
Approach for Processor to Dispatcher Load
Balancing in Distributed Networks

KULDEEP SHARMA

Maharaja Agrasen University

and

DEEPAK GARG

Thapar University

Load balancing is extensively used in distributed network applications to decrease the response times. In this

paper, the focus is on backend load balancing (processor-to-dispatcher). Many algorithms are devised for front
end load balancing e.g. JSQ, SQ(d) and JIQ. Join-Idle-Queue(JIQ) goes well in a distributed environment like

cloud computing. In JIQ approach, at the backend, a processor joins the queue on either random or sampled

basis. In both the cases, I-Queue of any dispatcher might remain empty resulting in degrading the performance.
After finishing the job, the processor should join the dispatcher whose I-Queue is empty. To achieve this, we have

used a dequeue to track the dispatcher with empty I-Queue. As the processor finishes the current job and reaches
the idle state, it should refer the dequeue and join the dispatcher whose I-Queue is empty.

Keywords: Load Balancing, Distributed Networks, Secondary Load Balancing, Backend Load

Balacing

1. INTRODUCTION

Load balancing is an official technique for the allocation of resources among different jobs. In
standard web server farm, a concentrated hardware load balancer is utilized to send jobs equally
to the front end servers [Chou and Abraham 1982]. The most famous and result oriented algo-
rithms are Join-the-shortest-queue (JSQ) algorithm, SQ(d) algorithm and Join-Idle-Queue (JIQ)
algorithm. JSQ is the most prevalent technique and used in processor sharing server farms like in
CISCO local Director, F5 Application Delivery Controller, Microsoft SharePoint and IBM Net-
work Dispatcher [Gupta et al. 2007] [Wang and Morris 1985]. In JSQ, a new request is allocated
to the server which has the least count of unprocessed requests. In this manner, JSQ endeavors
to adjust stack over the servers, diminishing the probability of a server having a few jobs whereas
another servers are idle. From the aspect of incoming request, it is a greedy strategy for the in-
stance of PS servers because the incoming request would have a preference to share a server with
as small number of jobs as possible [Squillante and Nelson 1991]. In JSQ algorithm, all incoming
job requests come through a centralized load balancer and similar is true for the responses. The
load balancer is now conscious of all the arrival and departure requests to an individual front end
server, making it simple with no extra communication required for tracking. A customary web
server ranch contains just a couple of servers whereas appropriated server farms have hundreds
or a great many processors for the front end alone. The capacity to scale horizontally in and out
to adapt to the elasticity of demand is highly valued in data centers. A solitary equipment load
balancer that accommodates many processors are both expensive and inefficient as it increases
the granularity of scaling [Bramson et al. 2010]. Later, need for distributed dispatcher was felt
in which centralized load balancing did not prove to be efficient enough [Applewhite et al. 1982].
Every server has its own list of arrivals and departures, so the actual load of the system could
not be determined. To overcome this, it was required to have a communication channel which
in turn, increased the overhead of communication and the load [Vvedenskaya et al. 1996]. λ(n)

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



70 · K Sharma et al.

. Figure. 1: Join-the-shortest-queue (JSQ) algorithm

denotes the conditional arrival rate into the first queue, Specifically, we define:

λ(n) = lim
t→∞

An(t)

Tn(t)

where An(t) is the count of arrivals amid the time interval [0, t] finding n occupations in the
queue 1, where Tn(t) is the aggregate time amid [0, t] during which there are n occupations in
the queue 1. Every dispatcher autonomously adjusts its jobs since just a small amount of jobs
use a specific dispatcher. The dispatcher has no information of the present number of jobs in
every server which makes the execution of the JSQ algorithm troublesome.

. Figure. 2: Distributed Dispatchers

1.1 Motivation

(1) A dispatcher receives a job for processing but its I-Queue is empty since no processor is
available in idle state. Due to this, job will be assigned to another server on random basis.
It will send request but this process will degrade the performance and moreover we have idle
processors in other I-Queues which are underutilized.

(2) When the I-Queue is empty, the request is sent to another server randomly but on the other
hand, this server is associated with the I-Queue of other dispatcher which shows its (server)
state as idle, whereas it is not. The server is already processing the job and will be in idle
state once the job is accomplished.

(3) After completing the job, the processor should join the dispatcher with an empty I-Queue.

1.2 Our Contribution

To overcome the limitations of backend load balancing in JIQ, our approach introduces dequeue
to be associated in the secondary load balancing of JIQ. When I-Queue of any dispatcher is
exhausted, its entry is recorded in the dequeue. So as soon as the server finishes the job, it
will refer this dequeue to be associated with the dispatcher (whose I-Queue is empty). All the
limitations (as said above) are due to the emptiness of I-Queue. So dequeue can be effectively used
here to ensure the availability of server in every I-Queue. We have considered JIQ as fundamental
part for our proposed approach. Our commitment is towards the improvement of backend load
balancing(secondary load balancing) by guaranteeing the accessibility of server in every I-Queue.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



Processor to Dispatcher Load Balancing in Distributed Networks · 71

1.3 Organization of paper

In this paper, we have proposed the exit plan for backend load balancing which is also referred as
secondary load balancing (processor-to-dispatcher). Section 2 covers the Join-Idle-Queue algo-
rithm [Lu et al. 2011]. Section 3 presents the system model. In section 4, the proposed approach
is discussed. Section 5 embodies analysis. We have concluded the paper in section 6.

2. RELEVANT WORK

Join-Idle-Queue algorithm is suitable for the distributed environment where various dispatchers
are put. In this approach, I-Queue is maintained by each dispatcher in which related server’s
entrance is kept. As an incoming request lands at the dispatcher, it sends to the processor
referring the I-Queue and erase the entry of the processor from the I-Queue. If the I-Queue
is unfilled then the job is moved to any available server on random basis. This is introduced
as primary load balancing or dispatcher-to-processor load balancing. At the point when any
processor completes the job, it needs to join any I-Queue. This is designated as secondary load
balancing or processor-to-dispatcher load balancing. In JIQ, two methodologies are proposed for
secondary balancing: JIQ-Random and JIQ-SQ(d). In JIQ-Random, processor may join any of
the dispatcher while in JIQ-SQ(d), it joins only out of the d sampled I-Queues.

. Figure. 3: Join-Idle-Queue

3. SYSTEM MODEL

Let L be the length of the queue computed over N number of dispatchers with M number of
processors. Now, length of the queue for a dispatcher-queue model is given by:

L =
M

N
(1)

For a system, let J be the jobs to be allocated to this dispatcher queue model such that process γ
can be allocated using JIQ approach. But this method can affect the processor allocation terribly
as at time t, there can be queue which is left empty that adds to the cost of the system and affect
its performance. Therefore, a system S is required such that

S −→ f (N,M, J, γ) (2)

where

Ls =
{
x : x = length(Qt)|x 6= 0

}
(3)

Here, Q is the queue. For ideal state, Ls = 0. A system closer to ideal state will be treated as a
solution to the problem of secondary load balancing provided the below given constraints hold.

3.1 System Constraint

Probability of queue P being empty must follow a global minima principle and should be least
at any given instance i.e. at time t, for a defined state,

lim
x−→max

P ti −→ min (4)

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



72 · K Sharma et al.

The probability P ti for the ith queue at time t per dispatcher will be computed over the deviation
of system from its normal state such that

P ti =

√
1
K

∑K
i=1(QtK −QtE)2√

1
K

∑K
i=1(QtK −Qt0)2

(5)

where QE is the empty queue slots, QK is the actual queue slot, and Q0 is the actual operating
queue. For an ideal state, Qto = 0, hence,

P ti,ideal =

√
1
K

∑K
i=1(QtK −QtE)2√

1
K

∑K
i=1(QtK)2

(6)

Now, for a continuous process ∫ t

0,t∈T
P ti dt ≤ min((5), (6)) (7)

Here, minimum is defined as either (5) or (6) depending upon the requirement.

3.2 Operating Cost

For the considered system, jobs are considered to be following Poisson distribution. According
to this statement, operating cost i.e. time to allocate the job should be minimum or equal to job
processing time only. For job y, y ∈ J , time required for completion will be computed as:

Ty = ty(A) + ty(P ) (8)

where ty(A) is the allocation time and ty(P ) is the processing time. Let Th be the threshold
defined for the considered model above for which the Pi may increase due to overflow of queue.
Therefore, for the defined system,

Ty ≤ Th (9)

Hence, processor following Poisson distribution will be defined as:

P tf =
J(t)Mae−J(t)

Ma!
(10)

where Ma denotes the actual processors available such that Ma ∈ M and J(t) is the number of
jobs at time t. Now the total time will be computed as:

TT =

k∑
i=1

(P tf )× t+

k∑
i=1

(t(A)) (11)

For the overall system

TT
I
≤ Th (12)

where I is the number of iterations.

4. OUR APPROACH

We have proposed the solution for load balancing in the inverse direction from processor to
dispatcher. In JIQ, a job can arrive at dispatcher whose I-Queue is vacant, while there exist idle
processors in neighboring I-Queues. In Secondary load balancing situation, JIQ-Random and
JIQ-SQ(d) have ample chances that a processor will not join a vacant I-Queue. Our rationale
is to guarantee that each I-Queue ought to have idle processors. To accomplish this, we are
utilizing following architecture which is inspired by JIQ. In JIQ, an I-Queue is maintained by

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



Processor to Dispatcher Load Balancing in Distributed Networks · 73

. Figure. 4: JIQ-JSQ

every dispatcher. The I-Queue is empty when all the servers are occupied. To keep up this
consistency, when a server completes its job, it should join the dispatcher with a void I-Queue.
A dequeue is maintained to track the dispatchers whose I-Queue is vacant. When any processor
joins any dispatcher by advising the dequeue, if the I-Queue is void, the dispatcher ID is entered
into the dequeue. As soon as the processor completes the current job, it refers the dequeue and
joins the relevant dispatcher.

5. ANALYSIS

The main challenge in join idle queue algorithm is sending processor back to dispatcher. Send-
ing idle servers to I-Queues consequently helps in primary load balancing. Till date, two well
established algorithms Random and SQ(d) have been used. In our methodology, we have used a
server to make it work like JSQ to fill the empty I-Queue.

JSQ. lim
n→∞

λ0, Rd =
λ

1− λ

Random.λ0,R1
= λ

SQ(d). lim
n→∞

λ0,Rd
= λ

1− λd

1− λ
= λ+ λ2 + · · ·+ λd

5.1 Backend Load Balancing

When a front end server becomes free, it sends its id to the dispatcher which then sends the
processor to the I-Queue. We call the algorithm JIQ-JSQ by which there is an improvement in
secondary load balancing system. At the point when a front end server turns out to be free, it
sends its id to the server which then sends the idle processor to the I-Queue.
Let ρ be the proportion of occupied I-Queues in a system with n servers in equilibrium.
For JIQ-Random:

ρ

1− ρ
= r(1− λ) (13)

For JIQ-SQ(d):

∞∑
i=1

ρ
di−1
d−1 = r(1− λ) (14)

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



74 · K Sharma et al.

Similarly by putting the factor d in JIQ-JSQ, ρ = r(1 − λ) (proportion of occupied I-Queues).
Arrival rate to idle server in case of JIQ-JSQ

=
λρ

1− λ
+
λ(1− ρ)

1− λ
(15)

=
λ

1− λ
(ρ+ 1− ρ) (16)

=
λ

1− λ
(17)

Hence, the arrival ratio of occupied server is λ(1−ρ)
1−λ which is 1

1−ρ times greater to idle server than
occupied server. We observe a substantial reduction in proportion of empty I-Queue, n = 500,
m = 50, r = 10 and λ = .6

Table I. Proportion of empty I-Queues
Algorithm Values

Random 0.2

SQ(2) 0.027

JSQ 0

. Figure. 5: JIQ-JSQ

. Figure. 6: Mean Response Time: JIQ-JSQ and JIQ (SQ 2)

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



Processor to Dispatcher Load Balancing in Distributed Networks · 75

. Figure. 7: Empty I-Queue: JIQ-JSQ and JIQ (SQ 2)

In JIQ literature, SQ(2) methodology is suggested well than the random methodology. Yet,
Table 1 demonstrates improvement in the extent of empty queues with our JIQ-JSQ approach as
compared to other available ones. At less or sensible load, it demonstrates the proportion to be
null. Till the load greater than 0.9, Figure 5 shows null with respect to the empty queues. For
load till 0.9, there is no empty I-Queue. If in case it’s greater than 0.9, when there are less no of
idle processors than the number of I-Queue, our approach will follow the random algorithm to 1.
Proportion of empty I-Queues with r = 10 (m = 50 & n = 500) and load is varied from 0.2 to 1.
It compares the proportion of empty queues of Random, SQ(2) & JSQ. Note that the proportion
of empty queues is nearly nil in case of JSQ till load 0.9. Figure 6 shows the analysis between
the JIQ-JSQ(proposed approach) and the JIQ(SQ2). For mean response time, we have enhanced
with respect to the load on the system using FIFO scheduling. The proposed approach provides a
proactive solution to the JIQ problem thus, offers solution with 27% less response time. Figure 7
presents the analysis for proportion of empty queue after applicability of the JIQ-JSQ approach.
Comparison shows that the JIQ(SQ 2) has 19% larger proportion of the queue being empty than
the proposed approach. This causes untimely delays in selection of processor and job has to wait
for longer duration.

6. CONCLUSION

We propose the JIQ-JSQ algorithm for the backend load balancing in distributed network. JIQ-
JSQ is better than both JIQ-Random and JIQ-SQ(d). This algorithm turns out to be helpful at
high load. By guaranteeing the availability of server in each I-Queue, the approach will likewise
enhance the backend(dispatcher-to-processor) load balancing.

REFERENCES

Applewhite, H. L., Garg, R., Jensen, E. D., Northcutt, J. D., and Sha, L. 1982. Decentralized resource
management in distributed computer systems. Technical report, DTIC Document .

Bramson, M., Lu, Y., and Prabhakar, B. 2010. Randomized load balancing with general service time distri-
butions. ACM SIGMETRICS Performance Evaluation Review 38, 275–286.

Chou, T. C. and Abraham, J. A. 1982. Load balancing in distributed systems. Software Engineering, IEEE

Transactions on 4, 401–412.

Gupta, V., Balter, M. H., Sigman, K., and Whitt, W. 2007. Analysis of join-the-shortest-queue routing for
web server farms. Performance Evaluation 64, 9, 1062–1081.

Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J. R., and Greenberg, A. 2011. Join-idle-queue: A novel load

balancing algorithm for dynamically scalable web services. Performance Evaluation 68, 11, 1056–1071.

Squillante, M. S. and Nelson, R. D. 1991. Analysis of task migration in shared-memory multiprocessor

scheduling. ACM 19.

Vvedenskaya, N. D., Dobrushin, R. L., and Karpelevich, F. I. 1996. Queueing system with selection of the

shortest of two queues: An asymptotic approach. Problemy Peredachi Informatsii 32, 1, 20–34.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



76 · K Sharma et al.

Wang, Y.-T. and Morris, R. J. 1985. Load sharing in distributed systems. Computers, IEEE Transactions

on 100, 3, 204–217.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.



Processor to Dispatcher Load Balancing in Distributed Networks · 77

Kuldeep Sharma is Assistant Professor in Department of computer science & Engineer-
ing , Maharaja Agrasen University, Himachal Pradesh, India. He received his M.E degree
from Department of Computer Science and engineering Thapar University, Patiala India.
He is currently a Ph.D. candidate at the Department of computer science and Engineer-
ing, Thapar University Patiala, India. He is Professional member of IEEE Computer
Society, IEEE Education Society and ACM Sigact.

Dr.Deepak Grag is PhD in Computer Science and Engineering with expertise of Data
Science and Inteliigent Systems. He is an Chair, Computer Science and engineering
Department, Thapar University Patiala, India. He is having 18 years rich cross-functional
experience in continuously delivering in the capacity of teacher and researcher. Esteemed
member of several professional organizations, editorial board of various journals and 108
publications to the credit. He is Chair, IEEE Computer Society India Council and Chair,
IEEE Education Society India Council and Chair, ACM SIGACT North India. He is
serving as Member, Board of Governors, IEEE Education Society. He is recipient of
funding from National and International Agenciens to the tune of 1.30 Crores INR. He
has Guided 8 PhD students and 34 Master students.

International Journal of Next-Generation Computing, Vol. 7, No. 1, March 2016.


