
Context-Aware Transportation Services (CATS)
Framework for Mobile Environments

Dana Popovici, Mikael Desertot, Sylvain Lecomte and Nicolas Péon
Univ Lille Nord de France, F-59000 Lille, France
UVHC, LAMIH, F-59313 Valenciennes, France
CNRS, FRE 3304, F-59313 Valenciennes, France
firstname.surname@univ-valenciennes.fr

Nowadays there are many applications that users can benefit from on their handheld devices: localization, navi-

gation, e-commerce, social networks and many others. Such capabilities are reaching our vehicles, offering drivers
help for driving safely and more efficiently, thanks to the numerous services provided by applications on their

devices. To simplify application assembly and reactivity according to transportation constraints (lack of commu-
nication infrastructure, high mobility...), we propose a framework that hosts multiple applications at once, offering

at the same time management functions for context-awareness. Our framework is intended for mobile devices such

as smartphones or in-car devices, which can range from stationary to highly mobile. We propose a service-oriented
architecture able to compose applications out of services. This makes our framework flexible and allows for easier

adaptation to context changes through the use of a Context Manager for all services (instead of having each service

or application monitor the context). In this paper we present our proposition as well as some initial evaluations.

Keywords: Application Reliability, Mobile Environment, Context-Aware Transportation Services

1. INTRODUCTION

The recent advances in technology have lead to what we call ubiquitous computing - computing
abilities and information access integrated in our day-to-day life, sometimes even unnoticed. If
we consider a user with a smartphone, there is a very wide range of applications that she/he
could benefit from. There is a great number of variables related to the technological resources
used and the purpose of the applications, making this a vast domain.

The most important technological features we use with our smartphones are: GPS modules
(tracking), wireless modules (communication), data transfer over the telephone network (3G),
but also an great number of sensors (light, acceleration, noise, etc.). Applications can use any
combination of these elements: GPS + data transfer for navigation or GPS + wireless commu-
nication for traffic event sharing in an ad-hoc network are just some of the possible examples. A
user evolves through the environment and changes often the context of use: she/he can be in a
crowded city center, on an isolated country road, on the highway, etc. We consider mainly the
case of drivers, but the user can be a pedestrian or a passenger as well.

We see that there are many aspects to take into account: the used resources, the type and goal
of the application, the context. The device owners should benefit from a continuous use of their
mobile applications despite of the evolution of the environment. The same tools and principles
should be used for all types of services and applications, which should be managed all at the
same time. This would allow to monitor the context only once for all applications and notify the
ones that need to adapt to changes. Adaptation and reconfiguration are important, especially in
highly mobile environments.

In this paper we propose a service based framework for mobile devices such as smartphones
or in-car devices, offering the possibility to run and manage applications, with a focus on
transportation-oriented ones. We use the term transportation to refer to the movement of a

The present research work has been supported by the International Campus on Safety and Intermodality in

Transportation, the Nord-Pas-de-Calais Region, the European Community, the Regional Delegation for Research
and Technology, the Ministry of Higher Education and Research, and the National Center for Scientific Research.

The authors gratefully acknowledge the support of these institutions.

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



42 · Dana Popovici et al.

person from one place to another by different means (on foot, public transportation, car). Our
goal is to simplify application assembly and reactivity according to transportation constraints,
ensuring a continuous functioning in good conditions. For instance, our framework is suited for
highly mobile environments, it allows to install and deploy services on the fly and thus adapt to
context changes.

The first section describes the particular nature of the transportation context we are considering
and the challenges it poses, a scenario of use and the state of the art. The second section exposes
our vision and proposition for a Context-Aware Transportation Services Framework, detailing
our approach for the context and the architecture. Before concluding, we present a use case and
experimentation for our framework to evaluate the reconfiguration of applications due to context
changes.

2. MOTIVATION

2.1 Purpose and circumstances of our work

In our work, we consider users who evolve through the environment using transportation-oriented
applications on their portable devices. It is obvious that the context in which applications are
executed on the device is very different, depending on the location, activity and preferences of
the user and on other external influences. We must therefore define the specific context that we
consider and the way it influences the applications.

We are interested in assuring a continuous availability for the used applications, no matter the
conditions, by adapting or replacing parts of the application in respect with the context evolution.
Our focus is on the transportation applications like routing, parking places, traffic events, etc. As
the users can be either pedestrians or drivers, our approach takes into consideration the specific
challenges posed by the high mobility. If our solution is good enough for the high mobility of
VANETs, it should also be sufficient for lower mobility.

The challenges we face are related to the environment changes that occur often and unex-
pected: GPS and wireless connection loss, unstable communication network, etc. Moreover, the
user might not be able to manage the necessary changes (like install a new part of an application)
if she/he is driving, so some tasks should be done without user intervention. Therefore, an impor-
tant part of our work is taking into account all the elements that constitute the context in which
transportation-oriented applications can be executed. Most of the applications are influenced by
the same elements (like speed or position), so it is more interesting to have a framework that
manages these aspects rather than have each application do the same computations.

2.2 Scenario of use

To better understand our proposition, we will present an example of use in Figure 1. Let’s
consider a driver using a mobile device with navigation capabilities. The destination she/he has
chosen is an indoor car park. It implies that the final goal is in fact to get a free parking space.
The common way of doing this, once inside the car park, is to drive around, hunting for a free
space, which is time consuming and frustrating. Here, the idea is to be able to benefit from
different services available in the environment. They could be provided directly by the car park
itself or even shared by other users. They should offer additional help and assistance to the user,
easing her/his driving experience.

So after being directed to the entrance of the parking by using her/his classic GPS tracking
system, the driver is then left alone. But by using a framework dealing with external service
download and/or connection, she/he could be able to receive additional help. In our example,
when arriving at the entrance, the user will start looking for services offering free space tracking
assistance as well as services providing a way of localizing inside the parking area.

Here it appears that two ”parking services” are available. One is offered by the car park
whereas another user offers a second one. Our user can choose among them, depending on the
hardware requirement they have. But the service offered by the pedestrian in our example is

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 43

Figure. 1: Service exchange

adapted to his proper device, which limits the compatibility, whereas the car park could provide
multiple service versions for different mobile platform. So our user is free to choose the more
suitable service for her/his device.

Here the parking service also expresses that it requires a third party one, identified as a ”wifi
location service”, to make up for the lack of GPS reception. This time only one provider shares
it, the car park through its wireless access point.

As both needed services are available, our user is in position of downloading and taking ad-
vantage of them to be driven to an assigned free place. The services could stay for a while on
the user mobile device, according to user properties, or her/his habits (leaving it on the mobile is
useful, efficient and will avoid future downloading if the car park is frequently used). During this
time, the services she/he has downloaded could also be shared to other users who may require
them.

Figure. 2: Device reaction to a context change requiring new services

We present in Figure 2 a simple schematic of what must happen when changes in the external
conditions cause an application to stop working properly. The service(s) depending on the con-
dition that changed (here: indoor/outdoor) can be replaced with one(s) that is(are) suited for

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



44 · Dana Popovici et al.

the new condition. So, if the service is not already on the device, it needs to be searched for on
the neighboring devices, downloaded and installed.

The questions that arise from this example are: how to download a service from the other
devices? how to choose which service to install if there is more than one available? how to
connect the new service to the existing application? For the time being, this is impossible. It is
why we propose our Context-Aware Transportation Services Framework, that allows the devices
to adapt to environment changes by reconfiguring or even replacing services, considering the ones
most suited to the context.

2.3 Related works

Users with mobile devices can benefit from a large number of various applications in very different
contexts. Most of the existing applications require the same functionalities of the device (GPS
positioning, wireless communication) but are independent of one another. Each application
manages the device resources on its own, but these could very well be managed only once for all
applications if a common execution framework existed.

When considering the possible applications that can be used on mobile devices, we can see
that there are many aspects that need to be considered. Some applications must absolutely
use the telephone network for data transfer and can not work otherwise. Some of them, the
Locations Based Services, need also a GPS module, which is now available in most smartphones.
Other applications are meant to be used in “ad-hoc”, offering services to a small community of
users that are in the same place at the same time. For the highly mobile users, the “ad-hoc”
applications can bring many advantages, like the possibility to have fast access to information
(traffic accidents, intervention vehicles, traffic jams). Another important aspect is independence
from infrastructure, which means having as much as possible “local” services. It is interesting to
build services as small bricks that are easily downloadable.

Some projects are concerned with the transportation domain and especially with car-to-car and
car-to-infrastructure communication, with the goal to improve user experience and safety. We
can cite the European project PRE-DRIVE C2X [Pre 2010], concerned with the specification of of
a European architecture for cooperative systems based on COMeSafety1 architecture description.

A very interesting and important aspect in ubiquitous computing is understanding and using
context as indicated in [Coutaz et al. 2005]. This is an important issue for our research too. [Dey
and Abowd 1999] gives a rather general definition of context, basically including “everything”
that could influence the behavior of the applications as context information. It is practically
impossible to efficiently model “all” the context, so usually applications limit themselves to
particular elements or situations. In our case too, we need to adapt the definition to our domain
of research, and especially focus on the transportation related elements like the high mobility of
the devices, the need for localization, the large number of different environments.

In [Kirsch-Pinheiro et al. 2006] the authors propose an object-oriented model of context for
cooperative systems on the Web; their model is based on the elements important for the coop-
eration of users on the same task: localization, tool, time, community and process. In [Mukhtar
et al. 2008; 2009] the authors present their work about dynamic service composition in a perva-
sive environment. They use CC/PP profiles [Kiss 2007] to specify the resources of the devices.
Another paper, [Geiger et al. 2009], concentrates its focus on delivering messages to users within
a certain context, depending on information like location, age, gender.

These are some examples of context models used in different research papers for the ubiquitous
environment. While each of them presents interesting contributions, they do not cover all elements
of context that interest us. High mobility and localization are often ignored or their influence
is not as important as it should (from our point of view). It is why we chose to have our own
context model.

Concerning the architecture, it is clear that it should be as modular as possible, with an easy

1http://www.comesafety.org

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 45

way of changing parts of an application. We can cite [Parra et al. 2009], who propose a Dynamic
Software Product Line in order to create applications from the most suited components, taking
the context into consideration. They describe a context-aware framework using sensors [Conan
et al. 2007]. In their solution, applications have predefined configurations that are chosen with
respect to the execution context. We would like to go a step further, by allowing to download
and install new services while the application is still running. This would provide more flexibility
and adaptability to the applications. To our knowledge, there is no literature concerning the
download and installation of application components (services) “on the fly” for mobile devices
involved in transportation.

3. DESCRIPTION OF THE CATS FRAMEWORK

Our proposition is about the creation of a framework that can host transportation applications
composed of services. The applications, and thus the services also, must be adapted to users
moving from one place to another via different transportation middles. Because of the often
changes that occur during the execution of the applications, it is important to consider the
context. In this section we explain in detail the approach for our Context-Aware Transportation
Services (CATS) Framework and the benefits that it offers.

From the user point of view. It is useful to have applications designed for the transportation
domain, such that they can offer the most suited assistance in any context. The applications
should be easy to install and use, and the adaptation to context changes should occur without
the user’s intervention. The user should be able to download new applications when she/he desires
them. So the user needs a simple interface with the possibility to launch and stop applications as
well as download new ones. Reconfiguration and replacement of parts of the applications are not
the concern of the user, although she/he can express preferences about how this should happen
(especially for payed services like data transfer on the telephony network).

From the framework point of view. Applications must be adaptable so that they respect the
expectations of the user and they continue working (as well as possible) under all circumstances.
We propose a framework for the execution of applications built out of services, respecting the
principles of the Service-Oriented Architecture (SOA). This allows for a flexible architecture with
loosely-coupled bindings, where services can be replaced by equivalent ones or used by multiple
applications.

3.1 Architecture of the CATS Framework

The framework we propose must host and manage the execution of multiple applications by
providing mechanisms for:

F application composition through the binding of the right services as well as execution moni-
toring for the detection of non-functioning services

F service download (for a new application or as replacement of a non functioning service); the
download can occur either in an ad-hoc network from a near-by device, or over the internet

F context management to ensure that the downloaded services are suited to the device and to
accomplish service reconfiguration based on the changes in context

Our framework is a unified environment that provides non-functional services to assure the
continuous and context-adapted execution of the applications. As can be seen in Figure 3,
the framework provides services for managing the execution and the context for all launched
applications, as well as a trading service to manage the service exchange. Further we will discuss
in detail the elements involved in the framework.

3.2 The services

The word service can be used with different meanings, there are many types of services that are
studied and used on mobile devices. A fist example are Web Services that require infrastruc-

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



46 · Dana Popovici et al.

Figure. 3: The framework architecture

ture access; most of the applications proposed by the smartphones use some Web Service, like
navigation that streams the map at the moment of use. It is not in this area that we want to
bring contributions, as it is sufficiently developed. A second example of services are the ones
offered by devices that are in proximity: printer, Bluetooth photo sharing, etc. For these kind
of services there are well established protocols like Service Location Protocol (SLP)2, Apple’s
Bonjour3 protocol and UPnP.

Rather than trying to categorize the existing services, we will concentrate on explaining what
we understand through services. We consider a Service-Oriented Architecture, where applications
are built of services. Like in [Hall et al. 2010], a service is an interface representing the contract
between the service providers and clients. The service providers are objects accessed via direct
method invocation.

Our goal is to have as many applications as possible on the device, so the user can be as
independent as possible with regard to infrastructure access. We focus on the services that can
be executed locally and on how to download and install them “on the fly”. Of course, we do not
exclude the use of other types of services, like Web Services, but we don’t focus on them.

As mentioned earlier, it should be as easy as possible for the user to handle the device and
the applications installed. Moreover, the applications should react to context changes and adapt
their behavior. One way to do this is to take advantage of the flexibility of SOA. A service is
represented by an interface, but can have multiple implementations. In this way, there can be
different implementations suited for some types of conditions and interchangeable depending on
the context. For example, localization can be implemented using the GPS or the wireless module.

The device must handle download, installation and deployment with very little human inter-
vention, so the services must contain all the necessary machine-readable information. We must
describe the services using metadata, such that the device can extract different pieces of infor-
mation depending on its needs. We present here the three parts of service description that we
consider.

Functionality description. For each service we must answer the questions “what?”, “where?”
and “how?”. When we need a functionality, we search for implementations of certain interfaces,
namely for services doing what we want. The service must be executable where we need it,
meaning on the operating system and the software platform of the target device. We may
also specify how a service does it’s job, by using or not a specific resource for example. This
information is useful when searching to download a new service, that should be compatible with
the device it will execute on, as well as with the user’s needs.

2http://www.openslp.org/doc/rfc/rfc2608.txt
3http://developer.apple.com/networking/bonjour/specs.html

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 47

Deployment description.. Information such as service dependencies (from other services) and
service version is necessary for the deployment, once a service has been successfully downloaded.

Context description.. The services can be dependent on the evolution of specific context ele-
ments. Our application framework must be able to notify the interested services when a context
element has modified it’s value so they will be able to reconfigure. In order to do this, the services
must clearly indicate the elements of context which influence their behavior.

We must specify more accurate metadata that allows us to find the appropriate service and to
use it under the best circumstances. The metadata must describe the elements presented before:
the functionality of services, their deployment and their context dependencies. Parts of the
description should be available separately from the code itself, as they are needed by the Trader.
The different devices participating must be able to exchange information about the services in
order to decide which service is most suited for the needs of the requesting device.

The descriptions are at the service level and not at application level, in order to maintain
the code independency. For each application, there is one “main service” which doesn’t provide
functionality to any other service but depends on one or more services. The description of this
“main service” should include a user-friendly description of the application itself.

3.3 The Context Manager

Our framework must take into account the changes that occur in the context and offer man-
agement functionalities to the applications running on it. We use the Context Manager for this
purpose, as we will explain in the following.

[Desertot et al. 2009] begins to talk about context in the transportation domain. We have
taken this as our starting point for the context model. We have identified the elements that
influence the execution of the applications as well as the download of services in the particular
situation of highly mobile users. Our classification of the context elements has been presented
in previous work, [Desertot et al. 2010; Popovici 2010]. Here we show in Figure 4 a simplified
representation of the context.

Figure. 4: The context tree

During the use of our framework, there are distinct situations in which the context information
is needed and each situation makes use of different elements.

(1) During the trading process, context information must be exchanged between the devices in
order to establish which service to be downloaded and what device to downloaded it from.
First of all, the requesting device must specify what service it is looking for and what con-
strains it has. This first step allows to filter out the services that could not be a solution.
The constrains describe the DeviceCtx and ExecutionCtx from Figure 4 and must absolutely
be met. For example, one of the constrains is the operating system for which the service is
implemented. Another constraint can be a device functionality: if the GPS module doesn’t
work, then we search for a localization service that doesn’t need GPS.
Second, after sending a request, a device must choose the best solution from the answers it
gets. There are two choices to make: (i) which service implementation is the most adapted
with respect to the device resources and (ii) which neighbor is most likely to be in reach for

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



48 · Dana Popovici et al.

a sufficient period of time for the download. Thus, the descriptions of the available services
must be compared to the corresponding device context and the movement of the device and
that of its neighbors must be considered to estimate the best peer from which to download.

(2) At service execution, context changes must be reflected in the behavior of the applications.
For this, certain elements must be monitored, in particular those reflecting the movement
of the device through the environment (EnvironmentCtx). Information like speed or type of
user (pedestrian, driver) determine the values of parameters such that the provided services
are adapted to each situation.

(3) The configuration of applications must also take into account the user preferences and profile.

Based on the classification presented above, the Context Manager takes “snapshots” of the
context state and represents them in an XML file. An XML Schema (that follows the structure
of the context tree in Figure 4) is used to validate the XML representation. It is not sure that
all information will be available at any time, therefore some of the elements are optional in the
XML Schema. In Figure 5 we present part of the XML Schema with the detail for the “Position”
element as well as the extract of the XML context file with a possible instance of positioning
data.

Figure. 5: XML Schema for context representation

For the time being, the Context Manager evaluates the state of the context only on demand.
In the immediate future, our goal is to monitor the evolution of the context and evaluate the
benefits of notifications for context changes as well as the overhead introduced by the monitoring
service.

3.4 The Trader

The applications framework we propose must be able to acquire new services when these are
necessary. There are multiple ways of functioning for the Trader, depending on whether there is
infrastructure access or not, but also on who initiates the search for a new service: the user or
the device. The service Trader handles both outgoing and incoming requests. If infrastructure
access is available, it will be preferred, as a centralized registry is more likely to have a large
number of services.

If the service trading takes place in an ad-hoc network, the devices participating are most likely
moving through the environment. The requesting device must choose to download from a device
that is close for a sufficiently long period of time. To assure that this will happen, we propose
to use mobility vectors, like described in [Delot et al. 2008; 2010]. They are an indication of the

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 49

direction and speed of a device. Combined with the distance, they allow to estimate the duration
for which two devices are close enough for communication.

In the following we describe in detail the functioning of the Trader in different types of situa-
tions.

3.4.1 Service research. The device D searches for a given service S, based on its functionality
description. This can occur when the framework needs a specific service in order to resolve the
running applications. The framework will search for the service without the user’s intervention.

(1) In the case infrastructure access is available, the following steps will take place:

F Send a request for service S to the centralized service registry.
F Get response from the registry with the download address.
F Download service S.

(2) In the case without infrastructure access, the trading will be done in the ad-hoc network:

F Broadcast request for service S in the ad-hoc network.
F Wait for unicast response from all devices possessing the service: functionality description

of the service, position and mobility vector of the device.
F Select a neighbor based on the mobility vector of D and those of the neighbor devices.

Considering the size of the service to download, the bandwidth, the distance and the
mobility vectors, it can be estimated if the service could be fully downloaded from a
certain device.

F Unicast service download request to the selected device.
F Download service S.

Services might describe functionalities they depend on (other services that they consume) but
also functionalities that are “forbidden”. In this way, if a functionality is not available and
thus causing an application to stop working, we avoid downloading services that require this
functionality. For example, let’s consider the device we are using is in a building, and thus not
have GPS signal anymore. We need a positioning service that doesn’t make use of the device’s
GPS module. This can be expressed as a list of forbidden packages, so that only the services not
depending on these packages can be chosen for download.

3.4.2 Application research. Device D searches for all available applications at user request.
In this case, the user must choose which application to install and the “main service” will be
downloaded. If all the dependencies are present in the framework, nothing else will be done.
Otherwise, each missing dependency will be searched for, like described above in case (3.4.1)

(1) Infrastructure access is available.

F Send request for service descriptions to the service registry.
F Get response from the registry with groups of n service descriptions. Only the ones that

are not present on the device will be presented to the user. The number n could be a user
preference or a server setting.

F Let the user selects the desired application(s).
F For each selected application Ai, the device D sends a request to the service registry, like

in case (1)

(2) No infrastructure access.

F Broadcast request for all applications in the ad-hoc network.
F Get unicast response from all devices with a list of their services, their position and

mobility vector.
F Present the services grouped by neighbor and ordered descending by the estimated time

of connection to the neighboring device. The user chooses which services to download.
F Send unicast service download requests to the selected devices beginning with one with

the “best” connection. Only one request is sent at a time, so there is no parallel download.

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



50 · Dana Popovici et al.

3.4.3 Service upload. Each device must listen to service requests from neighboring devices
and respond to them.

(1) Receive service information request.

F If the service is present on the device, respond to the request and indicate the current
position and the mobility vector

F Otherwise do nothing.

(2) Receive service download request.

F Send service to the requestor.

If an internet connection is available, services can easily be downloaded from a centralized
registry. Yet, there are many situations where there is no infrastructure access: in-car devices,
unavailable GSM (foreign country, etc). In these cases, an ad-hoc exchange of services is desired.

An advantage of a decentralized service trading is the possibility to access services specific to
the current location in a more direct manner, without the overhead of research on a centralized
server. Thus, a driver entering a new city could download a map with city attractions from any
gas station or from other vehicles, or a bus passenger might get information like the time to reach
each stop and the connecting routes at each stop from the device of the bus she/he is on.

3.5 The Execution Manager

The execution of the services in our framework must be monitored in order to detect failure.
When a service stops working, the Execution Manager must react and take the necessary actions
to correct the situation. The simple solution is to search for an equivalent service that is already
on the device and start it. By equivalent, we mean a service providing the same interface or
offering the same data. If there is no equivalent present locally, the Execution Manager must call
the Trader to launch a search for the missing service on the neighboring devices.

We rely on the OSGi framework, which offers the possibility to manage the services throughout
their lifecycle, as long as the services are installed on the framework. There are two types of
problems that can occur regarding the services. The first is when and application is launched
but it doesn’t have all necessary services started. In this case, dependencies between the services
can not be solved and some applications can not run. The missing service must be started (or
downloaded, installed and started) in order to resolve the situation.

The second type of problem occurs when services don’t function correctly because of an external
cause. A simple example is the loss of GPS signal; the service is still running, but unable to provide
the necessary information. In this case, the service must inform the Execution Manager of it’s
temporary inability to run, so that a replacement can be found. It is the Execution Managers
job to stop the service so that another one can be bound. If there is no equivalent service on
the device, the search for a replacement on neighboring devices must take into consideration the
context element that caused the original service to stop working.

4. EXPERIMENTATION AND EVALUATION

The goal of this work is to allow applications to be executed in our framework and provide man-
agement functionality. We use Java and OSGi for the development, deployment and installation
of services (and applications, which are built out of services). For each of the three parts of our
framework (Context Manager, Trader and Execution Manager) we have built one or more OSGi
bundles, each of them offering one or more services. The user applications are also built out
of services exposed by the components and they are executed in the same environment as the
management services.

To help managing service binding and automate as much as possible dynamic and adaptive
bindings, we use the iPOJO [Escoffier et al. 2007] service-component model that is deployed on
top of OSGi (and hosted by Apache). Application description and bindings can be expressed
in different manners (xml metadata, annotation, configuration files), allowing the component

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 51

container to take in charge instance creation and connections as soon as the requirements are
met.

4.1 Framework execution

We present in Figure 6 a schematic of the functioning of our framework. First of all the user
must start the runtime environment consisting of the OSGi framework with the iPOJO runtime
and the management services (Trader, Context Manager and Execution Manager). Once this is
done, the user can launch the desired applications that will execute on our framework. What
we call standard functioning is when all services that are launched on the framework have their
dependencies resolved and are giving results suited to the context of use.

Figure. 6: Functioning of our framework

During standard functioning, three types of events can occur, requiring the framework to react
to them. These events are the starting of a new application, the stopping of a service (that might
cause an entire application to stop functioning) and a change in context. We will further explain
what happens in each case.

Application started. For each application that is launched, the framework must resolve the de-
pendencies between the services that compose it. Some of the services could be already started
while others not. We are sure that at least one implementation of each composing service is
available on the device, as this is taken care of at application installation. Still it can happen
that the implementation of one of the services is not working in a particular context. In this
case, the service is marked as missing and an “equivalent service” must be found.

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



52 · Dana Popovici et al.

As services are represented through their interfaces, two services are “equivalent” if they offer
the same interface. This means that they will provide the same result, even if the implemen-
tations can vary. It is the Trader that will take care of requesting the service to neighboring
devices. If the service is found, it is downloaded and installed in order to complete the start-
ing of the application. Otherwise, the Trader waits a certain period of time. Two context
changes can happen which will resolve the problem. First, the condition that was previously
stopping the original service to work could disappear, making it useless to search for an equiv-
alent service. Second, the neighbors could change, allowing the Trader to find the service and
download it. When all dependencies are resolved, the application is started and the framework
is in “standard” functioning.

Service stopped. Due to a context change, some services might not have the necessary conditions
to function properly any more. Some examples that can cause services to fail are: loss of GPS,
loss of the 3G network, loss of the wireless connection. The services are stopped, making the
applications that depend on them stop as well. Our framework must replace the non-functional
service with an equivalent one which will not be affected by the condition that stopped the
original service. The search for the equivalent service is done by the Trader, as described
before.

Context changed. A context change can be an event that triggers adaptations. Services can have
parameters that depend on the value of some context elements. In this way, the behavior of
a service can change and adapt to the context it has to run in by adapting the corresponding
parameters. Each service should subscribe to the Context Manager for the context elements it
is interested in. The Context Manager monitors the evolution of the context and notifies the
changes to the interested services.

To better understand this, let’s take an example. Consider a traffic application that alerts drivers
of events on the road ahead of them. Depending on the road profile and the speed, the user should
be alerted for some of the events and not for other ones. On a highway, accidents should be alerted
several kilometers ahead, while in the city this would be useless. This is why the services deciding
whether an event is relevant or not must be notified of changes in speed and road profile.

4.2 Stress situations and fault tolerance

A service-based application can encounter problems due to the malfunctioning of one or more
services. We have discussed in the previous section what happens when a service stops working
properly: an “equivalent service” is searched for. But it is possible that no satisfying service is
found. The search for a service will continue in background until one of the following conditions
is met: the service is found (the neighbors have changed); the context changed such that there
is no more need for the service; the application has stopped.

If the “equivalent service” is not found after a certain time, the applications should start work-
ing in a degraded mode. They should use some “basic services” that depend as little as possible
from outside conditions. Consider for example the traffic application that notifies important
events. A “normal” functioning will have a map, with the important events displayed on it. If
there is no 3G connection, the map can not be downloaded, but the GPS is still working. In
this case, a solution is to display in graphical way the events on a blank map, giving the driver
some basic information about the distance and direction to the events. If there is no GPS signal,
the application could work just by notifying accidents. If the message is directly from the event
source or just after one hop, then the accident is potentially very close and it could be worth to
inform the driver. Of course, it can also happen that an application is unable to function, not
even in degraded mode. In this case, it must display a message to the user to inform her/him
that it is waiting for a service.

Another important issue when changing services concerns the fault tolerance. The services
should not influence the state of the applications. Usually the services return independent results

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 53

on demand, meaning that they do not depend from previous states. In this way, the application
(the “main service”) is responsible for its state and for managing the lack of response from a
service.

Services can be replaced in two cases: first, when one is unable to work due to outside condi-
tions, or second, when the context has changed, making another implementation more suitable.
In the second case, our framework allows to start the new service before stopping the one that
must be replaced, to assure that the new one is working properly and also to minimize the
interruption of the service.

An issue which must be considered in the future is the failure of our framework. For the time
being, this problem has not been studied. The applications should be able to save their state to
allow for recovery after a crash. The issue will be treated in future work.

4.3 Evaluation of the CATS Framework

We have started testing our framework in order to evaluate its behavior. As said earlier, we rely
on the OSGi framework with the iPOJO runtime. For the implementation we use Felix 3.0.3,
which is a certified platform4, conforming to the latest specification release of OSGi, Release 4
Version 4.2 from 2010.

As material, we use HTC Hero smartphones with the following characteristics:

F Android 2.2 operating system

F The Felix OSGi 3.0.3 implementation

F The iPOJO runtime

The phone used for testing has only the operating system installed, with the default applications.
We also use the emulator for Android 2.2 on a Mac Book with 4GB memory DDR3 and Intel
core 2 duo at 2,4 GHz processor.

Experiment description. The experiments that were realized are meant to determine in the
first place the usability of the framework and it’s performances. Our goal is to be able to replace
non-functioning services with equivalent ones. An “equivalent service” has the same interface
as the original service, provides the same result, but has a different implementation. Some of
the differences can be between a lightweight service with bad precision vs. a resource consuming
service with very good precision or services which need different types of resources to provide the
result (for example positioning with the GPS module or with the wireless one).

We used a scenario based on the example presented earlier in Figure 1: during the execution of
an application, one of the services stops working and must be replaced if possible. There are two
possibilities, the fist is that an equivalent service is already present on the device and the second
is that a service must be downloaded. In the example we presented, the positioning service had
to be replaces with one using the wireless connection instead of the GPS. Most probably the
server of the parking is able to provide the suited positioning service. For the time being, we
have not yet implemented the Trader, but we test the framework without this part. All services
are thus local to the testing device.

Results. We have performed the following measurements for our framework:

(1) Time to start the framework: ∼ 15 seconds on the phone.

We measure the time from the moment when the user selects the framework for starting until
all the functionalities of the framework are loaded (all bundles are started) and it is ready
to be used. This test has been realized with the standard OSGi specification, but we intend
to do a new test when the OSGi ME framework is released, as it should be optimized for
embedded systems.

4http://www.osgi.org/Specifications/Certified

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



54 · Dana Popovici et al.

(2) Time to switch between two equivalent services, when both are started and ready to use:
unmeasurable.
Let’s consider a bundle A that requires a service S and two bundles B1 and B2 providing S
are started in the OSGi framework. Both B1 et B2 are ready to use at any time, but only
one is used at each moment. Let’s suppose that bundle A is bound to bundle B1, but this
bundle stops unexpectedly. In this case, the iPOJO runtime resolves the binding to bundle
B2 practically instantaneous, so the time period while bundle A can not use service S is
negligible.

(3) Average time to install and start a service that is local to the device: ∼ 0.6− 0.8 seconds on
phone and emulator.
This test reflects a part of the situation presented earlier in our example of a driver entering
an underground parking and thus losing GPS localization. In order to make an application
work again after the loss of a service, the device must download, install and start a service
equivalent to the lost one. For now, we have only tested with local services, that are present
on the device but not started. We measured the time between the “start” command that
begins the instantiation of the bundle and the end of the instantiation process, when the
bundle has all dependencies solved and is ready to use. We present our results in Figure 7.
When the Trader implementation will be finished, we will complete these results to estimate
the total time necessary to replace a service when no equivalent is available on the device.

Figure. 7: Service install & start time

The results presented in Figure 7 are the starting times for some of our test bundles, none of
which have dependencies from other bundles. The size of the .jar archives vary from 4 to 12kB.
The test bundles are:

F Bluetooth: is the bundle allowing access to the Bluetooth module of the device; it has no
dependencies from other bundles.

F Locate: is a positioning bundle relying only on the telephone network.

F ShellAO: is a test bundle offering a shell interface on the phone.

F SoftwareInfo: is the bundle that reads the software information of the device.

F Wifi: is the bundle allowing access to the wireless module of the device.

F CpuInfo: is the bundle that reads information about the state of the processor.

F Localization: is a positioning bundle that can use either the telephone network or GPS.

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 55

F Sensors: is a bundle allowing to handle the sensors of the device (accelerometer, etc.).

F MemoryInfo: is the bundle that reads information about the state of the resources (memory,
etc.).

Each of the bundles has been stopped and started seven times. The results presented are the
average times to start each bundle on the phone and on the emulator. As we can see, on the
phone the times vary from 0.31 to 0.73 seconds to start a bundle. On the emulator, the times
are slightly larger, from 0.47 to 0.83 seconds. The times vary slightly depending on the size of
the bundles and on the phone functionalities that need to be accessed.

These preliminary results are satisfying, the time to start a new bundle being sufficiently small
to be acceptable for the user. Our future efforts will concentrate on finalizing the implementation
and evaluation of the Trader, which will download services from near-by devices. Once the trader
will be complete, we will be able to evaluate the total time needed to search for, download and
start a service.

5. CONCLUSIONS

In this paper, we propose an embedded application framework called CATS. This framework
is dedicated to mobile devices, such as smartphones and in-car devices, offering an execution
environment for transportation-oriented applications. By transportation we mean any kind of
movement to get from one place to another, where a hand-held device can help the user (who
can be a pedestrian, a driver or a passenger) by indicating the route and interest-points near-by
or by notifying important events. The applications conform to the SOA principles and consist
of loosely-coupled services. This allows for a flexible architecture, easily configurable and re-
configurable if needed.

We consider the context of execution for our framework, in order to adapt the functioning
to each situation. Our goal is to assure continuity of the execution for the applications despite
unfavorable conditions of context by replacing or adapting services. We propose to use several
implementations for some services (the ones that can stop functioning in certain contexts). If an
application stops working because of a non-functioning service, then an equivalent service will be
bound to the application. If no such service is available on the device, it must be searched for
and downloaded from neighboring devices.

In this article, we present some preliminary results for service replacement when the context
changes determine a service to stop working. For the time being, we measure the time to start
a local service, which happens sufficiently fast, as we could see from our measurements. In the
near future we must implement and test the service Trader to evaluate the total time necessary
from service discovery until having the service operational.

In the next period of time we must concentrate our efforts on the Trader. First of all, we
must work on the communication between the devices during the trading process. When a
device requests a service, the near-by devices respond with the description of the implementation
that they possess. The service description must contain all necessary information so that the
requesting device can choose the most suited implementation based on the current context. We
will focus on the service description and decision taking mechanism that allow a device to choose
which service to download. Obviously, testing the proposed solutions will allow us to evaluate
the functioning of our framework.

REFERENCES

2008-2010. Pre-drive c2x project, “preparation for driving implementation and evaluation of car-2-x communica-
tion technology”, available at: http://www.pre-drive-c2x.eu/.

Conan, D., Rouvoy, R., and Seinturier, L. 2007. Scalable processing of context information with cosmos. In
Proceedings of the 7th IFIP WG 6.1 international conference on Distributed applications and interoperable

systems. DAIS’07. Springer-Verlag, Berlin, Heidelberg, 210–224.

Coutaz, J., Crowley, J. L., Dobson, S., and Garlan, D. 2005. Context is key. Commun. ACM 48, 3, 49–53.

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



56 · Dana Popovici et al.

Delot, T., Cenerario, N., and Ilarri, S. 2008. Estimating the relevance of information in inter-vehicle ad hoc

networks. In Proceedings of the 2008 Ninth International Conference on Mobile Data Management Workshops.
IEEE Computer Society, Washington, DC, USA, 151–158.

Delot, T., Cenerario, N., and Ilarri, S. 2010. Vehicular event sharing with a mobile peer-to-peer architecture.

Transportation Research Part C: Emerging Technologies 18, 4, 584 – 598.

Desertot, M., Lecomte, S., and Delot, T. 2009. A dynamic service-oriented framework for the transportation
domain. In Intelligent Transport Systems Telecommunications. Lille, France.

Desertot, M., Lecomte, S., Popovici, D., Thilliez, M., and Delot, T. 2010. A context aware framework for

services management in the transportation domain. In 2010 10th Annual International Conference on New

Technologies of Distributed Systems. Tozeur, Tunisia, 157–164.

Dey, A. K. and Abowd, G. D. 1999. Towards a better understanding of context and context-awareness. In In
HUC ’99: Proceedings of the 1st international symposium on Handheld and Ubiquitous Computing. Springer-

Verlag, 304–307.

Escoffier, C., Hall, R. S., and Lalanda, P. 2007. ipojo an extensible service-oriented component framework.
In IEEE International Conference on Service Computing (SCC’07). Salt Lake City, USA, 474 – 481.

Geiger, L., Schertle, R., Dürr, F., and Rothermel, K. 2009. Temporal addressing for mobile context-aware

communication. In Mobiqutous 2009.

Hall, R. S., Pauls, K., McCulloch, S., and Savage, D. 2010. Osgi in Action: Creating Modular Applications
in Java. Manning Publications.

Kirsch-Pinheiro, M., Villanova-Oliver, M., Gensel, J., and Martin, H. 2006. A personalized and context-

aware adaptation process for web-based groupware systems. In UMICS.

Kiss, C. 2007. Composite capability/preference profiles (cc/pp): Structure and vocabularies 2.0.

Mukhtar, H., Belaid, D., and Bernard, G. 2008. A policy-based approach for resource specfication in small
devices. In UBICOMM ’08: Proceedings of the 2008 The Second International Conference on Mobile Ubiquitous

Computing, Systems, Services and Technologies. IEEE Computer Society, Washington, DC, USA, 239–244.

Mukhtar, H., Belaid, D., and Bernard, G. 2009. User preferences-based automatic device selection for mul-

timedia user tasks in pervasive environments. In Proceedings of the 2009 Fifth International Conference on
Networking and Services. IEEE Computer Society, Washington, DC, USA, 43–48.

Parra, C., Blanc, X., and Duchien, L. 2009. Context awareness for dynamic service-oriented product lines. In

13th International Software Product Line Conference SPLC 2009, J. McGregor and D. Muthig, Eds. Vol. 1.
131–140.

Popovici, D. 2010. Context elements for transportation services. IEEE International Conference on Mobile Data

Management, PhD Forum, 287–288.

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.



CATS Framework for Mobile Environments · 57

Dana Popovici is a PhD student at the University of Valenciennes since 2009. She
obtained her Engineering degree in Computer Science at the University ”Politehnica” of
Bucarest, Romania in 2008. She then obtained a Research Master from the University
of Valenciennes, France in 2009. Her research concerns distributed information systems.
She’s interested in context-aware mobile applications, service-based applications and ser-
vice trading..

Mikael Desertot is assistant professor at the University of Valenciennes since 2008. He
defended his PhD in computer science in 2007 after working 3 years in collaboration with
Bull SA on dynamic application containers for Java application servers. He then spent
one year and a half working in Canada for Oracle Corp, on EJB container implemen-
tation. Currently, his research area still focuses on dynamic software architecture and
reconfiguration, relying on service oriented architectures, and targeting transportation
services and vehicle-to-vehicle communication.

Sylvain Lecomte is full Professor at LAMIH-University of Valenciennes. He has ob-
tained a HDR in Computer Science at the University of Valenciennes (Title: Conception
and adaptation of technical services dedicated to ambient computing , 2005) and a PhD
in Computer Science at the University of Lille 1 (Title: COST-STIC : Smart Card em-
bedded into transactional services and transactional services embedded into smart Card,
1998).// Relevant Work Experience: Strong background in Context aware computing,
Mobile services and Component model

Nicolas Peon obtained his M.Sc in Computer Science from the Universit de Valenciennes,
France in 2009. Since 2009 he is an engineer at the LAMIH Laboratory at the Universit
de Valenciennes. He is interested in context aware applications and mobile development.

International Journal of Next-Generation Computing, Vol. 2, No. 1, March 2011.


