based on semi-active replication in distributed systems. Section 3 describes the propagation and
logical behaviors as well as defining some essential concepts and notations to formalize these
behaviors. Section 4 presents a symbolic model checking approach for the proposed behavioral
models. Also the behavioral models have converted to Kripke structure for checking some be-
havioral problems such as reachability, fairness and deadlock free automatically. Furthermore,
the logical properties of behavioral models are defined by using linear temporal logic and com-
putation tree logic languages. These properties can be checked by the specification of logical
behavior which is mapped on propagation behavior. Section 5 focuses on the implementation of
the proposed behavioral models by NuSMV (GUI) tool and verification of the Kripke structure
model by NuSMV model checker. In section 6, a performance evaluation is presented for proposed
approach. Finally, conclusions and future works are provided in Section 7.

2. PROPOSED DATA REPLICATION APPROACH

In this section, we present a Combined Semi-Active Data Replication approach (CSADR) based
on the Atomic Broadcast (AB), View Synchronous Broadcast (VSB) and Deferred Update Repli-
cation (DUR) protocols. First, we discuss the replication context, semi-active replication and

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 21

differed update protocol. Then, we describe the CSADR approach with added properties in
proposed approach.

2.1 The context of replication protocol

We briefly describe semi-active replication protocol according to [Schneider 1990][Powell 1994].
Semi-active replication is a middle explanation between active replication and passive replication.
Semi-active replication has not need to a deterministic method in process of service request repli-
cas. For a semi-active replication protocol, there are five generic stages. These stages represent
the procedure of update operation in the protocol and have used to characterize the different
methods according to [Wiesmann et al. 2000].

Request Phase (RE): in this phase, a client submits a request to all replicas by using Atomic
Broadcast.

Server Coordination Phase (SC): During the server coordination phase, the replicas coordi-
nate by using the order given by the atomic broadcast protocol.

Execution Phase (EX): In this phase, all replicas execute the submitted request in the order
they are delivered.

Agreement Coordination (AC): this phase can navigate in case of a non-deterministic order
to guaranteeing atomicity. In first phase a leader is chosen and this leader informs to the other
replicas (as followers) using the View Synchronous Broadcast (VSB) protocol. This method is
similar to the two phase commit in eager update everywhere with distributed locking approach.
Client Response (CL): The client response phase shows the send back operation in time when
the client receives a response from the system. The replicas return the reply to the client.

By notice to the above steps, we can specify some problems to phases of semi-active replication
protocol [Poledna 1994]. First, by using atomic broadcast in the SC phase we can guarantee
three properties such as agreement, validity and integrity. Due to the high number of read and
write operations, the execution time of each operation is a critical factor in distributed systems.
Therefore, using a timed atomic broadcast protocol can support this problem. Second, when
crash and failure conditions have been occurred for the selected replica as a leader, choosing a
leader can be a critical point before sending a request in RE phase. So, the failure of replicas
is limited since the follower replicas cannot detect out of order decisions of the leader. This
selection causes that the system cannot have an appropriate behavior for choosing a leader in
critical times. Third, there is a cycle between the EX and AC phases for coordination process
and delivery process for all of replicas. In the nondeterministic point of execution phase, the
update procedure has occurred according to VSB order in AC phase. If a replica encountered
by failure in spread on the status, the agreement coordination phase cannot confirm the entire
replica for responding to the client. Therefore, using a view delivery method is important for
preventing this problem.

To overcome these defects, we present a combined semi-active replication approach in this sec-
tion. So, not only this approach supports all of the factors of traditional semi-active replication
but also prevent from the above defects.

To define the CSADR approach, we add a stage to the generic stages of traditional semi-active
replication protocol. Also we use to Timed Atomic Broadcast (TAB) and Same View Delivery
(SVD) protocols [Sciascia and Pedone 2013] in the proposed approach.

Figure 1 depicts 6 stages of the replication process in the CSADR approach. Before sending each
request by the client, a bounded time is specified for broadcasting the request to replicas in stage
1. After specifying the bounded time, the client sends the request to the replicas by using a
timed atomic broadcast in stage 1. By using the order property of the timed atomic broadcast,
the replicas coordinate in stage 2. In stage 3, the execution process is performed for updating
replicas. The replicas execute update process. Because execution stage navigates the updates of
replicas in nondeterministic point, each replica that completes its update operation in minimum
time, it is determined as the leader. Also other replicas are followers.

After specifying the leader in case of a nondeterministic choice, the leader notifies the result of

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

22 . Alireza Souri

its update to the followers by using VSB in stage 4. This stage navigates the agreement coordi-
nation for the followers. In stage 5, each replica sends apply message to the leader using same
view delivery (SVD). Finally, the leader sends back the response to the client in stage 6. This
reply specifies that all of the replicas update itself according to the request of client.

Stage 1: Client Request, Bounded time specification

Replica 1 Replica 2 Replica 3 Replica 4

Stage 2: Replica Coordination

TAB
ending

Replica 1 Replica 2 Replica 3 Replica 4
Stage 3: Execution Process, Leader elections
Deferred
Replica 1 Replica 2 Replica 3 Replica 4 Update
Stage 4: Agr t Coordination, Leader notifi
VsSB
; | V sending
Replica 1 Replica 2 Replica 3(L) Replica 4
Stage 5: ¢ lating Apply M 9
SVD
| | | sending
Replica 1 Replica 2 Replica 3(L) Replica 4
Stage 6: Client Response
I I i I Client
Replica 1 Replica 2 Replica 3(L) Replica 4

Figure 1. Combined semi-active replication approach.

3. DATA REPLICATION BEHAVIORAL MODEL

This section presents a behavioral model for the CSADR approach that includes: Propagation
behavior and Logical behavior. First, we define a formal explanation of presented behavioral
model for separating this model into Propagation behavior and Logical behavior.

Definition 1: The Combined Semi-Active Data Replication (CSADR) system behavior is a 4-
tuple CSADRB = (A, a, L, T) where:

—A is a finite set of states.
—a € A is the initial state.
—1L is a set of transition labels.

—T € A x L x A is the transition relation. For illustrating a transition relation T, let T = (a;,
1, a;) that a; and a; € A, and 1 € L. This transition relation demonstrates the current relation
between a; and a; by label L.

Figure 2 explains the Propagation behavior of the CSADR approach that includes client re-
quest sent, TAB propagated as the module 1, deferred update preceded as the module 2, VSB
propagated as the module 3, SVD applied as the module 4 and client request received. The first
input for module 1 is Delta-t for timed atomic broadcast process. An output is determined for
module 2 after specifying the leader R in leader election process. The specified leader R is the
input of module 3. After receiving all of the apply messages of followers by Leader R in SVD
process, the output of module 4 is the final result. Finally, the final result of the leader R is sent

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 23

to the client.

Client request sent Specifying At
TAB propagated: <<Module_1>>

/

Leader R
Deferred update proceeded: <<Module_2>>

Leader R

VSB propagated: <<Module_3>>

Final result

SVD cumulation: <<Module_4>>
Client request received

Figure 2. The propagation behavior of the CSADR approach.

Figures 3, 4, 5 and 6 show the modules of propagation behavior in CSADR approach. Figure
3 shows the module 1. In this module, the client sends the request for propagating the update to
other replicas. Then, TAB protocol has executed the by determining a Delta-t. If the Time-set
< Delta-t, then TAB protocol completes the propagation process by TAB-Delivery. Otherwise,
the request suspended and rollback to the Sendback-client state. After delivery of timed atomic
broadcast protocol, the result of this module transfers to module 2 (Figure 4). This result depicts
the replica coordination process. Figure 4 shows module 2. This module illustrates the deferred
update and leader specification respectively. After specifying leader and followers, the agreement
coordination has started in next module. Figure 5 describes module 3. This module shows the
VSB protocol. In this module, the leader notification process is done. Finally, figure 6 depicts
module 4. This module illustrates the SVD protocol for apply messages of followers and cumu-
lating these messages by the leader. After performing the accumulation of applies messages, the
leader sends the response request to the client.

The logical behavior navigates the execution flow of the update propagation system. In the
figure 7, the logical behavior of CSADR approach presents a number of states extracted from
CSADR behavior. These states includes: Enabled, Received, Transferred, Executed, Suspended
and Done. Initially, the logical behavior is enabled. In the propagation behavior, the Delta-
t-determined, TAB-Delivery, Followers-determined, First-update-completed and Leader-delivery
operations have been executed by Received state. The deferred update process, Leader specified,
Leader notification and cumulating messages operations have been executed by Executed state.
The Transferred state executes all of the TAB-send, VSB-send and SVD-send operations. The
Suspended state executes the suspended operation. Finally, the sendback-client operation has
been performed by Done state. When the propagation behavior procedure is accepted, then the
Executed state moves to Done state. Otherwise, Executed state sends back to the Transferred
state and the Transferred state moves to Suspended state and the procedure rollbacks to the
Enabled state.

In figure 7, the state done is final state of the logical behavior. For example, in the figure 7 a
path is: Enabled — Received — FExecuted — Transferred — Received — Executed — Done.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

24 . Alireza Souri

Sendback_Client

Suspended

- Onentry:
- During:
- Onexit:

At determined

At forwarded

Qe_Set > At

TAB_Deli
—JeRvery TAB_Send
- Onentry: ‘_L
- _ During: Time_Set <Ay - Onentry:
- Onexit: L
TAB succeed - Onexit:

—

Figure 3. The module 1 of propagation behavior.

P T,
/ Deferred update process \ first update completed

- Onentry:
- Onentry: ;. i During;y
- During: - g
- Onexit: forward Onexit:

4

channel_send=true

{ Followers determined '\

-Onentry:
- During:
- Onexit:

/ leader specified \

-Onentry:
- During:
- Onexit:

channel_receive=tru

Figure 4. The module 2 of propagation behavior.

In this path the states are terminated to Done state at the end. There is a loop for following
path: Received — Executed — Transferred — Received — Executed — Transferred — Received.

Definition 2 (Path in the CSADR Behaviors): A path P “7J in the CSADR behavior
is a finite sequence of the states and transitions starting from state a; and finishing at state a;,
denoted as:

Pi?i=a®—a'tl 5 a2 5 . a/~! = af such that Vk € (i, j-1) : (a¥, 1, a¥T1) € T. For
example, in figure 6, SVD-Send — Leader-Delivery— Cumulating-messages — Sendback-Client
is a path in the propagation behavior of the CSADR, approach.

There are a set of possible mapped paths in the propagation behavior with each state of the
logical behavior. In following example, we see a mapping method in the CSADR approach where

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 25

Leader notification

- Onentry:
- During:
- Onexit:

VSB_Send

- Onentry:
- During:
- Onexit:

Figure 5. The module 3 of propagation behavior.

e
/[SVD_Send \

- Onentry:
- During:
- Onexit:

Leader_Delivery
Sendback_Client

Cumulating_messages

- Onentry:
- During:
- Onexit:

perform|

Figure 6. The module 4 of propagation behavior.

the Executed and Received states in the logical behavior are connected with some states in the
propagation behavior as follow:

—Propagation behavior: Deferred update process — First update completed — Leader specified
— Followers determined.

—Logical behavior: Ezecuted — Received — Ezecuted — Received.

4. SYMBOLIC MODEL CHECKING FOR BEHAVIORAL MODELS

In this section, we define the temporal logic languages such as the Linear Temporal Logic (LTL)
and the Computation Tree Logic (CTL) formulas briefly. Also we illustrate converting behaviors
of CSADR approach to Kripke structure mechanism.

There are two temporal logic languages for symbolic model checking that include: Linear Tem-

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

26 . Alireza Souri

°

Enabled Received tnvoke
Start - Onentry: »| - Onentry:
> - During: - During:
- Onexit: < - Onexit:

\) Reply \

Forward
Roll back Referesh

Commitment

Suspended

A4
/ Transfered \

-Onentry:) -Onentry:
- During: Retrial - During: %
- Onexit: - Onexit: Reply

—

- Onentry:

- During:
- Onexit:

Figure 7. The logical behavior of the CSADR approach.

poral Logic (LTL) and Computation Tree Logic (CTL)[Clarke Jr. et al. 1999]. For showing the
properties of the propagation behavior, these properties can formulate by using LTL and CTL
formulas [Jafari Navimipour et al. 2015].
Now, we define some LTL and CTL properties for propagation model according to above rules
and we Let — as the logical association:

— L1: G (DeferredUpdate.state = DeferredUpdate-process) — F (DeferredUpdate.state = Followers-

determined). Globally a Followers-determined state comes in future after a DeferredUpdate-
process state finally.

— L2: G (DeferredUpdate.state = Leader-specified) — F (VSB.state = VSB-send). Globally a
VSB-send state comes in future after a Leader-specified-process state finally.

—L38: G (TAB.state = Suspended) — X (TAB.state = Sendback-Client). Globally a Sendback-
Client state comes after a Suspended state.

— L4: G (VSB.state = Leader-notification)— X (VSB.state = VSB-send). Globally a VSB-send
state comes after a Leader-notification state.

— C1: AG (TAB.state=TAB-delivery)— AF(TAB.state = Sendback-Client). There are always
all paths from state TAB-delivery to state Sendback-Client in future.

— (C2: EF (TAB.state = TAB-delivery — VSB.state = SVD-send). There is eventually a path
from state TAB-delivery to state SVD-send finally.

— (C8: AG (VSB.state = VSB-send — TAB.state = Suspended). There are always all paths
from state VSB-send to state Suspended that it is not true.

— C4: AG (TAB.state = Sendback-Client — SVD.state = Sendback-client). There are always
all paths from state Sendback-Client to state Sendback-client globally.

— (05: AG (SVD.state = Leader-delivery) — AX (SVD.state = Cumulating-messages). The
state Cumulating-messages comes after state Leader-delivery always.

— C6: AG (TAB.state = TAB-Send) — EX(TAB.state = TAB-delivery | TAB.state = Sus-
pended). The states TAB-delivery or Suspended comes in future after state TAB-Send eventu-
ally.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 27

Also we can define logical properties to specify the logical behavior states for checking by using
following initials: Initial= (Disable: Di; Received: Re; Executed: Ex, Transferred: Tr, Sus-
pended: Su; Done: Do, Finish: Fi). Also we Let — as the logical association. We define some
examples of LTL and CTL properties which can be verified for the control behavior:

—L1: G (Di — X Re). Always a Received state comes after a Disabled state.
—L2: G (Su— X Do). Always a Done state comes after a Suspended state.
—L3: G (Ex — F Tr). Always a Transferred state comes in future after an Executed state.

—L4: G (Re— F (Tr| Do | Ex))). Always a Done state or Transferred state or Executed state
in the future comes after a Received state.

—C1: AG (Di — EF Do). There is always a path from state Enable to state Done eventually.

—C2: AG (Re — AF (Ez | Tr). There is always a path from state Received to state Executed
or Transferred.

—(C8: AG (Ex — EF Do). There is always a path from state Executed to state Done.

—C4: AG ((Di — EF Fi). There is always a path from state Disable to state Finish eventually.
—C5: AG EF (Re — Do). The path form Received to Done is always potentially reachable.
—C6: AGEF (Fi). State Finish is always potentially reachable.

4.1 Kripke structure of CSADR approach

In this subsection, we define the Kripke structures of behavioral models. A Kripke structure is
used to checking the system behavior.

Definition 3 (Kripke structure): A Kripke structure as a non-deterministic finite state ma-
chine is a 4-tuple = (H, I, F, Q), where:

—H is a finite set of states
—1 is a set of initial states.
—F H H is a transition relation for Vh; € H, 3hy € H: (hy, hy) € F.

—Q: 247 is a labeling functions true or false which each state with the atomic propositions holds
in that state. AP is a nonempty set of atomic propositions. The Q illustrates to each state h
€ H that set Q (h) of all atomic propositions that are valid in h.

For verifying the propagation behavior, there are some problems such as state space explosion.
To prevent the state space explosion, we convert the propagation behavior to a Kripke structure.
We present a conversion of the propagation behavior into a Kripke structure. This conversion is
performed as follow: Each state a in the propagation behavior is converted into a set of states and
transition in the Kripke Model KM and each transition is converted into one or many transitions.
If a is a simple state, it is converted to one state in KM with the same content. In this conversion,
we follow propagation behavior states to the corresponding state in the logical behavior. This
conversion is from propagation behavior states to the symbols Di, Re, Ex, Tr, Su, Do and Fi
which these symbols are executed by using mapping process in definition 5. In figure 8, we
illustrate converting the propagation behavior states to a Kripke structure. In this figure, the
state Disable: Di is initial state and Finish: Fi is final state in Kripke structure. Figure 9 shows
the states of propagation Kripke model with renaming by symbol names of logical behavior. Then
a reduction of Kripke model for propagation Kripke model is provided by a decrease approach
based on reduction of BDD. This approach provides a flat situation for converting the translating
the Kripke model to SMV (Symbolic Model Verifier) code as follow:

—If (h1, h2) and (h2, hl) are two transitions, then these transitions are replaced by the transition
(h1, h1).

—For all I, if (hi, h2) is a transition, then it is removed and replaced by the transition (hi, h1)
if such a transition does not exist.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

28 . Alireza Souri

—For all j, if (h2, hj) is a transition, then it is removed and replaced by the transition (hl, hj)

if such a transition does not exist.

Tterminee
—
> semf back Suspended Deferred
messages client update process
First update

completed

Leader
Delivery

Leader
specified

VSB_send

Leader Followers
notification determined
—

Figure 8. Kripke structure of propagation behavior.

The outcome of reducing the Kripke model is displayed in fig 10. Then the reduced model is
converted to SMV code. The SMV code demonstrates the transition relation of the Kripke model.

In this section, we illustrated the model checking approach to verifying the combined semi-
active data replication approach behaviors through the following three phases:

—Defining some examples of CTL and LTL properties which can be verified for the logical
behavior.

—Converting the statechart of the propagation behavior to a Kripke model.

—Reducing the achieved Kripke model.

In the next section, to implement the proposed model the following steps are done:
—Translating the reduced Kripke model to SMV code in NuSMV graphical user interface model

checker.

—Verification of the extracted properties from the logical behavior by using NuSMV interactive
model checker.

5. VERIFICATION APPROACH

In this section, the verification of the proposed model based on state-of-art technologies such
as symbolic model checking is provided. We used NuSMV-GUI which is an expanded the open
source NuSMV tool for modeling the propagation and logical behaviors. We present two methods
for verification of combined semi-active data replication model.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 29

Figure 9. Kripke model of CSADR approach.

=S
L

Do Su

—{_"]

Figure 10. Reduced Kripke model of CSADR approach.

First verification method is generating SMV code by using NuSMV-GUI directly. Figure 11
illustrates the combined semi-active data replication model in the NuSMV-GUI tool. After
specifying some LTL and CTL properties in specification section (as shown in figure 11), the smv
code is generated automatically for propagation behavior by clicking on the generate SMV code
icon. A java code has write for generating the SMV code in NuSMV-GUI tool. We enable this

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

30 Alireza Souri

code using eclipse tool and embed this code in file
When we click on generate SMV code, the file run
running in NuSMV-Interactive shell.

File Edit Model Window
L =t "B, -
M= oW 9e
Viodel tree x - _*\
D% testl Generate SMV code

TAB: <<Module_1>>

Tl [0

Modules

¥ Module 1
% Module 2
w? Module 3
¥ Module 4

VSB: <<Module_3>>

114,343

SVD: <<Module_4>>

master.nusmvre for running NuSMV-GUI.
automatically and generate SMV code for

LTL and CTL Specifications
* | |Medule information

Fariness Spedifications

CTL AG (TAB.state=TAB_delivery)-» AF(TAB.state = Sendback,

CTL EF(TAB.state = TAB_delivery -> VSB.state = SVD_send)

DeferredUpdate: <<Module_2>>

cTL AG(VSB.state = VSB_send -» TAB.state = Suspended)

ITL G (DeferredUpdate.state = DeferredUpdate_pracess)-» F(
ITL G (DeferredUpdate.state = Leader_specified) -> F (V3B.state
CTL AG(TAB.state = Sendback_Client -> SVDsstate = Sendback_
CTL AG(SVDistate = Leader_delivery) -> AX (SVD.state = Cumul,
CTL AG(TAB.state = TAB_Send) -> EX(TAB.state = TAB_delivery
ITL G(TAB.state = Suspended) -> X (TAB.state = Sendback_Cl

ITL G{VSB.stste = Leader_notification) -> X(VSB.state = VSE_sel

Figure 11.

Generating SMVcode by using NuSMV-GUI tool.

After generating the SMV code, we verify generated code by using NuSMV-Interactive shell.
Figure 12 depicts the LTL properties checked in NuSMV model Checker by green line. The L1,

L2, L3 and L4 properties are satisfied properties.

WARNING
WARNING
WARNING
WARNING
WARNING
WARNING
WARNING
WARNING

This version of NuSMU is linked t

system variahle "“sat_solver" is s

PERMISSION FROM PRINCETON UNIVERS

for details.
read_model —i testl.smv
flatten_hierarchy
encode_variables
build_model
check_ltlspec
—— specification (G DeferredUpdate.state
dUpdate.state = Followers_determined) is
—— specification (G DeferredUpdate.state
SB_send) is [Crue]

L
= Suspended —>

= Leader_notif

Figure 12.

(see http://wwu.princeton.edu/"chaff/zchaff.html).
Zchaff is used in Bounded Model Checking when the

Notice that zchaff is for non—commercial purposes only.
NO COMMERCIAL USE OF ZCHAFF IS ALLOWED WITHOUT WRITTEN

Please contact Sharad Malik (malikCee.princeton.edud

o the zchaff SAT solver

m

et to “zchaff".

ITY.

eferredUpdate_process —> F Deferre
U

e
eader_specified —> F USB.state

% TAB.state = Sendback_Client> i

ication —> X USB.state = USB_send)

The Checking LTL properties of generated GUI model in NuSMV Interactive mode.

Also Figure 13 displays the results of true CTL properties by green line and false CTL property

by red line.

The generated counter-example of false property shows when VSB operation is

executed, then the state Suspended in TAB propagation cannot execute. So this property is

International Journal of Next-Generation Computing, Vol. 7, No.

1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 31

false.

The second verification method is the translating the reduced CSADR, Kripke model to the SMV
syntax according last section methods. Fig. 14 shows the translated SMV code from the reduced
CSADR Kripke model (shown in figure 10) by Roudabeh tool which is a tool developed by
using Java language for writing, saving and editing Promella and SMV models [25]. We specify
properties of the logical behavior in LTL and CTL formulas (defined in 5.2) that can be checked
in the NuSMV model checker. After adding some properties, we can confirm the SMV file by
saving with .smv format in Roudabeh tool.

R — 4

NuSMU heck_ctlspec -
—— specification (AG TAB.state = TAB_delivery —-> AF TAB.state = Sendhack_Client)>

is [true]
—— specification EF (TAB.state = TAB_delivery —> USB.state = SUD_send)> is [truel
—— specification AG (USB.state USB_send —> TAB.state = Suspended> is false
—— as demonstrated by the following execution seguence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-

TAB.v_1 = 8

TAB.state = T_determined

TAB.non_det_choice_TAB_Send = TAB_delivery

DeferredUpdate.state = DeferredUpdate_process

USB.state = Leader_notification

SUD.state = SUD_send

m

TAB.state = TAB_Send
DeferredUpdate.state = FirstUpdate_compelted
USB.state = USB_send
SUD.state = Leader_delivery
—— specification AG (TAB.state = Sendbhack_Client —> SUD.state = Sendback_client)
is
—— specification (AG SUD.state = Leader_delivery —> AX SUD.state = Cumulating_me
ssages) is [Erue]
—— specification (AG TAB.state = TAB_Send —> EX (TAB.state = TAB_delivery | TAB.
ﬁtgﬁﬁ ; Suspended>> is
w a4

Figure 13. The Checking CTL properties of generated GUI model in NuSMV Interactive mode.

After generating SMV code by using Roudabeh tool , we verify the SMV code by using NuSMV-
Interactive shell model checker. To check the properties which are illustrated in subsection 4.2,
the following commands are used in NuSMV model checker.

NuSMV: read_model i CSADR.smv

NuSMV: flatten_hierarchy

NuSMV: encode_variables

NuSMV: build_model

NuSMV: check_ltlspec (to check LTL specifications)

NuSMV: check_ctlspec (to check CTL specifications)

Figure 15 depicts the LTL properties checked in NuSMV model Checker by green line. The
L1, L2, L3 and 14 properties are satisfied properties. Also this figure displays the results of
CTL properties by yellow dash-line. In the implementation, our system detected successfully the
logical problems of all properties described in section 4.2.

Also in Figure 16, we evaluate the states and transitions of CSADR approach in reachability
and fairness conditions. By using compute_reachable, Print_fair_states and Print_fair_transitions
commands, we can check state reachability, state fairness and transition fairness. By specifying
a yellow underline in below of each number, the result shows that there is the reachability and
fairness for all states and all transitions of CSADR approach. By using check_fsm command, the
deadlock problem can be checked by red border line in finite state machine of combined semi-
active data replication approach. To evaluate the performance of the proposed approach, next

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

32 . Alireza Souri

Roudabeh - D:\Program Files\NuSMVA2.4 3\CSAD... [= || & |5

File Edit View Rebeca Translate
B& & | iE

[CSADR.smv |
MODULE State()

[»

[VEE.
state : [Di, Re, Ex, Tr, Su, Do, Fi}:;
[RSSIGHN
init {state):=Di;
next (3tate) :=case

state = Di : [Re}:
state = Re : [Ex, Tr} :
state = Ex : {[Do, Re, Tr}:
state = Tr : { Re, Su };
state = Su : [Do} :
state = Do : {Fi };
l:state;

esac;

MODULE main ()
VAR state:State ;

—-LIL Specifications

LTLSPEC G(state.state = Di} -> X(state.state = Re) ;
LTLSPEC G({state.state = Su} -> X(state.state = Do);
LTLSPEC G(state.state = Ex) -> F(state.state = Tr) ; |«|
<« Il | D

Figure 14. The conversion of Kripke model to SMV code by Roudabeh tool.

5.2 NuSMV Interactive SRICIIR

> read_model —-i CSADR.smu
> flatten_hierarchy
> encode_variahles
> build_model
> check ltlspec
specification ¢ G state.state
specification (G state.state
specification (G state.state
specification G (state.state
i state.state = Ex)>) is true
NuSMU > check ctlspec
—— specitfication AL (state.state Di —> EF state.state = Do)
—— specification AG {(state.state Re —> AF (state.state = Ex
2> is true
== specﬁ-lcation (state.state | state.state

Di —> state.state
Su —> state.state
Ex —> state.state
Re —-> ((state.stat

o wn

specification (state.state = Di —> EF state.state

specification (EF (state.state = Re —)> state.state
—— specification (EF state.state = Fi) is true
NuSMU > et

Figure 15. The Checking LTL and CTL properties in NuSMV Interactive mode.

section provides some analytical results. These results specify that our proposed combined semi-
active data replication approach is reachable, fair and deadlock free in the temporal language.

6. EVALUATION

The proposed combined semi-active data replication approach has three advantageous in com-
parison of similar works. First, unlike many papers in this scope, the proposed approach used to
time atomic broadcast and same view delivery protocols for navigating the updates propagation
in distributed databases. Second advantageous is using leader specification instead specifying a
leader in first of protocol process. Third advantageous is decreasing time and memory consump-
tion of system verification. The proposed approach is evaluated according to the faithfulness of
the formal models and their usefulness for model checking. Due to the size and complexity of

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 33

NuSMU > read_model —i CSADR.smv
NuSMU > flatten_hierarchy
NuSMU > encode_variahles
NuSMU > build_model
NuSMU > compute_reachable
Reachabhle States already enabled.

print_reachabhle_states
BIg iR 3 g g d i ia g digiaiRigidigidiRigidig iR igiaitig B iniaitigitiaisitiaitiaititititigiBiiaifiBBiBsANR BN NN B NR 2001
system diameter: 5
reachable states: 7 (272.88735) out of 7 (2°2.80735)
B R R R I R T R R R R R R R R R R R
NuSMU > print_fair_states
ﬁﬁ#ﬁﬂﬁﬁ#uﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂﬁﬁ#ﬁﬂ
fair states: 7 (272.88735) out of 7 (272.80735
ﬂﬂuﬂﬂﬂﬂuﬂﬂﬂﬂ”ﬂﬁﬁ*ﬁﬂﬁﬁﬁ*ﬁﬁﬁﬁuﬂﬂﬂﬂu#ﬂ#ﬁ#ﬂ#ﬂ#ﬂﬂ#ﬁ#ﬂﬂﬂﬂﬂuﬂﬂﬂﬂuﬂuﬂﬂuﬂﬂﬂﬂuﬂﬂ
NuSMU > print_fair_transitions
B2ii2ididiaididididiaidididididididididididididididitidididiaitditiditdiBiatdN b BN N2 N2 N220010000000
fair states: 7 (272.80735) out of 7 (2°2.80735)
0 TR 310 S A0 1E 300 T 00 1 b T T T TR T R R R R R R R R R R
INuSMU > check_fsm

HEHH R R R R muuuuuuuuuuuuuuuuuuuuuuu
The transition relation is total: No deadlock s
Di3i8 g8 g 3ie g8 iR 3ieisi8igi3ieiie g sieisieigisieisisisisieid

Figure 16. Checking reachability and fairness of CSADR approach.

current systems reachability and fairness are not always possible, therefore two requirements is
necessary to verifying the model:

—The presented model contains all the necessary hints for checking a required property.

—The model covers only the effective behaviors of the actual system.

The correct traces of combined semi-active data replication approach checked by appropriated
paths in the LTL and CTL formulas using two implementation methods:

(1) Generating SMV code using NuSMV (GUI) tool and

(2) Generating SMV code using the reduced Kripke structure mechanism.

Figure 17 shows the comparison of verification time for the combined semi-active data repli-
cation approach and the semi-active model by using GUI and Reduced Kripke implementation
methods. We see that the verification time for the combined semi-active data replication ap-
proach by using GUI and reduced Kripke methods are lower than the semi-active model as the
number of sifted states increases.

Also Figure 18 illustrates the comparison of memory consumption for verifying the combined
semi-active data replication approach and the semi-active model by using GUI and Reduced
Kripke implementation methods. We note that the memory consumption for the combined semi-
active data replication approach using GUI and reduced Kripke methods are lower than the
semi-active model as the number of sifted states increases.

Table 1 shows the evaluation results to check the model of combined semi-active data replication
approach using reduced Kripke and GUI implementation methods which are achieved by NuSMV
model checker tool.

Table I. Verification statistics for CSADR approach

CSADR implemented by Reduced Kripke | CSADR implemented by GUI
Memory in use (byte): 4635798 Memory in use (byte): 4959492
Number of BDD variables: 7 Number of BDD variables: 15

Number of sifted variables: 1000 Number of sifted variables: 3200
Number of swapped variables: 1500000 Number of swapped variables: 3200000
total number of nodes: 1012 total number of nodes: 2465

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

34 . Alireza Souri

1000

800

600

400

Time (Sec)

200

5 10 20 30 40 50 60 70 80 90 100
Number of sifted states

==@==CSADR approach Reduced Kripke —#— Semi-active protocol CSADR approach GUI

Figure 17. The results of Verification time.

Memory (Mbytes)

5 10 20 30 40 50 60 70 80 90 100

Number of sifted states

==@==CSADR approach Reduced Kripke —#— Semi-active protocol CSADR approach GUI

Figure 18. The results of memory consumption.

As exposed in Table 1 for reduced Kripke method, the verification of 27 model are computed
for all state space, the number of BDD variables is 7, the number of sifted variables are 1000,
the number of swapped variables are 1500000 and the total number of nodes are 1012. Also for
GUI method, the verification of 2'® model are computed for all state-space, the number of BDD
variables is 15, the number of sifted variables are 3200, the number of swapped variables are
3200000 and the total number of nodes are 2465.

7. CONCLUSION AND FUTURE WORK

This paper presented a combined semi-active data replication approach in distributed systems.
The proposed approach is based on semi-active replication protocol. Unlike other approaches,
the combined semi-active data replication approach is separated into propagation and logical
behaviors which enabled the mapping process between two behaviors by means of the symbolic
model checking approach based on binary decision diagram. We take out the probable specifi-
cation of combined semi-active data replication approach from logical behavior in the form of

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 35

LTL and CTL temporal logic formulas. Also we verified the behavior models of the combined
semi-active data replication approach by NuSMV-GUI tool and the NuSMV-Interactive shell.
The verification results displayed that the combined semi-active data replication approach can
propagate the update request of each client to other replicas successfully. Finally, a comparison
of the execution time and the memory consumption for the combined semi-active data replica-
tion approach and semi-active protocol is analyzed in two verification methods. The comparison
results show that the verification time and memory consumption for the combined semi-active
data replication approach by reduced Kripke method is lower than the semi-active model as the
number of sifted states increases. In the future work, we will research to extend this approach
for fault tolerant conditions as well as its behavioral modeling and formal verification.

REFERENCES

ABAWAJY, J. AND MAT DERIS, M. 2013. Data Replication Approach with Data Consistency Guarantee for Data
Grid. Computers, IEEE Transactions on PP, 99, 1.

ALAMI MILANI, B. AND JAFARI NAVIMIPOUR, N. 2016. A comprehensive review of the data replication techniques in
the cloud environments: Major trends and future directions. Journal of Network and Computer Applications 64,
229-238.

ARMENDARIZ-INIGO, J. E., DE MEND\'1VIL, J. R., GARITAGOITIA, J. R., AND MUNoz-Esco\'1, F. D. 2009. Cor-
rectness proof of a database replication protocol under the perspective of the I/O automaton model. Acta
Informatica 46, 4, 297-330.

CLARKE JR., E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press, Cambridge, MA, USA.

DwyYER, M. B., AVRUNIN, G. S., AND CORBETT, J. C. 1998. Property Specification Patterns for Finite-state
Verification. In Proceedings of the Second Workshop on Formal Methods in Software Practice. FMSP ’98.
ACM, New York, NY, USA, 7-15.

GARCIA, R., RODRIGUES, R., AND PREGUIGA, N. 2011. Efficient Middleware for Byzantine Fault Tolerant Database
Replication. In Proceedings of the Sizth Conference on Computer Systems. EuroSys '11. ACM, New York, NY,
USA, 107-122.

GARCIA-GARCIA, J., ORDONEZ, C., AND Tosic, P. T. 2012. Efficiently repairing and measuring replica consistency
in distributed databases. Distributed and Parallel Databases 31, 3, 377-411.

GRAY, J. AND REUTER, A. 1992. Transaction Processing: Concepts and Techniques, 1st ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

HaMMAL, Y., BEN-OTHMAN, J., MOKDAD, L., AND ABDELLI, A. 2015. Formal Modeling of Greedy Nodes in
802.15.4 WSN. ICT Ezxpress 1, 1 (jun), 10-13.

HANSEN, H., VIRTANEN, H., AND VALMARI, A. 2003. Merging State-Based and Action-Based Verification. In
Proceedings of the Third International Conference on Application of Concurrency to System Design. ACSD
’03. IEEE Computer Society, Washington, DC, USA, 150—-.

HoLzMmANN, G. J. 1997. The model checker SPIN. IEEE Transactions on Software Engineering 23, 5, 279-295.

JAFARI NAVIMIPOUR, N., HABIBIZAD NAVIN, A., RAHMANI, A. M., AND HOSSEINZADEH, M. 2015. Behavioral
modeling and automated verification of a Cloud-based framework to share the knowledge and skills of human
resources. Computers in Industry 68, 65-77.

KEMME, B. AND ALONSO, G. 2000. A New Approach to Developing and Implementing Eager Database Replication
Protocols. ACM Trans. Database Syst. 25, 3 (sep), 333-379.

Liu, Y., SuN, J., AND DoONG, J. S. 2010. Automated Technology for Verification and Analysis: 8th International
Symposium, ATVA 2010, Singapore, September 21-24, 2010. Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg, Chapter Developing, 371-377.

MANNA, Z. AND PNUELL, A. 1995. Temporal Verification of Reactive Systems: Safety. Springer-Verlag New York,
Inc., New York, NY, USA.

McoMiLLAN, K. L. 1992. Symbolic Model Checking: An Approach to the State Explosion Problem. Ph.D. thesis,
Pittsburgh, PA, USA.

PEREZ, J. M., GARCIA-CARBALLEIRA, F., CARRETERO, J., CALDERON, A., AND FERNANDEZ, J. 2010. Branch
replication scheme: A new model for data replication in large scale data grids. Future Generation Computer
Systems 26, 1 (jan), 12-20.

PoLEDNA, S. 1994. Replica determinism in distributed real-time systems: A brief survey.

PowEgLL, D. 1994. Distributed Fault Tolerance - Lessons Learned from Delta-4. In Revised Papers from a
Workshop on Hardware and Software Architectures for Fault Tolerance. Springer-Verlag, London, UK, UK,
199-217.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

36 . Alireza Souri

SAFARKHANLOU, A., SOURI, A., NOROUZI, M., AND SARDROUD, S. E. H. 2015. Formalizing and Verification of an
Antivirus Protection Service using Model Checking. In Procedia Computer Science. Vol. 57. Elsevier, 1324-1331.

SCHNEIDER, F. B. 1990. Implementing Fault-tolerant Services Using the State Machine Approach: A Tutorial.
ACM Comput. Surv. 22, 4 (dec), 299-319.

Sciascia, D. AND PEDONE, F. 2013. Geo-replicated storage with scalable deferred update replication. In Proceed-
ings of the International Conference on Dependable Systems and Networks.

SOURI, A. AND JAFARI NAVIMIPOUR, N. 2014. Behavioral modeling and formal verification of a resource discovery
approach in Grid computing. Ezpert Systems with Applications 41, 8, 3831-3849.

SouRrl, A. AND Norouzi, M. 2015. A new probable decision making approach for verification of probabilistic
real-time systems.

SOURI, A. AND PASHZADEH, S. 2014. CONSISTENCY OF Data Replication protocols in database Systems: A
review. International Journal on Information Theory (IJIT) 3, 4, 19-32.

SOURI, A. AND RAHMANI, A. M. 2014. A survey for replica placement techniques in data grid environment.
International Journal of Modern Education and Computer Science 6, 5, 46.

WIESMANN, M., PEDONE, F., SCHIPER, A., KEMME, B., AND ALONSO, G. 2000. Understanding replication in
databases and distributed systems. Proceedings 20th IEEE International Conference on Distributed Computing
Systems, 464-474.

ZHU, Y. AND WANG, J. 2010. Client-centric consistency formalization and verification for system with large-scale
distributed data storage. Future Generation Computer Systems 26, 8 (oct), 1180-1188.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

Formal Specification and Verification of a Data Replication Approach in Distributed Systems . 37

Alireza Souri received his B.S. degree in Software Engineering from University College of
Nabi Akram, Iran, in 2011 and his M.Sc. degree in Software Engineering from Science and
Research Branch, Islamic Azad University, Iran in 2013. Currently, he is a researcher and
lecturer in Islamic Azad University. His research interests include Formal Specification
& Verification, Model checking, Grid & Cloud computing. He is member of The Society
of Digital Information and Wireless Communications.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.

