
AutoMaS: An Automated Middleware
Specialization Process for Distributed Real-time
and Embedded Systems

AKSHAY DABHOLKAR and ANIRUDDHA GOKHALE

Dept of EECS, Vanderbilt University, Nashville, TN 37235, USA

Developing distributed applications, particularly those for distributed, real-time and embedded (DRE) systems, is a

difficult and complex undertaking due to the need to address four major challenges: the complexity of programming

interprocess communication, the need to support a wide range of services across heterogeneous platforms and
promote reuse, the need to efficiently utilize resources, and the need to adapt to changing conditions. The first

two challenges are addressed to a large extent by standardized, general-purpose middleware (e.g. CORBA, DCOM
and Java RMI) through the use of a “black-box” approach, such as the object-oriented paradigm (frameworks

and design patterns). The need to support a large variety and range of applications and application domains has

resulted in very feature-rich implementations of these standardized middleware. However, such a feature-richness
acts counteractive to resolving the remaining two challenges; instead it incurs excessive memory footprint and

performance overhead, as well as increased cost of testing and maintenance. To address the four challenges all

at once while leveraging the benefits of general-purpose middleware requires a scientific approach to specializing
the middleware. Software engineering techniques, such as aspect-oriented programming (AOP), feature-oriented

programming (FOP), and reflection make the specialization task simpler, albeit still requiring the DRE system

developer to manually identify the system invariants, and sources of performance and memory footprint bottlenecks
that drive the specialization techniques. Specialization reuse is also hampered due to a lack of common taxonomy

to document the recurring specializations, and assess the strengths and weaknesses of these techniques.

To address these requirements, this paper presents a case for an automated, multi-stage, feature-oriented mid-
dleware specialization process that improves both middleware developer productivity and middleware performance.

Three specific contributions are made in this paper. First, contemporary middleware specialization research is

framed in terms of a three-dimensional taxonomy. Second, the principles of separation of concerns are used in the
context of this taxonomy to define six stages of a middleware specialization process lifecycle. Finally, a concrete

implementation of the six stage, automated middleware specialization process is presented along with empirical
data illustrating the benefits accrued using the framework.

Keywords: Middleware, specialization, optimization, feature-oriented programming, aspect-oriented

programming, design patterns

1. INTRODUCTION

1.1 Emerging Trends and Technologies

A large variety of applications and application product lines such as those found in avionics [Sharp
and Roll 2003], telecommunication call processing, multimedia streaming video, industrial au-
tomation, multi-satellite missions [Suri et al. 2006], shipboard computing [Schmidt et al. 2001] and
mission-critical computing environments, have varied requirements such as transparent distribu-
tion, interoperability, real-timeliness, predictability, fault tolerance, fast recovery, high through-
put, high availability, etc. As a result these distributed, real-time and embedded (DRE) systems
leverage general-purpose middleware in their design and implementation due to its many benefits
such as lowering the time-to-market and hiding accidental complexities [Brooks 1987] associated
with a particular domain. Traditionally, middleware hides the underlying details of interprocess
communication and heterogeneous technologies from the application developers using a black-box
paradigm such as encapsulation in object-oriented programming and through the use of elegant
design abstractions such as design patterns and frameworks as shown in Figure 1.

This work was supported in part by NSF CAREER Award CNS 0845789. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views

of the National Science Foundation

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 79

Middleware Patterns and Frameworks (ACE [Schmidt 1997])

Despite these benefits, general-purpose middleware poses numerous challenges when developing
DRE systems. First, the generality of these middleware make them very feature-rich. Yet, DRE
applications are likely to use only a fraction of these features in their implementation. Moreover,
DRE systems impose stringent demands on quality of service (QoS) (e.g., real-time response in
industrial automation) and /or constraints on resources (e.g., memory footprint of embedded
medical devices monitoring a patient). Thus, the feature-richness and flexibility of general-
purpose middleware becomes a source of excessive memory footprint overhead where memory
and other resources are already at a premium, and a lost opportunity to optimize for significant
performance gains and/or energy savings.

Second, general-purpose middleware lack out of the box support for modular extensibility of
both domain-specific and domain-independent features within the middleware without unduly
expending extensive manual efforts at retrofitting these capabilities. For example, DRE systems
in two different domains, such as industrial automation and automotive may require different
forms of domain-specific fault tolerance and failover support. Arguably, it is not feasible for
general-purpose middleware developers to have accounted for these domain-specific requirements
ahead-of-time in their design. Doing so would in fact contradict the design goals of middleware,
which aim to make them broadly applicable to a wide range of domains, i.e., make them general-
purpose.

Consequently, developers are often faced with either developing proprietary and customized
middleware solutions, or reinventing pieces of a middleware that are tailored to their needs, or they
are faced with the daunting task of refactoring an existing middleware to obtain an appropriate
subset of that application’s functionality. In either case, subsequent development, maintenance
and testing of the application becomes more complex due to the impact of future revisions on all
of the derived subsets. Moreover, adapting the middleware to changing requirements is hard to
achieve without the right tools and techniques. Current trends and economies of scale in software
development actually call for extensive reuse and rapid assembly of application functionality from
off-the-shelf infrastructure and application components.

Addressing this dilemma requires an approach that will enable DRE developers to derive the
benefits of general-purpose middleware, however, without incurring the overhead of unwanted
features while seamlessly allowing domain-specific extensions. Such an approach must be rooted
in scientific principles, which is particularly important for DRE applications due to the need to
formally verify the correctness of their different systemic properties. We call this approach Mid-
dleware Specialization. Although traditional middleware solves these problems to some extent,
it is limited in its ability to support specializations and adaptations. Middleware adaptation is

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

80 · Dabholkar & Gokhale

an issue that is distinct from specialization. This paper focuses on middleware specialization
techniques.

1.2 Research Challenges in Middleware Specialization

DRE systems based on middleware standards are often subjected to both stringent certification
and cost issues. Therefore, it is important that any middleware sources be retrofitted with mini-
mal to no impact on middleware portability, standard APIs, and application software implemen-
tations, while also preserving interoperability wherever possible. Otherwise such specialization
approaches will obviate the benefits accrued from using standards-based middleware. Addition-
ally, the accidental complexity from manually applying such approaches to mature middleware
implementations will render the specializations tedious and error-prone to implement.

Most prior efforts at specializing middleware (and other system artifacts) [Lohmann et al.
2006; Hunleth and Cytron 2002; Zhang et al. 2005a; Wohlstadler et al. 2003; Ömer Erdem Demir
et al. 2007; Chakravarthy et al. 2008] often require manual efforts in identifying opportunities
for specialization and realizing them on the software artifacts. At first glance it may appear
that these manual efforts are expended towards addressing problems that are only accidental
in nature. A close scrutiny, however, reveals that system developers face a number of inherent
complexities as well, which stem from the following reasons:

1. Spatial disparity between OO-based middleware design and domain-level concerns
- Middleware is traditionally designed using object- oriented (OO) principles, which enforce
a horizontal decomposition of its capabilities into layers comprising class hierarchies as shown
in Figure 2. This design is, however, not suited for specializing middleware since domain con-
cerns tend to map along the vertical dimension, which are shown to crosscut the OO class
hierarchies [Gottlob et al. 1996] thereby necessitating vertical decomposition. For example,
in OO-based middleware implementations of Real-time CORBA (RTCORBA) [Object Man-
agement Group 2005], the implementation of features related to handling requests at a fixed
priority (called the SERVER DECLARED model) or allowing priorities to be propagated from task
to task (called the CLIENT PROPAGATED PRIORITY models) crosscut multiple functional mod-
ules such as the object request broker (ORB), the portable object adapter (POA), and request
demultiplexing and dispatching modules. Since the two priority models are mutually exclusive,
only one configuration can be valid along the critical path between tasks of a DRE system.
Thus, any transformation to prune the logic for the unused priority model must necessarily
involve modifying several different classes that implement these different modules.

Middleware Layers
International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 81

2. Lack of mechanisms for transparent provisioning of domain-specific semantics -
Supporting domain-specific semantics, for instance, application-transparent failover of a group
of components, is important to extend the benefits of separation of concerns provided by
component-based middleware to dependable workflows made up of connected application com-
ponents. Separation of concerns not only expedites the development of individual software
components but also simplifies QoS planning necessary in the later stages of the DRE system
lifecycle. Large-scale DRE systems require such flexibility because it simplifies planning for
mode changes involving graceful degradation in their QoS as opposed to an abrupt denial. For
instance, redundant DRE application workflows could be deployed in a surveillance system
differing only in their QoS. A primary workflow and its underlying resources could have been
configured for high-resolution, low-latency image processing whereas one or more alternate
workflows could be configured to use gradually inferior QoS, which is to be used only if the
primary workflow fails. The ability to switch between these workflows when failure occurs is
necessary. Moreover, to fail over in a transparent fashion is also a challenge.

3. Lack of apriori knowledge of specialization requirements due to temporal separa-
tion of application lifecycle phases - DRE systems often involve a well-defined applica-
tion development lifecycle comprising the design, composition, deployment, and configuration
phases. Due to the temporal separation between these phases, and potentially a different set
of developers operating at each phase, it is not feasible to identify specialization opportunities
all at once. Instead, with each successive phase of the development lifecycle, system proper-
ties from the previous phase start becoming invariant one by one. For example, the system
composition of an end-to-end task chain may reflect the need to differentiate priorities among
multiple information flows across the tasks. However, whether the requests within a flow are
handled at a fixed priority at each task or whether the priorities are propagated end-to-end
will be evident only after the developers configure the system. Thus, any specialization will
have to wait until the configuration of the system is known.

4. Lack of mechanisms for reusing specializations - Unlike the years of efforts in document-
ing proven patterns of software design, there is a general lack of a knowledge base documenting
reusable patterns for middleware specialization, which leads to reinventing specialization efforts
in identifying what specializations are needed, and in realizing them. For example, if there is
no approach to document how the specializations for a particular priority model are performed,
then developers will be faced with similar challenges every time the same specialization is to
be performed on a different DRE system.

1.3 Research Contributions in Middleware Specialization

To address the middleware specialization challenges identified in Section 1.2, this paper describes
(1) the contemporary research in specializing middleware in terms of a three dimensional tax-
onomy we have developed, (2) a feature-oriented approach to reason about (a) application re-
quirements and their composition, (b) deployment and QoS models to determine the middleware
features that are required by the application components, and (c) the specialization context. To-
gether these help drive the specializations to be performed on the underlying middleware in order
to support their QoS demands, and (3) the reverse-engineering, generative and aspect-oriented
programming (AOP) techniques that rely on source code inspection to prune the middleware
features, specialize the middleware sources and augment domain-specificity within the middle-
ware runtime entities. The research contributions made in this paper are summarized below and
explained in detail in the rest of the paper:

(1) Taxonomy of Contemporary Middleware Specialization Techniques creates a vo-
cabulary to reason about middleware specialization techniques in terms of the development
lifecycle, the paradigms and feature-oriented dimensions. Every paradigm used for special-
ization either prunes or augments features or both, and is applicable across one or more of the
lifecycle stages. This makes it easy to classify the specialization techniques and reason about

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

82 · Dabholkar & Gokhale

their impact on the middleware. The taxonomy also aids the identification and development
of a specialization lifecycle as shown in our work. Section 2 describes the specialization
techniques and their taxonomy in detail.

(2) Process for Automated Middleware Specializations illustrates a process we have de-
veloped to automate the middleware specialization process, which is described in Section 3.

(3) Feature-oriented Reasoning Techniques to drive the Middleware Specializations
has been demonstrated using a decision tree-based reasoning approach that determines which
middleware features are being used by the applications, and model interpretation technique
to automatically determine application invariants that provide the context to determine what
specializations are applicable. Section 4 describes the reasoning and deduction techniques
for driving specializations in detail.

(4) Automated Realization of Middleware Specializations enables automated identifi-
cation of specialization points and the generation of specialization directives that enable
transformation of the middleware sources. A build specialization technique is also described
that helps automatically prune down the build configurations based on computation of in-
dependent closure sets of code artifacts dependencies. Section 5 describes this approach in
detail.

1.4 Paper Organization

The remainder of this paper is organized as follows: Section 2 describes contemporary middleware
specializations classifying them into a three-dimensional taxonomy, and compares and contrasts
our solutions with related research. Section 3 describes a process for automated middleware
specialization. Section 4 describes feature-oriented reasoning techniques for discovering oppor-
tunities to drive middleware specializations. Section 5 presents the automated and generative
transformation approach and the corresponding algorithms for specializing middleware and its
build system. Section 6 evaluates the claims made by AutoMaS. Finally, Section 7 presents the
concluding remarks alluding to lessons learned and guidelines to apply specializations.

2. A TAXONOMY FOR MIDDLEWARE SPECIALIZATION

This section surveys and evaluates the existing body of research in middleware specializations
and categorizes it into the three dimensions of lifecycle, paradigm and feature manipulation.
Examples of each category are described and compared in detail. The section subsequently orga-
nizes the surveyed research into a taxonomy representation and proposes a multi-stage lifecycle
for specializing general-purpose middleware. Such a taxonomy is essential to situate individual
solutions we have developed for middleware specializaton. Finally, related work is compared with
our solutions.

Contemporary research on middleware can be broadly classified along three dimensions of appli-
cation development: (1) feature-dependent, (2) paradigm-dependent, and (3) lifetime-dependent.

2.1 Feature-Dependent Specialization

Feature-oriented programming (FOP) captures the variants of a base behavior through a layer
of encapsulation of multiple abstractions and their respective increments that together pertain
to the definition of a feature [Mezinia and Ostermann 2004]. FOP decomposes complex software
into features which are the main abstractions in design and implementation. They reflect user
requirements and incrementally refine one another. FOP is particularly useful in incremental
software development and software product lines (SPLs).

The specialization of a middleware platform along the feature-dependent dimension consists of
composing it according to the features/functionalities required by the hosted applications. This
is a dynamic process that consists of augmenting/inserting new features as well as pruning/re-
moving unnecessary features. We distinguish between feature pruning and feature augmentation
specialization strategies as follows:

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 83

2.1.1 Feature Pruning. Feature pruning is a strategy applied to remove features of the mid-
dleware to customize it. In this case the original middleware provides a broad range of features
but many are not needed for a given use case. These unwanted features are pruned from the
original middleware. This approach is taken by FOCUS [Krishna et al. 2006] where unnecessary
features are automatically removed from general-purpose middleware through techniques such as
memoization to provide optimizations for DRE systems.

2.1.2 Feature Augmentation. Feature augmentation is a strategy applied when the specializa-
tion is realized via the insertion of new features, either because the original middleware did not
support it or the middleware is composed out of building blocks [Agha 2002; Blair et al. 1998;
Tripathi 2002]. The latter variety of middleware platforms are designed to overcome the limita-
tions of monolithic architectures. Their goal is to offer a small core and to use computational
reflection to augment new functionalities.

As described in Section 2.3.2, AOP can be used to compose middleware platforms where
the middleware core contains only the basic functionalities [Hunleth and Cytron 2002; Zhang
et al. 2005a]. Other functionalities that implement specific requirements of the applications are
incrementally augmented in the middleware by the weaver process when they are required and
decrementally pruned when they are not required.

2.2 Lifetime-Dependent Specialization

One approach to classify specialization techniques is based on the time scale at which it is imple-
mented: pre-postulated and just-in-time [Zhang et al. 2005b], which is illustrated in Figure 3. If
middleware specialization is performed during the application compile or startup time, we des-
ignate it as pre-postulated/static specialization. For example, EmbeddedJava (java.sun.com/
products/embeddedjava) minimizes the footprint of embedded applications during the applica-
tion compile time. Similarly, if the middleware specialization is performed during the application
run time, we designate it just-in-time/dynamic specialization. For example, MetaSockets [Sadjadi
et al. 2003] load adaptive specialization code during run time to adapt to wireless network loss
rate changes. Notice that in Figure 3, dynamism increases from left to right.

Lifetime-Dependent Middleware Specialization

2.2.1 Pre-postulated Specialization. Pre-postulated or Static specialization tailors the mid-
dleware before knowing its exact application use case. This process tries to identify the general
requirements of possible future applications and defines the middleware configuration that will
be used by the applications. It is further divided into customizable and configurable middleware.

• Customizable specialization enables adapting the middleware during the application com-
pilation or link-time so that a developer can generate specialized (adapted) versions of the
application. Note that a customized version is generated in response to the functional and
environmental changes realized after the application design-time. Examples of specialization
mechanisms provided by customizable middleware are static weaving of aspects [Kiczales

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

84 · Dabholkar & Gokhale

et al. 1997], compiler flags, and precompiler directives [Klefstad et al. 2002]. QuO [Zinky
et al. 1997] and EmbeddedJava are examples of customizable middleware.

• Configurable specialization enables adapting the middleware during the application startup
time thereby enabling an administrator to configure the middleware in response to the func-
tional and environmental changes realized after application compile time during its deploy-
ment or startup. Some examples of specialization mechanisms provided by configurable mid-
dleware include CORBA portable interceptors [Object Management Group 2000], optional
command-line parameters, for example, to set socket buffer-size, and configuration files such
as ORBacus configuration file (www.orbacus.com).

2.2.2 Just-in-time (JIT) Specialization. Just-in-time (JIT) or Dynamic specialization occurs
at run time by identifying the requirements of the running application and customizing the
middleware according to the application needs. It can be further classified into tunable and
mutable middleware.

• Tunable Specialization enables adapting the middleware after the application startup time
but before the application is actually being used. Doing so enables an administrator to fine-
tune the application in response to the functional and environmental changes that occur
after the application is started. Examples of specialization mechanisms provided by tunable
middleware are ”two-step” specialization approaches (including static AOP during compile
time and reflection during run time) employed by David et. al [David et al. 2001] and Yang
et. al [Yang et al. 2002], the component configurator pattern [Schmidt et al. 2000] used in
DynamicTAO [Kon et al. 2000], and the virtual component pattern [Corsaro et al. 2002] used
in TAO and ZEN middleware.

• Mutable Specialization is the most powerful type of middleware specialization that en-
ables adapting an application during run time. This specialization is also called Adaptive
Specialization. Hence, the middleware can be dynamically specialized while it is being used.
The main difference between tunable middleware and mutable middleware is that in the
former, the middleware core remains intact during the tuning process whereas in the latter
there is no concept of fixed middleware core. Therefore, mutable middleware are more likely
to evolve to something completely different and unexpected. Examples of specialization tech-
niques provided by mutable middleware are reflection [Blair et al. 1998], late composition of
components [Klefstad et al. 2002], and dynamic weaving of aspects [Yang et al. 2002].

2.3 Paradigms-Dependent Specialization

Numerous advances in programming paradigms have also contributed to middleware specializa-
tion techniques. Although many important contributions have been made in this area, a review
of the literature shows that four paradigms, in addition to object-oriented paradigm, play key
roles in supporting middleware specialization: computational reflection [Cacho and Batista 2005],
component-based design [Szyperski 1997], aspect-oriented programming (AOP) [Kiczales et al.
1997], and feature-oriented programming (FOP) [Prehofer 1997].

There are other approaches such as program slicing, partial evaluation, policies, automatic
tuning of configuration parameters that enable customization of system software. However these
approaches are more fine-grained in the sense that they are used to manipulate, customize and
verify the correctness of individual programs. However, each of these approaches can be utilized
through the more coarser-grained approaches that are being considered in this paper.

2.3.1 Computational Reflection. Computational reflection [Cacho and Batista 2005] refers to
the ability of a program to reason about, and possibly alter, its own behavior. Reflection enables a
system to open up its implementation details for such analysis without compromising portability
or revealing the unnecessary parts. Thus computational reflection is an efficient and simple way of
inserting new functionalities in a reflective middleware. A reflective middleware system is divided
into two levels: a base-level and a self representative meta-level that is causally connected to the

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 85

system meaning that any modifications either to the system or to its representation are reflected
in the other.

According to Figure 4, the middleware core is also represented by base-objects and new func-
tionality is inserted by meta-objects. It also shows that the meta-level is orthogonal to the
middleware and to the application. This separation allows the specialization of the middleware
via extension of the meta-level. Thus, it is necessary only to know components and interfaces.
The next generation middleware [Blair et al. 1998; Fábio M. Costa and Gordon S. Blair 1999]
exploits computational reflection to customize the middleware architecture. Reflection can be
used to monitor the middleware internal (re)configuration [Roman et al. 2001].

Reflective Middleware

2.3.2 Aspect Oriented Programming (AOP) Techniques. Kiczales et al. [Kiczales et al. 1997]
realized that complex programs are composed of different intervening crosscutting concerns (i.e.,
properties or areas of interest such as QoS, energy consumption, fault tolerance, and security).
While object-oriented programming abstracts out commonalities among classes in an inheritance
tree, crosscutting concerns are still scattered among different classes thereby complicating the
development and maintenance of applications.

AOP [Kiczales et al. 1997] applies the principle of “separation of concerns” (SoC) [Parnas 1972]
during development time in order to simplify the complexity of large systems. Later, during
compile or run time, an aspect weaver can be used to weave different aspects of the program
together to form a program with new behavior. AOP proponents argue that disentangling the
crosscutting concerns leads to simpler development, maintenance, and evolution of software.
Naturally, these benefits are important to middleware specialization. Moreover, AOP enables
factorization and separation of crosscutting concerns from the middleware core [Sullivan 2001],
which promotes reuse of crosscutting code and facilitates specialization.

In the context of middleware, we refer to AOP approaches as existing software platforms
that expose hooks for applications using these platforms, to adapt, alter, modify, or extend
the normal execution flow of a service requested. Non-functional features (monitoring code,
logging, security checks, etc.) can be transparently woven into the middleware code paths or
unnecessary features can be pruned through bypassing code paths or middleware layers. In
that sense, the CORBA portable interceptor (PI) mechanisms, although not explicitly positioned
as an aspect-oriented approach, belong to this category. Using AOP, customized versions of
middleware can be generated for application-specific domains. Yang et al. [Yang et al. 2002]
and David et al. [David et al. 2001] both provide a two-step approach to dynamic weaving of
aspects in the context of middleware specialization using a static AOP weaver during compile
time and reflection during run time. Other recent examples explicitly positioning themselves as
aspect-oriented approaches are the JBoss AOP approach (www.jboss.org) and the Spring AOP
approach (www.springframework.org).

2.3.3 Model-Driven Engineering (MDE). MDE is a paradigm that integrates model-based
software development techniques (including Model-Driven Development [Schmidt 2006] and the

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

86 · Dabholkar & Gokhale

OMG’s Model Driven Architecture [Object Management Group 2001]) with QoS-enabled com-
ponent middleware to help resolve key software development and validation challenges encoun-
tered by developers of large-scale distributed, real-time and embedded (DRE) middleware and
applications. In particular, MDE tools can be used to specify requirements, compose DRE appli-
cations and their supporting infrastructure from the appropriate set of middleware components,
synthesize the metadata, collect data from application runs, and analyze the collected data to
re-synthesize the required metadata. These activities can be performed in a cyclic fashion until
the QoS constraints are satisfied end- to-end.

Conventional middleware architectures suffer from insufficient module-level reusability and
the inability to adapt in the face of functionality evolution and diversification. The insufficient
module-level reusability stems from the non-modular interaction of the ”intrinsic” and ”extrinsic”
properties in conventional middleware architectures. Conventional middleware architectures also
lack effective means to reuse ”extrinsic” properties, especially ones that are crosscutting [Kicza-
les et al. 1997] in nature, i.e., not localized within modular boundaries as analyzed in [Zhang
and Jacobsen 2004]. Consequently, middleware architects are faced with immense architectural
complexities because the concern density per module is high. The code-level reusability of the
”common abstractions” is also drastically reduced because the generality of intrinsic properties is
restricted by the ”extrinsic” properties in the face of domain variations. A contributing factor to
this complexity is that the code-level design reusability in conventional middleware architectures
is incapable of adequately dealing with ”change” in two dimensions: time (functional evolu-
tion) and space (functional diversification). To tackle the aforementioned problems, Zhang et.
al. [Zhang et al. 2005a] propose a new architectural paradigm called Modelware which embodies
the ”multi-viewpoints” [Nuseibeh et al. 1994] approach.

2.4 Specializations Taxonomy

Using these dimensions of specializations, we have developed a taxonomy for middleware special-
izations as shown in Figure 5.

Three Dimensional Taxonomy of Middleware Specialization Research
International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 87

2.5 Assessment of Modularization Techniques for Middleware Specialization

In this section we use our taxonomy to assess the strengths and weaknesses of various modulariza-
tion approaches used for specializing middleware. We then develop a framework for systematic
and automated middleware specialization that provides guidelines for middleware application
developers to reason about, optimize, customize and tune the middleware according to their
domain-specific requirements.

2.5.1 Qualitative Evaluation of the Middleware Specialization Taxonomy. In the following we
use a combination of artifacts of individual dimensions of our taxonomy to assess the pros and
cons of various modularization techniques when applied to middleware specialization.

Table I: Evaluation of the Combinations of Dimensions

COMBINATIONS USE CASES STRENGTHS WEAKNESSES RELATED WORK

Pre-
postulated

Weave/Prune at
compile-time

Transparency
without

Code Bloating FACET, CLA,
FOCUS,

+ AOP affecting core Bypassing Layers,
AspectOpenORB

Pre-
postulated

Weave/Prune only
known

Elegant design Runtime
specializations not

DTO, CLA,
Modelware

+ MDE features possible
Pre-

postulated
Inspect target platform Useful during Difficult to predict

runtime
AspectOpenORB,

DTO
+ Reflection features deployment conditions
Just-in-time Dynamic weaving of

features
Dynamic
Adaptation

Requires native
platform

JAsCo, PROSE,
Abacus

+ AOP support
Just-in-time Self-healing/correcting Validation of Incur runtime

overhead
Models@Runtime

+ MDE systems Specializations
Just-in-time Introspect runtime

application
Dynamic
Adaptation

Can cause
unpredictable

AspectOpenORB

+ Reflection features & reconfiguration behavior
AOP + FOP ISD and SPLs Better

modularization
Runtime
specializations

AFMs, Caesar

of crosscutting
features

not possible, cause
conflicts

FOP + MDE SPLs Better
composition

Runtime
specializations

FOMDD [Trujillo
et al. 2007]

of features not possible, cause
conflicts

AOP +
Reflection

Composition based on On-demand
feature

May cause conflicts AspectOpenORB

application
requirements

weaving

AOP + MDE
+

Design/Weave/Prune
valid

Systematic,
correct

Safe specializations is Research Needed

FOP +
Reflection

features combinations specialization
process

challenging

Table I summarizes our assessment of different modularization techniques. We briefly discuss
below each paradigm with respect to the lifetime dimension of the taxonomy

a. Pre-postulated Specializations: FOP, AOP and MDE are widely used at design-time and
compile-time respectively to perform feature augmentation and pruning. Although feature
modules – the main abstraction mechanisms of FOP – perform well in implementing large-
scale software building blocks, they are incapable of modularizing certain kinds of crosscutting
concerns [Apel et al. 2008]. This weakness is the strength of aspects. Caesar [Mezini and
Ostermann 2003], AFMs [Apel et al. 2008] combine FOP with AOP to overcome the short-
comings of “purely hierarchial” feature specifications in FOP. However, reflection has limited
application during the pre-postulated phases except during deployment it could be used to
inspect the target platform features before the application is deployed.

b. Just-in-time Specializations: AOP has few use cases at just-in-time where dynamic weav-
ing of feature aspects could be set up with the help of native compile-time platform support,

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

88 · Dabholkar & Gokhale

such as Java Virtual Machine (JVM) [Popovici et al. 2003]. JAsCo [Vanderperren et al. 2005]
is an adaptive AOP language used to specialize Web Services implementations [Verheecke and
Cibrn 2003] whereas PROSE [Nicoara et al. 2008] and Abacus [Zhang et al. 2005b] are just-
in-time aspect-based middleware. Beyond design-time, MDE cannot be applied since it relies
mainly on predetermined system feature requirements. However, it can configure dynamic
augmentation or pruning of features at run-time. Recently, models at run-time has been used
for self-healing systems. The principles from those domains need to be applied for specializing
middleware dynamically based on models. Computational reflection can be used to support
the runtime introspection of the application and perform dynamic augmentation and pruning
of features to adapt its internal implementation and reconfigure itself depending upon the
dynamic conditions prevalent at run-time. However, This enables support for more powerful
dynamic specializations which are useful for power and resource management, and dynamic
adaptation as in wireless sensor networks, embedded systems, etc.

3. THE AUTOMATED MIDDLEWARE SPECIALIZATION PROCESS

The previous section realized a taxonomy for categorizing contemporary middleware specializa-
tion research. The taxonomy leads to insights in developing a multi-stage middleware special-
ization lifecycle process. This section presents the middleware specialization lifecycle and the re-
sulting automated and generative framework for middleware specialization using feature-oriented,
reverse engineering and, generative techniques. We assume that middleware developers develop
module code bottom-up based on a design template and subsequently create the corresponding
build configurations for their modules through mechanisms, such as Makefiles or Visual Studio
Project files. We identify the requirements for an automated solution based on the taxonomy we
developed in the previous section.

3.1 Unresolved Challenges

Since the requirements desired by the application are bound to change over the application life-
cycle, the need for an extensible and portable automated specialization approach becomes even
more apparent. Current specialization techniques do not provide an automated, generic, reusable,
extensible and systematic mechanism for refining existing, and accommodating new specializa-
tions, as well as accounting for different middleware platforms. This research has identified six
key steps involved in providing an automated middleware specialization solution: 1) Specification
of specialization concerns, 2) Deduction of specialization context, 3) Mapping of concerns to code
artifacts, 4) Generation of specialization transformations 5) Transformation of the code artifacts
and, 6) Composition and Configuration of specialized middleware forms.

However, automating middleware specializations for DRE applications with stringent QoS
requirements is a hard problem, which requires resolution of several research challenges described
next. The research challenges in specializing middleware for DRE systems are encountered in all
the stages of development lifecycle.

3.2 Key Requirements for an Automated Solution

Detecting the system invariants manually on a case-by-case basis is infeasible, not to mention
the subsequent manual efforts at specializing the middleware for each of the system under con-
sideration. Many questions arise if automation is desired: How are the systems invariants to
be identified automatically? Once these invariants are identified, how are they mapped to the
underlying middleware-specific features that will indicate what parts of the middleware must be
pruned and how the rest of the middleware be optimized? This problem is hard given that domain
concerns crosscut class hierarchies of middleware design, and because system properties become
invariant in different phases of the system lifecycle. For example, structural composition is often
invariant after the design phase and remains so over the remainder of the application lifecycle.
Similarly, the configuration and deployment properties are invariant after the deployment and

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 89

configuration decisions are made, however, they may vary on a per-deployment basis. We present
the key requirements of an automated solution to middleware specialization.

3.2.1 Inference of the Middleware Features. There is a general lack of reasoning methodologies
that help inferring the middleware features directly from the requirements specifications by the
application developers. There are techniques that help infer application features but they are
not systematic and are completely manual. What is required is a reasoning methodology that
is semi-automated and requires only a few higher-level features to automatically infer the lower-
level features. Moreover, there is a need for a systematic and automated process that not only
gives a standard way of requirements and feature reasoning but also scopes down the space of
requirements to that only provided by the middleware. Such a reasoning process should help
reason the application requirements in terms of middleware features which will further enable
simplifying the specialization process.

3.2.2 Determination of the Specialization Context. We define specialization context as the
intent that drives the specialization process. Deriving the specialization context relies on de-
tecting the system invariants [Marlet et al. 1999], which become known over the application
lifecycle stages. Examples of system invariants include periodic invocations such as timeouts
that provide status updates in publish-subscribe communication paradigms, readonly operations,
single interface operations that always get dispatched to the same server-side handlers, and state
synchronization tasks in stateful group failover [Tambe et al. 2009]. Thus, in order to discover
the specialization context, it is important to identify the invariant system properties from these
high-level system models. However, the current state of art still relies on manual identification
of the specialization context from the application composition, configuration and deployment
models [Krishna et al. 2006].

3.2.3 Inferring the Specializations from the Specialization Context. DRE system developers
must be able to map the specialization context to one or more known patterns of specialization.
To eliminate the existing manual and non-scientific approaches, Inferring the set of specializations
will require a repository of specialization patterns that can be queried using the context, which
then returns a set of specializations applicable in that context. Such a repository must be
extensible to include new patterns as they are discovered.

3.2.4 Identifying the Specialization Points within the Middleware. The inferred patterns of
specialization manifest at a higher level of abstraction than the level of middleware source code
that actually must be transformed. Thus, there is a need to identify the collection of Specializa-
tion Points, which are regions of code within the middleware where specialization patterns will
apply [Kiczales et al. 1997]. Although it is important to rely on patterns of specializations, such
patterns are described at a higher level of abstraction than the level of middleware source code
that actually gets transformed as an outcome of specialization. Thus, there is a need to identify
the collection of specialization points within the middleware where specialization patterns can
apply. The notion of a specialization Point is akin to that defined by AOP [Kiczales et al. 1997].

3.2.5 Generating the Specialization Transformations. Although the specialization points are
determined, the exact nature of the transformation to be carried out at those points correspond-
ing to the specialization patterns must be specified as a set of transformations, which we call
Specialization Advice. Currently, these transformation rules are manually developed [Krishna
et al. 2006] which is a tedious task that requires detailed knowledge of the middleware imple-
mentation architecture and can cause undesirable side effects within the middleware if developed
incorrectly. Moreover, the maintenance of these rules may become problematic as the middleware
frameworks and their respective sources evolve with changing application requirements.

3.2.6 Executing the Specialization Transformations on Middleware Source. Once the special-
ization points are determined, the final step is applying the set of specialization techniques, which

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

90 · Dabholkar & Gokhale

essentially are specialization advice, on the middleware source code so that the code paths are
transformed and the code is optimized to reflect the intended specializations. Applying the advice
requires a staging of backend tools, such as AspectJ and AspectC++, specific to the program-
ming language in which the middleware is developed, or language-agnostic tools, such as Perl.
Naturally, the manifestation of a specialization advice is specific to the programming language
in which the middleware is developed. Examples include AspectJ or AspectC++ advice, or Perl
expressions.

3.3 Overview of the Middleware Specialization Lifecycle

Based on the specialization requirements described in the previous section, we have developed a
systematic lifecycle for performing the middleware specializations. The related works surveyed
address at a time only a subset of the specialization lifecycle stages. Therefore, there is a need
to devise a systematic process methodology that addresses all these stages. Figure 6 illustrates
and provides a brief overview of the middleware specialization process.

The Middleware Specialization Lifecycle

3.4 Automated Middleware Specialization Framework

In order to automate the middleware specialization process, we have developed a systematic,
multi-staged, automated middleware specialization framework called AutoMaS. Figure 7 shows
the AutoMaS middleware specialization framework and illustrates how the different stages of the
middleware specialization lifecycle are addressed and automated by different framework software
components.

1. Feature Mapping Wizard - The application developer starts the middleware specialization
wizard and begins describing the characteristics of the application to be developed specifying
the platform-independent model (PIM) application, domain-level concerns needed for the appli-
cation variant. The Feature Mapping wizard maps the PIM application domain-level concerns
to PIM middleware features. The wizard asks questions about the configuration requirements
and options of the application for which middleware is to be developed. The selected features

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 91

The Automated Middleware Specialization Framework

are also configured along the way as they are selected for composition. The developer response
determines the next question that will be asked.

2. Deduce Invariants - application invariants provide the specialization context to drive the
specializations. The invariants are detected by parsing the system models through model
interpreters. Invariants are application properties which maybe structural or configuration or
deployment that do not change over the application use case. The fact that these invariants
don’t change leads us to believe that the middleware control path used by their implementations
gets executed repeatedly.

3. Infer Features - Once the pruned PIM middleware feature set is obtained from the wizard,
it is then mapped to the actual platform-specific model (PSM) middleware features that im-
plement the individual PIM features using the PIM-PSM mappings that are provided by the
middleware developer.

4. Infer Specializations - Once the specialization invariants are determined, they are looked
up in the specialization knowledge base - SP-KBASE to determine the specializations that are
applicable. The specializations are then ordered according to the dependencies specified in the
SP-KBASE.

5. Transformation Generator - The transformation generator includes a source inspection
engine that parses the middleware source code and modularizes it into code blocks which
indirectly help identify the specialization points. The generator specializes the middleware
frameworks based on the inferred invariant features by removing all the framework indirections
and hard coding the use of that feature directly.

6. Closure Computation: Once the hints are obtained, they are used to create closure sets using
an algorithm that systematically composes the source code and files that are associated with
each feature into a feature module (FM). The closure sets are essentially all the dependencies
that are gathered by the tool.

7. Specialized Middleware Synthesis: The build configuration is specialized by adding source
files from individual closure sets of feature modules to the build descriptor thereby generating
the build configuration file, such as a Makefile. For our evaluations, the process generates

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

92 · Dabholkar & Gokhale

the Make Project Creator (MPC) [Elliott 2007] build configuration file. This MPC file rep-
resents the part of the specialized middleware that is to be built for the application variant.
The generated MPC file is then used to create PSM Makefiles by running the MPC-supplied
Perl-based scripts. The platform-specific Makefiles are then used to for compilation of the spe-
cialized middleware for the application component or entire application variant. Thus multiple
middleware forms may be synthesized depending upon the whether they were compiled for the
entire application or individual components.

Notice that this process is entirely repeatable and reusable. A repository of requirements for
application variants can be maintained. There is no need to maintain the customized versions
of the middleware since it can be synthesized through this process on demand. In the next two
chapters we focus on some of the important building blocks of specialization process.

4. FEATURE-ORIENTED REASONING TECHNIQUES TO DRIVE THE MIDDLEWARE SPECIAL-
IZATIONS

The previous section realized a systematic and automated process for performing middleware
specializations. However, realizing each of the stages of the specializing lifecycle is a tedious
process which requires reasoning about the applications to discover opportunities for specializing
middleware.

This section addresses the first challenge outlined in Section 1.2 pertaining to feature-oriented
reasoning to drive middleware specializations. We first list the challenges that are still unresolved.
Finally, a solution approach is presented that provides a feature oriented reasoning technique for
determining the middleware feature requirements and an automated deduction technique for
identifying the application invariants that provide the specialization context.

4.1 Unresolved Challenges

The higher-level application composition, QoS configuration and deployment models provide op-
portunities for detection of the specialization context which is used to determine and drive the
specializations and optimizations that can be performed within the middleware. The application
models of composition, QoS configurations and deployment specify the performance constraints
such as response-time, throughput, timeliness and reliability that are placed on individual appli-
cation components, their connections as well as the end-to-end workflows of components (known
as component assemblies). Similarly by interpreting the QoS configurations it is possible to
determine in advance what features from the underlying middleware will be utilized by the com-
ponent applications. Additionally, the deployment of the application assembly can also provide
useful hints for optimization from how individual components are mapped to machines, whether
they are collocated, what kind of platform bindings, protocols, endianness they use, etc. Thus
in order to discover the specialization context, it is important to identify the invariant system
properties [Marlet et al. 1999] from these high-level system models.

However, existing specialization techniques do not examine the application composition, con-
figurations and interactions to deduce the repetitive and redundant tasks performed by the appli-
cation. The application context that represents these repetitive tasks manifests itself in terms of
periodic invocations such as timeouts that provide status updates in publish-subscribe communi-
cation paradigms, read only operations, single interface operations that always get dispatched to
the same server-side handlers, state synchronization tasks in stateful group failover [Tambe et al.
2009]. Such repetitive that can be potentially sped up by optimizing the underlying middleware
through caching [Krishna et al. 2006], bypassing middleware layers [Demir et al. 2007], or fusion
of layers [Krishna et al. 2006], etc. to eliminate redundant processing at each middleware layer.

Moreover, the automatic detection of the specialization context also reduces the need for a
dedicated modeling annotation language to identify the context within the application models.
Most coarse grained contexts can be detected automatically by examining the modeling structure
and attributes but finer-grained contexts may need explicit identification. After automating the

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 93

tedious task of identification of the middleware specialization context, the DRE system developer
will still need to determine what specializations are applicable for a particular context. Current
techniques of determining this mapping are still manual [Krishna et al. 2006].

4.2 Feature Oriented Reasoning

To address the outlined challenges, we describe our approach that uses feature-oriented reasoning.

4.2.1 Feature Mapping Wizard. In the development process, the automated specialization
process’ role is applicable in the packaging and assembly phases where the application variants
along with the hosting middleware are configured and packaged. The requirements reasoning
wizard performs the difficult job of mapping the PIM application domain concerns to PIM mid-
dleware features. Domain concerns describe the characteristics of the application being developed.
These characteristics may include functional concerns as well as non-functional (QoS) concerns.
Functional concerns describe the way a particular application/application behaves, and its config-
uration. Non-functional concerns usually describe the way an application is supposed to perform,
which includes dimensions of concurrency.

Normally, domain concerns and middleware features manifest themselves into separate hierar-
chial representations. Therefore, a mapping is required to transform domain concern hierarchies
to middleware feature hierarchial models. In order to create a systematic mapping, this wizard
makes use of model transformations to navigate through the concern and feature hierarchies.
Interestingly, both the functional and non-functional concerns can map within the same mid-
dleware feature model. The higher-level features in the decision tree represent the functional
concerns and since the lower-level features configure the higher-level features, they represent the
non-functional concerns.

Middleware PIM Feature Model

Feature models of the general-purpose middleware as shown in Figure 8 tend to be very complex
and huge making it very cumbersome to analyze for modularity. Fortunately, the feature sets
for application variants are limited, which makes the mapping of concerns tangible within the
middleware feature set. This helps us map known domain concerns to the middleware features in
advance resulting in a m : n correspondence between the domain concern model and middleware
feature model. Thus, based on the domain concern model, the middleware feature model needs
to be pruned to remove the unwanted features that do not map to the domain concerns. This is
done through the feature model interpreters provided by the process.

The feature mapping wizard traverses an internal decision tree as shown in Figure 9 to ask
different questions to the application developer to infer the application variant characteristics.
These characteristics include distribution features, such as client/server, and concurrency fea-
tures, such as single/multi-threaded, in that order. It asks questions ranging from coarse-grained
ones like whether the application variant is client-server or peer-to-peer, to fine-grained questions
like what kind of thread-spawning strategy is desired. Each coarse-grained answer scopes down
the application characteristics based upon which the next fine-grained questions are asked that
configure the application behavior.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

94 · Dabholkar & Gokhale

Decision Tree used by the Feature Mapper Wizard

After performing this mapping, a pruned PIM middleware feature set is generated that is
mapped to the PSM middleware feature definitions through the transformations. We assume
that the mapping of PSM middleware features to their PSM feature definitions, i.e., source
code, is already performed a priori by the middleware developer at design time thus enabling
us to directly determine the PSM source code that implements the PSM middleware feature
set. The wizard outputs the PSM source code hints that act as the starting point of the closure
computation algorithm.

4.2.2 Deducing the Specialization Context from System Models.

Approach. System invariant properties provide an indication of what features from the under-
lying middleware will be utilized by the applications. Since system invariant properties become
evident only with every successive phase of application lifecycle, we classify the system invariants
as (1) structural invariants, which are obtained from the structural composition of the system;
(2) configuration invariants, which are obtained from the QoS configuration parameters selected
for the middleware hosting platforms that specify the performance constraints. These constraints
include latency, throughput, timeliness and reliability that are placed on individual application
components, and their connections as well as the end-to-end workflows of components (known
as component assemblies); and (3) deployment invariants, which are obtained from the resource
allocations including the mapping of application software components to processors, platform
bindings, endianness, languages, compilers, and collocation of different application software com-
ponents.

An approach to identifying these invariants is through model interpreters that traverse the
application models and establish the specialization context. Such a step eliminates the need
for dedicated modeling annotations to identify the context within the application models. Most
coarse-grained contexts can be detected automatically by examining the modeling structure and
attributes but finer-grained contexts may need explicit identification.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 95

Implementation. We have developed a model interpreter that traverses the system models
to detect the invariants that provide the specialization context. The interpreter makes use of
well-defined matching patterns that were specifically developed for the PICML component-based
DRE system modeling language [Balasubramanian et al. 2005] to ease the traversal to specific
granularity levels (assembly, component, connection, port, interface, methods, parameters, config
properties, etc) of the system model. The interpreter proceeds by starting from the highest level
of granularity (assembly) to the lowest (parameters, configuration properties). Once it discovers
the invariants, it gathers the configuration data associated with them that will be further used
to deduce the specialization context. The interpreter maintains an extensible catalog of these
matching expressions that can be predefined by the model developer and if necessary can be
further extended to accommodate the discovery of newer invariants.

4.2.3 Inferring Specializations from Specialization Context.

Approach. Depending upon where they occur in the application model, the invariants that form
the specialization context have certain semantics that implicitly determine the specializations
that can be performed. For instance, application invariants such as repetitive tasks can provide
a different specialization context based on the semantics they have, e.g., periodic tasks can
manifest in terms of periodic invocations that have synchronous request-response semantics which
provide opportunities to optimize the redundant processing along the middleware call processing
path. Since the specialization contexts map to different patterns of specialization, an extensible
repository that can be queried for the right specializations is needed.

Implementation. We have synthesized an extensible and intuitive repository called SP-KBASE,
which serves as a knowledge base and is implemented as a complex multi-dimensional hashmap
that stores the specialization patterns corresponding to the specialization. Note that a pattern
also encodes the ordering in which individual specializations must be executed. Such an or-
dering is useful to the specialization staging algorithm that can correctly determine the next
specialization to be performed. Another important piece of information that is stored is the in-
compatibilities or conflicts with other specializations in terms of common code paths or features
being manipulated by them.

Table II: SP-KBASE: Extensible Catalog of Specialization Techniques

System Invariants Optimization Principles Specialization Techniques

S1 Periodic Invocations P1, P4 Memoization
S2 Fixed Priorities P1, P4 Aspect Weaving
S3 Homogenous Nodes P1 Constant Propagation
S4 Same Call Handler P1, P4, Memoization + layer-folding
S5 Known Implementation P2 Aspect weaving
S6 Fixed Platform P2 autoconf

System Invariants Specialization Joinpoints Depends On Conflicts

S1 Periodic Invocations Request Creation – S3
S2 Fixed Priorities Concurrency – S5
S3 Homogenous Nodes Demarshaling Checks – S1
S4 Same Call Handler Dispatch Resolution S2 –
S5 Known Implementation Framework Generality – S2
S6 Fixed Platform Deployment Generality S2, S5 –

Table III: Performance Optimization Principles [Varghese 2005]

Principle Description

P1 Avoid obvious waste
P2 Avoid unnecessary generality
P3 Don’t confuse specification and implementation
P4 Optimize the expected case

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

96 · Dabholkar & Gokhale

The snippet of SP-KBASE knowledge base shown in Table II has been developed based on the
intuition of the middleware developers who have expert-level knowledge of the middleware design
and implementation. The model interpreter from Step 1 parses the SP-KBASE using the uniquely
inferred specialization contexts for each invariant and obtains the set of specializations. It then
orders them based on the dependency information extracted from the dependency fields and emits
out an ordered set of specializations that are to be performed. It reports the incompatible set of
specializations to the end-user or simply skips them if running in ’silent’ mode.

5. AUTOMATED REALIZATION OF MIDDLEWARE SPECIALIZATIONS

The previous section developed a reasoning methodology for determining the features that are
desired from the middleware which ultimately pruned the middleware feature set to only the
features that are being directly used. It also presented an automated deduction methodology for
identifying application invariants and inferring the specializations that are applicable to the spe-
cialization context of the detected invariants. However, the difficult task of the actual realization
of the middleware specialization still remains which if performed manually becomes tedious and
unproductive for the middleware developer.

This section addresses the second challenge outlined in Section 1.2 pertaining to automated
realization of middleware specializations. First, a list of challenges that are still unresolved is
presented. Next, a solution approach is presented that provides two automated techniques for
generation of specialization transformation directives and for transformation of the middleware
build configurations are presented.

5.1 Unresolved Challenges

5.1.1 Reducing Manual Effort in Devising Specializations. In order to alleviate the manual
efforts of the developers in designing and devising the middleware specializations, the following
steps need to be resolved:

1. Identification of the Specializations Points within the Middleware Architecture -
Middleware is usually developed using the layered architectural style where each layer is com-
posed using reusable components that are organized using sophisticated frameworks [Institute
for Software Integrated Systems sitya]. Each middleware layer therefore provides commonal-
ity as well as variability to the layer above it. While some of the middleware specializations
can be ad-hoc, most of them really end up specializing these frameworks to remove unwanted
commonality by pinning down the variability. These commonalities and variabilities usually
form the source of performance bottlenecks since they comprise repetitive and redundant pro-
cessing where the output provided by one layer to the layer above it does not change.. The
variabilities usually manifest themselves into polymorphic behaviors programmed within the
middleware patterns and frameworks in order to provide additional indirection that enables
the required processing strategies to be chosen on-the-fly. Thus, if these points are known in
advance, then the additional indirection due to polymorphism can be eliminated. This requires
recognizing the specialization points within the middleware source code. Current techniques
for doing this involves annotating the source code with special labels/tags that map to in-
dividual specializations. These specialization tags must then be processed by special scripts
or tools to transform the middleware code into a optimized code. Manually inspecting the
vast middleware source code for identifying the specialization points and annotating them is
a tedious, time-consuming and cumbersome task for the middleware developer. Moreover,
as the middleware evolves, maintaining the locations of these specialization points and their
semantics becomes an extremely difficult task.

2. Realization of Specializations - In order to execute the specializations, the middleware
code first needs to be transformed. The transformation tools require input transformation
directives that are realized using the specialization tags to perform these source-to-source
transformations.These source-to-source transformation directives can be realized using script-

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 97

ing techniques or advanced programming techniques like AOP. However, AOP techniques suffer
from unbounded quantification which is not suitable for selectively transforming the middle-
ware source that is to be specialized. Moreover, AOP techniques result into code bloating and
testing nightmares for the developer. Additionally, it is tedious and cumbersome to manu-
ally write the complicated source transformation scripts requiring detailed knowledge of the
middleware implementation architecture and can cause undesirable side effects within the mid-
dleware if developed incorrectly. Therefore, there is a need to automatically generate these
transformation scripts correctly.

3. Execution of Specializations within the Middleware - To transform the source code
the identification of specialization points becomes crucial. Once the specialization points are
identified, the middleware source needs to be transformed according to the optimizations pro-
grammed by each specialization. In order to execute the specializations, two steps are involved
- transformation and staging. Once the transformation derivatives are realized, they need to be
executed on the middleware source code. Tools need to be built that are able to automatically
perform these transformations. Other alternative is to develop direct source transformation
tools that inspect the sources, find the specialization points and perform the transformations.
However such tools are difficult to implement and cumbersome to maintain. Once a middle-
ware developer identifies the specialization points within the middleware architecture and the
specializations that apply at those points, it is important to ensure that no two specializations
conflict with one another in unpredictable ways. Specializations need to be compatible with
one another at both the logical (architecture design) level as well as physical (source code)
level. At the logical level their compatibility can be checked through architectural constraint
checks. However, at the physical level it is necessary to ensure that any two specializations that
impact same or shared control flows ensure that correctness is ensured. This becomes difficult
to verify since even if two specializations compatible at the logical level can cause conflicts at
the physical level. This incompatibilities need to be captured and codified in a form that is
easily interpretable by specialization staging tools.

5.1.2 Lack of middleware support for domain-specific recovery semantics. General purpose
middleware have limitations in how many diverse domain-specific semantics can they readily
support out-of-the-box. Since different application domains may impose different variations in
fault tolerance (or for that matter, other forms of quality of service) requirements, these seman-
tics cannot be supported out-of-the-box in general-purpose middleware since they are developed
with an aim to be broadly applicable to a wide range of domains. Developing a proprietary mid-
dleware solution for each application domain is not a viable development and maintenance costs.
The modifications necessary to the middleware are seldom restricted to a small portion of the
middleware. Instead they tend to impact multiple different parts of the middleware. Naturally, a
manual approach consumes significant development efforts and requires invasive and permanent
changes to the middleware.

Realizing these capabilities at the application level impacts all the lifecycle phases of the
application. First, application developers must modify their interface descriptions specified in IDL
files to specify new types of exceptions, which indicate domain-specific fault conditions. Naturally,
with changes in the interfaces, application developers must reprogram their application to conform
to the modified interfaces. Modifying application code to support failure handling semantics is
not scalable as multiple components need to be modified to react to failures and provision failure
recovery behavior. Further, such an approach results in crosscutting of failure handling code with
that of the normal behavior across several component implementation modules.

Resolving this tension requires answering two important questions. First, how can solutions
to domain-specific fault tolerance requirements be realized while leveraging low cost, general-
purpose middleware without permanently modifying it? An approach based on aspect-oriented
programming (AOP) [Kiczales et al. 1997] can be used to modularize the domain-specific seman-
tics as aspects, which can then be woven into general-purpose middleware using aspect compilers.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

98 · Dabholkar & Gokhale

This creates specialized forms of general-purpose middleware that support the domain-imposed
properties.

Many such solutions to specialize middleware exist [Mohapatra et al. 2005; ?], however, these
solutions are often handcrafted, which require a thorough understanding of the middleware de-
sign and implementation. The second question therefore is how can these specializations be
automated to overcome the tedious, error-prone, and expensive manual approaches? Generative
programming [Czarnecki and Eisenecker 2000] offers a promising choice to address this question.

5.2 Automated Realization of Middleware Specializations

We now describe our approach to overcome the outlined challenges.

5.2.1 Identifying Specialization Points.

Approach. To identify the specialization points within the middleware we rely on the fact that
most standards-based middleware implementations use frameworks that are based on well-known
design patterns. Therefore, it is possible to optimize the frameworks by specializing their con-
stituent design patterns. Traditional frameworks and patterns are designed to be extensible by
using indirections and dynamic dispatching through virtual hooks to support newer features that
support newer functionality and processing methodologies. Examples of such frameworks are
mainly transport protocol handlers, request demultiplexing and concurrency models. Rather
than relying on the source code annotation alone to specify the specialization points, other tech-
niques like code profiling and inspection, and feature identification and composition can also be
leveraged. Specialization points for functional artifacts can be identified by examining the design
patterns in the middleware frameworks whereas the points for the execution threads of control
can be identified by examining the middleware call paths. We leverage well-known optimization
patterns (shown in Table III) to specialize traditional middleware frameworks. A preliminary
catalog identifying the middleware specialization points and the specialization techniques that
apply to these points is shown in Table II. We expect this catalog to be extended as new points
are discovered.

Implementation. To specify the specialization points, we first figure out the source code files
that need to be transformed. The transformation rules only need to manipulate the source files
that are actually implementing the salient framework features. To that end we have leveraged and
extended our previous work, FORMS [Dabholkar and Gokhale 2011], to figure out the file depen-
dency structure for the framework/pattern that needs to be specialized. The closure computation
can take the required features as input and compute the closure set of source file dependencies
that are independent of other closures. This gives us the files we need to process to perform the
required source transformations.

We have developed a generic inspection engine that uses source code inspection to identify the
various individual components of a class such as header includes, forward declarations, scopes,
methods, and data members. This pre-processing implicitly helps to identify the specialization
points. Once the pre-processing is done, it provides the necessary information for the following
operations – method removal, class movement, scope section replacement, checking for already
defined methods, checking the order of typedefs and forward declarations needed for ensuring
clean compilations – which form the basis of the specialization advice the algorithm generates.

5.2.2 Generation and Execution of Specialization Advice.

Approach. Once the specialization points are identified, to specialize the frameworks into their
optimized equivalents, we require rules needed to perform the corresponding source-to-source
transformations on the frameworks sources by using the available tools and scripts. One way
of performing this is to represent these middleware and patterns in terms of high-level domain-
specific architectural models [Gokhale et al. 2007]. Then perform model-to-model (M2M) trans-
formations to convert these models into their optimal equivalents and later perform model-to-

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 99

source (M2S) transformations to produce the optimized source. A drawback of this approach
is the additional burden on the middleware developers to construct these models and two-level
transformations [openArchitectureWare 2007]. Another way is to annotate the framework and
pattern source code to identify the specialization points and write source-to-source transforma-
tions (S2S) [Krishna et al. 2006]. However it is cumbersome to manually annotate and identify
the design patterns and the corresponding implementing sources.

Algorithm 1 Generic Specialization Advice Generation Algorithm with the Pattern Specializa-
tion Plug-Ins

F : Framework Feature to be specialized/concretized.
M : Middleware Sources
D : Developer specified advice/specialized code
Ms : Specialized subset of Middleware Sources M
Input - F , M , D
Output - Ms (Initially empty)

begin
Fs := FIND all the framework files that contain the usage of the concrete Framework Feature Class f using FORMS
Ps := FIND the pattern implementation files using FORMS
Pd := COLLATE the data necessary for transformation using FORMS and D

{PATTERN SPECIALIZATION PLUG-IN}

REPLACE Base Class occurences with Concrete Class in all framework files Fs

REMOVE the Includes for the Alternative Features from the framework files Fs

REMOVE other Alternative Features from the build configuration using FORMS
return Ms

end

Implementation. In order to avoid these cumbersome techniques, we have developed different
generic transformation algorithms for optimizing/transforming each of the commonly used pat-
terns (Bridge, Strategy, Template Method) in contemporary middleware. We have opted to design
the transformation algorithms to work with C++ – the most complex middleware implementa-
tion OO language being used. In case of other less complicated languages like C#, Java, etc., the
algorithms will be much simpler and easier to implement. For example, unwanted indirections
(virtual hook methods) in the Strategy pattern can be removed by collapsing class hierarchies,
whereas dynamic dispatching (to concrete strategy/feature classes) in the Bridge Pattern can be
eliminated by replacing with concrete instances of the strategy/feature implementations. On the
other hand, the redundant computations in the middleware call processing path can be optimized
by applying layer folding and memoization optimizations.

The generic advice generation Algorithm 1 generates rules at two levels: (1) the middle-
ware framework level and (2) the constituent design patterns that implement the framework.
The framework-specific transformations are performed to accommodate their corresponding con-
stituent patterns-specific transformations. These include specializing the use of the pattern fea-
tures in the other framework source code, particularly callbacks, feature instantiations and their
usages, and the compilation of the framework code. Thus, the algorithm basically performs three
major tasks by leveraging and extending the FORMS tool - (1) Determines all the framework
implementing classes that utilize the feature to be specialized and leverages the corresponding
specialization advice provided by the middleware developer, (2) It delegates the pattern special-
izations to the respective specialization plug-ins as described in algorithm 2, and (3) Specializes
the build configuration files for compilation. We have developed similar algorithms for other
commonly occurring design patterns within middleware frameworks such as Strategy, Adapter,
Template Method, etc. which we have not shown in this paper due to lack of space.

Any specialized code/data for the transformations is provided by the middleware developer
since they can best determine how to optimize a particular code path within a particular frame-
work. These rules are ultimately fed to the source transformation tools like FOCUS [Krishna

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

100 · Dabholkar & Gokhale

Algorithm 2 Bridge Pattern Specialization Plug-In

{Eliminates Indirections - Removes Virtual Method Dispatches}
Input - Ps, Ms

begin
for each concrete Feature Class Headers h ∈ Ps do

ADD Forward Declarations & Public Methods from the Bridge Impl Class
REMOVE Base Inheritance
REMOVE all ’virtual’ keywords
CREATE Concrete Feature Class within the main class Constructor
REMOVE all Alternative Feature references

end for
REPLACE the Bridge Impl Class occurrences with the Concrete Feature Class {also replaces the #includes} in all
relevant files
return Ms

end

Algorithm 3 Template Method Pattern Specialization Plug-In

{Collapses Hierarchies - Fuses Derived class into Base class}
Input: Fs, M
Output: Ms (Initially empty)

begin
for each Base Feature Class c ∈ Ps do

REPLACE Forward Declarations, Includes, Public Methods, Private Methods and Private Data from the Derived
Feature Class
REPLACE Base Constructor methods with the Derived Constructor methods
DEFINE ’typedef’ c as the Derived Feature Class
REMOVE all ’virtual’ and pure ’virtual’ keywords
REPLACE Base Feature Constructor with Derived Feature Constructor
COMMENT the c methods that are overridden in the Derived Feature Class

end for
return Ms

end

Algorithm 4 Strategy Pattern Specialization Plug-In

Input: Ps

Output: Ms (Initially empty)

begin
for the concrete Strategy Class f ∈ Ps do

REMOVE Base Inheritance
ADD Forward Declarations, Includes, Public Methods from the Abstract Base Strategy Class
REMOVE all ’virtual’ keywords from Method Declarations

end for
return Ms

end

et al. 2006] whose Perl scripts execute the transformations on the sources and subsequently the
build specialization tools generate the specialized middleware source build configurations.

5.2.3 Discovering Closure Sets. Once the PSM source code hints that directly implement
the domain concerns are determined, their dependencies on other code within the middleware
needs to be determined. All such code that is interdependent on each other is what implements
the domain concern. We call such a set of source files as a closure set in which there are no
source file dependencies going out of the closure set. We differentiate between feature definition
and feature implementation files. Feature definition makes it easier to identify and annotate
features whereas feature implementations which capture the feature behavior may differ from one
middleware implementation to another depending upon the language of implementation. Thus,
the closure computation identifies the set of dependent features definitions and their definitions,
and composes them into a coherent and independent feature module.

We have designed a recursive closure computation algorithm that walks through the source code
dependency tree and identifies the source that is dependent on the feature. However, opening
each file on-the-fly and checking the dependencies is inefficient since it requires numerous I/O
operations. Instead we run an external dependency walker tool like Doxygen or Redhat Source

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 101

Navigator [Developer 2007] to extract out the dependency tree.

Algorithm 5 Algorithm for Computing Closure Set for a product variant

1: Ms : Mapping of PSM middleware features to PSM definitions
2: Fp : Feature Set for Product Variant p
3: Cp : Closure set for product p ∈ Fp

4: Cf : Closure set for feature f ∈ Fp

5: Cs : Closure set for source hint s ∈ Ms

6: Pi : Pending set of feature implementations whose closure set needs to be calculated
7: Input: Fp, Ms

8: Output: Cp (Initially empty)

9: begin
10: Cp := ∅
11: for each feature f ∈ Fp do
12: s := FIND feature definition from Ms for feature f
13: Cf := ∅
14: Cs := ∅
15: Cs := COMPUTE closure for feature definition s
16: Cf := Cf ∪ Cs

17: Pi := FIND new feature implementation files for each feature definition in Cs

18: while Piisnotempty do
19: Cs := ∅
20: Cs := COMPUTE closure for feature implementation file i ∈ Pi

21: Cf := Cf ∪ Cs

22: Pi := Pi∪ FIND new feature definition & implementation files that were found in the closure computation
23: end while
24: Cp := Cp ∪ Cf

25: end for
26: return Cp

27: end

1. Lines (1-7): The middleware developer provides the mapping from the PIM middleware
features to the PSM feature definition files i.e., PSM source hints in which the features are
defined.

2. Lines (10-17): Once these PSM source hints are obtained the algorithm computes the closure
set for each of the source hints. This step produces additional dependent PSM feature definition
files which automatically form part of the closure set. Hence, their closure set need not be
recalculated.

3. Line (18): The previous step gives rise to potentially more dependent feature definitions that
are not directly used by the product-line variant but required by the PSM source hints. The
algorithm identifies the PSM feature implementation files for the dependent feature sets.

4. Line (19): The closure for the corresponding feature implementation files may need to be
calculated. These new files form the pending implementation set and are added to the list of
pending files whose closure needs to be calculated.

5. Lines (20-26): Now the algorithm iteratively calculates closure sets for each pending feature
implementation file until all the pending implementation files are accounted for. The closure
computation will always give rise to more pending feature implementation files as described in
the 2nd step.

The closure sets corresponding to the application variants that are discovered in Section 5.2.3
are different from cliques or maximally independent sets in graph theory. Closure sets, though
transitive, are completely self-sufficient so they can also be called independent transitive closures.

5.2.4 Middleware Composition Synthesis through Build Specialization. Different middleware
use sophisticated techniques to compile its source code into shared libraries. Some of these tech-
niques rely on straightforward scripting e.g., shell script, batch files, Perl scripts, or ANT scripts
while some of them rely on descriptor files such as make file system or advanced cross-compiler
build facilities like MPC (Make Project Creator) [Elliott 2007]. We leverage the MPC cross-
compiler facility since it supports multiple compilers and IDEs and is therefore more generic and

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

102 · Dabholkar & Gokhale

widely applicable for synthesizing middleware shared libraries written in different programming
languages.

The MPC projects of the general-purpose middleware do not necessarily represent the fea-
ture modularization per se. The closure sets are converted into MPC files for synthesis of the
specialized middleware represented by the closure sets through the respective language tools.
These MPC files are specialized versions of the combination of the original MPC files of the
general-purpose middleware and are the real representation of feature modularization in terms
of application variant requirements.

6. EVALUATING THE AUTOMAS MIDDLEWARE SPECIALIZATION PROCESS

6.1 Logging Server Case Study

Logging Application Variant

In order to explain and evaluate the middleware specialization process, we use a motivating ex-
ample of a application variant of networked logging servers as shown in Figure 10. We choose this
particular application variant since logging various status and error messages is a very frequent
and widely used facility for monitoring the system performance as well as system survivabil-
ity in different domains such as enterprise, or distributed real-time and embedded systems like
shipboard computing and mission critical aviation software.

A logging server has different performance requirements depending upon the type of application
that is using the logging facility. Depending upon the application domain the need for logging
varies from sporadic to frequent logging. Enterprise applications may require sporadic logging
where logging is restricted to mostly error and status messages whereas certain high security
mission critical application that are susceptible to infiltrations may require more detailed logging
traces of the system behavior in order to detect discrepancies and errors that may lead to discov-
ering an impending or in-progress security attack. Hence sporadic logging may require iterative
or reactive logging servers whereas frequent logging may require multithreaded or multiprocess
logging servers.

We evaluate AutoMAS by modeling a application variant of networked logging applications
based on contemporary, widely used communication middleware such as ACE [Institute for Soft-
ware Integrated Systems sityb]. ACE is a free, open-source, platform-independent, highly con-

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 103

figurable, object-oriented (OO) framework that implements many core patterns for concurrent
communication in software. It enables developing product variants using various types of com-
munication paradigms such as client-server, peer-to-peer, event-based, publish-subscribe, etc.
Within each paradigm it supports various models of computation (MoC) which are highly con-
figurable for different QoS requirements. We have designed the networked logging application
variant servers based on the client-server paradigm with individual models conforming to various
MoCs including iterative, reactive, thread-per-connection (TPC), real-time thread-per-connection
(RT-TPC) and process-per-connection (PPC). Each application variant may in turn have differ-
ent QoS requirements for event demultiplexing and event handler dispatching, signal handling,
service initialization, interprocess communication, shared memory management, message routing,
dynamic (re)configuration of distributed services, concurrent execution and synchronization.

Figure 10 shows the representation of the logging server application variant in terms of com-
monality and variability of the features. We have showcased only those features that are required
since we are not interested in how the individual logging server variant is implemented but rather
what PIM features it desires from the underlying middleware platform.

6.2 Evaluation of the Closure Computation Algorithm

Table IV: Outcome of applying FORMS to a Product-line of Networked Logging Applica-
tions

Networked Logging Applications Application Variant Outcome of Closure Computations Synthesized Middleware
application variant # of Middleware # of Middleware Size of Closure Static Footprint

(described in Domain Concerns) PIM Features PSM Features Set (PSM files) (KB)

Simple (Iterative) Logging 9 107 502 1,456
Reactive Logging 12 109 502 1,456

Thread Per Connection Logging 11 176 502 1,456
Real-Time Thread Per 12 178 502 1,456

Connection Logging
Process Per Connection Logging 12 120 508 1,500

By creating specialized variants of the ACE middleware for different types of logging servers,
the profiling tools estimate the memory footprint savings, dependent middleware features, source
files that implement the features, and exercise unit tests to determine whether the expected
performance is met. We showcase the compile-time metrics that result from middleware special-
ization.

6.2.1 Footprint and Feature Reductions . Our experiments provide interesting insights about
the relationship between the number of middleware features being used and the footprint of the
synthesized middleware. The ACE middleware is implemented in 1,388 source files and 436
features with a resulting footprint of 2,456 KB. Table IV shows that the algorithm has achieved
significant optimizations – a 64% reduction in the number of source files used, a 60-76% reduction
in the number of features used, and a 41% reduction in memory footprint. The ACE middleware
was compiled on Windows using Visual Studio 8.0 compiler. Similar improvements were also
observed with GNU GCC compiler on Linux.

Table IV also shows that the variants share many middleware PIM features as verified by the
almost similar footprint measurements (1,456 KB - 1,500 KB). This means that the middleware
forms a homogenous core that supports the entire application variant. In this case, a single
version of the ACE middleware could be synthesized for the entire application variant instead of
synthesizing individual variants for each product. Thus, the process also provides guidelines as
to whether to synthesize individual variants or a single variant for the application variant thereby
eliminating the need to provide and maintain multiple specialized middleware variants.

6.2.2 Modularization Discrepancies. On the other hand as shown in Figure 11, there is a wide
disparity between the number of PSM middleware features required by the individual product

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

104 · Dabholkar & Gokhale

Modularization Disparities

variants (107-178) variants and the PSM source files (502-508) implementing them. More specif-
ically after inspecting the individual application variant’s generated MPC build configuration,
there were some unused PSM features that percolated into the feature modules of a application
variant. This means that there are several unused middleware features that find their way in
the specialized middleware for the Iterative, Reactive and PPC product variants that originally
required fewer features.

6.3 Additional Insights provided by the algorithm

The closure computation algorithm can be enhanced to give additional insights to middleware
developers about the middleware modularization, ease of testing and maintenance overheads.

(1) Discovering Modularization Discrepancies: The reason for the modularization dis-
crepancies described in Section 6.2.2, are due to the physical implementation dependencies
between the logical feature modules. These results from the conflicts between the design goals
envisioned by the middleware designers and the implementation goals of the middleware de-
velopers. This happens if a single PSM implementation source file implements more than
one PIM feature or vice versa. Thus the logical PIM feature independence does not always
translate to their actual physical PSM implementation independence. Thus even though
general-purpose middleware is designed in a modular way, the modularity does not manifest
exactly in the same way in their implementations of the middleware layers. The algorithm
can thus provide a guideline to the middleware developers to detect and break unnecessary
dependencies within their source code and thereby reduce the tight coupling between the
modules within the middleware layers.

(2) Automated Test Case Selection: The algorithm reduces the amount of features, in
turn reduces the functionalities that are expected from the middleware. Thus it can enable
automatic test case selection of functional unit tests in order to alleviate the testing and
maintenance overhead for the middleware developers

(3) Discovering Middleware Core: The algorithm helps in identifying the core middleware
features needed by the application variant. The algorithm can take a multiset intersection
of all the closure sets that are generated for the different application variant variants. This
intersection represents the commonality whereas the rest of the features represent the vari-
ability. Thus, closure computation can potentially figure out the differences between the
logical middleware core as designed and envisioned by the middleware architect and physical
middleware core estimated by the closure computation.

6.4 Validation of the Algorithm

As middleware is statically specialized, checking the correctness of its functionalities becomes
paramount. In this case a simple successful compilation of the specialized middleware and shared
library generation are not sufficient. It becomes necessary to verify the runtime correctness
of the specialized middleware through exhaustive testing processes. We validated the closure

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 105

computation methodology by re-executing the tests on the specialized middleware that were
originally designed for the general-purpose middleware. However, we also ensured that the tests
that have been invalidated due to the missing features from the specialized middleware are pruned
away and not re-executed.

6.5 Evaluation of the Generative Middleware Specialization Algorithms

Since middleware specialization is a software engineering process, we demonstrate its applicability
and evaluate its merits along the following dimensions: (1) We first show how the algorithms can
be applied to specialize middleware for a representative DRE system case study; (2) We show the
savings in effort (and hence improvement in productivity) on the part of a DRE system developer
accrued by using the algorithms in contrast to manually performing the specializations; and (3)
We show the improvement in latencies and static and runtime memory footprints of the specialized
middleware version compared to traditional middleware.

6.6 Illustrating the generative algorithms on a DRE Case Study

We now show how the algorithms are applied to specialize middleware for a representative DRE
system case study using the specializations cataloged in the knowledge base SP-KBASE shown in
Table II.

6.6.1 Avionics: The Boeing Boldstroke Basic Single Processor (BasicSP) Application.

Scenario Description. BasicSP (Basic Single Processor) is a scenario from the Boeing Bold
Stroke avionics mission computing application variant [Sharp and Roll 2003], which is a component-
based, publish/subscribe platform built atop the TAO Real-time CORBA Object Request Broker
(ORB) [Schmidt et al. 2002]. Figure 12 illustrates the BasicSP application scenario, which is
an assembly of avionics mission computing components reused in different Bold Stroke product
variants.

The Basic Single Processor (BasicSP) Application Scenario

BasicSP involves four avionics mission computing components that periodically send GPS
position updates to a pilot and navigator cockpit displays at a rate that is configurable. The
time to process inputs to the system and present output to cockpit displays should thus be less
than the rate, which as shown in the figure is a single 20 Hz frame.

Problems. The real-time concerns are orthogonal to the traditional horizontal middleware de-
composition. In the BasicSP scenario the real-time requirements of predictable latency of 20Hz
is desired by each of the individual components so that the aircraft pilots receive their location
in real-time. At the same time, these application invariants are not known in advance so they
cannot be automatically used to deduce the specializations that can be potentially performed.
Moreover, the system requirements may change if the system is deployed in a different physi-
cal domain or a different aircraft. For example, a different variant of this scenario for different
customer requirements, however, may use different framework components or may send different
events to consumers or may service operations via different request dispatchers or may run on
nodes with different byte orders, but with the same compiler/middleware implementation, in
which case data need not be aligned. These changing requirements render point specialization

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

106 · Dabholkar & Gokhale

solutions useless and therefore the need for a systematic, extensible and reusable specialization
approach becomes even more apparent.

6.6.2 Applying Generative Specializations to Specialize Middleware for BasicSP. We show
how the the model interpreters traverse the BasicSP model to realize the specializations.

Applying Step 1 (Deducing the Context). Figure 13 showcases the different application in-
variants that can be deduced.

The Basic Single Processor (BasicSP) Specialization Points

Structural Invariants - The BasicSP case study uses a “push-event, pull-data” communica-
tion model, which forms the basis of the structural composition of the system. On receiving an
event, the Airframe and Nav_Display components repeatedly use the same get_data() oper-
ation to fetch new GPS and Display updates, respectively. In a connection between GPS and
Airframe components, therefore, the get_data() operation is sent and serviced by the same
request dispatcher.

Configuration Invariants - In BasicSP, the connection properties such as the pulse rate of 20 Hz,
and corresponding data delivery deadlines form the application QoS configuration model. In this
case study, the processing rate is fixed at a maximum latency rate of 20 Hz, the transport protocol
used is VME backplane, and the request demultiplexing mechanism within the middleware is
reactive.

Deployment Invariants - The target nodes on which the BasicSP components are deployed
(not shown in the Figure) have the same byte order (endianess) since the processors used in this
case study are homogeneous.

Applying Step 2 (Inferring the Specializations). Structural Invariants - The BasicSP push-
event, pull-data communication model imposes the need for features that support event commu-
nication as well as request-response semantics from the underlying middleware. Since there are
no concurrent requests, no concurrency support is needed of the middleware, and hence we can
deduce only a single request dispatcher is involved which translates to the ’S4’ specialization in
Table II.

Configuration Invariants - In BasicSP, the constant pulse rate of 20 Hz indicates the periodic
nature of events and the rate at which data will be pulled. It also indicates the deadline for

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 107

communication and computation for the periodic task. Periodicity maps to the ’S1’ specialization.
Since the period of the end-to-end task is fixed, such hard real-time requirements call for features
that support fixed priority scheduling translating to the ’S2’ specialization. In RTCORBA, the
feature that supports this requirement is the SERVER DECLARED model. Since no other priorities
and concurrent requests are involved, it needs a simple reactive event demultiplexing and single
threaded event processing model within the underlying middleware. Hence, it calls for a single
threaded Select Reactor-based [Schmidt et al. 2000] request handling. For RTCORBA, this
property indicates there is no need for the thread pool mechanisms. Moreover, since only one
transport mechanism is used, there is no need for sophisticated software solutions that support
pluggable transport protocols, such as the extensible transport mechanism in RTCORBA. Both
these invariants translate to the the ’S5’ specialization.

Deployment Invariants - In BasicSP, since there is no need for byte order checking and codeset
negotiations (by virtue of using a homogeneous set of processors), there is no need for marshaling
data according to the byte order and data encoding rules including those involving alignment of
data along word boundaries. Similarly, there is no need for mapping priorities between sending
and receiving components. All these translate to the ’S3’ specialization.

Applying Step 3 (Identifying Joinpoints). The identification of specialization joinpoints for
the middleware through optimizing the design patterns is automatically performed by the generic
inspection engine as described in Section 5.2.1. The necessary annotations get automatically
inserted in the pattern implementation sources which are recognized by the FOCUS source code
manipulation tool. However, for the other non-structural specializations, the annotations need
to be manually defined by the middleware developer since those require explicit specification of
the specialized advice that may exhibit different behavior from the original code at which it is
applied.

Listing 1 Generated Transformation Rules for Bridge Specialization

<module name="ACE/ace">

<file name="Select_Reactor_Base.h">

<add>

<hook>REACTOR_SPL_INCLUDE_FORWARD_DECL_ADD_HOOK</hook>

<data>class ACE_Sig_Handler; </data>

</add>

<remove>virtual</remove>

<remove>: public ACE_Reactor_Impl</remove>

<remove>#include "ace/Reactor_Impl.h"</remove>

<substitute>

<search>ACE_Reactor_Impl</search>

<replace>ACE_Select_Reactor_Impl</replace>

</substitute>

</file>

<file name="Reactor.cpp">

<add>

<hook>REACTOR_SPL_CONSTRUCTOR_COMMENT_HOOK_END</hook>

<data> ACE_NEW (impl, ACE_Select_Reactor); </data>

</add>

</file>

</module>

Applying Steps 4 and 5 (Advice Generation and Execution). For lack of space we do not
show the complete generated specialization advices. Instead, Listing 1 shows a snippet for the
rules that get generated for the bridge pattern corresponding to the steps specified in the Algo-
rithm 2. The FOCUS tool subsequently specializes the middleware code.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

108 · Dabholkar & Gokhale

Table V: Middleware Developer Effort Savings

Design Pattern #lines #lines % Savings
(Middleware Framework) Generated Handwritten

Bridge (Reactor) 115/443 17 96.16 %

Strategy (Flushing) 29/201 4 98.01 %

Strategy (Wait On) 29/141 4 97.16 %

Template Method 172/974 25 97.43 %
(Pluggable Protocol)

6.6.3 Improvements in Developer Productivity through Auto-Generation. We leverage FO-
CUS [Krishna et al. 2006] to execute the generated specialization advice on the middleware
source code. The FOCUS source transformation rules for specializing the design patterns and
middleware frameworks are represented in XML. Manually writing these rules by the middleware
developer on a per instance basis is not only cumbersome and excessively tedious but also complex
to maintain as the middleware source code evolves. Auto-generating them using the generative
algorithms as described in Section 5.2.2 alleviates the burden on the developers as well as makes
them easy to extend and maintain. Table V shows how many lines are auto-generated on a per-
pattern basis and how these translate to cumulative savings for the entire middleware framework
that is implemented using that pattern.

However, developers will still need to provide the specialized code if they wish to specialize a
particular middleware call path in their own way. This specialized code is applied like an aspect
advice at the code joinpoints specified through annotations. As shown, the auto generation
almost completely eliminates the burden of manually writing the transformations and figuring
out the specialization joinpoints with savings in excess of 9̃7%. For the sake of terseness, we have
only shown a few of the frameworks that were optimized.

6.6.4 Empirical Evaluations. We evaluated the outcome of applying the generative algorithms
by measuring the following criteria: (1) the static footprints of the middleware binaries, (2) dy-
namic footprints of the BasicSP applications, (3) the average latencies of requests, and finally (4)
the overall throughput of the application components. We have applied the generative algorithms
to the widely used TAO Real-time ORB implementation for DRE systems software. Table VI
reveals that the resultant savings are substantial for DRE applications meant to be deployed
on resource constrained embedded devices. The dynamic footprints are a lot higher (5x) than
the static footprints of the middleware binaries since the specialized middleware binaries were
generated for each BasicSP application components.

Table VI: Middleware Performance Improvement Metrics

Metrics Before After % Savings
Specialization Specialization

Footprint (Static) 3,226 KB 2,082 KB 35.4 %
Footprint (Dynamic) 13,588 KB 10,657KB 21.57 %

Average Latency 3367 µs 2160 µs 35.84%
Throughput 0.26 reqs/s 0.41 reqs/s 36.59%

7. CONCLUSIONS

General-purpose middleware has been incrementally optimized over the period of time to effi-
ciently handle the expected application functionality as well as provide the flexibility and adapt-
ability to handle changing requirements and changing runtime conditions. However, the primary
goal behind middleware design being generality and portability, it lacks finer customization and
tunability to specific application requirements. To resolve this generality and specificity tension,
middleware is usually specialized (customized and adapted) on a case-by-case basis. However this

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 109

process becomes tedious and non-repeatable as the application requirements change as well as
underlying platforms evolve. It is important that any modification to the middleware sources be
retrofitted with minimal to no changes to the middleware portability, standard APIs interfaces,
application software implementations, while preserving interoperability wherever possible. Oth-
erwise such specialization approaches obviate the benefits accrued from using standards-based
middleware. Additionally the accidental complexity from manually applying such approaches
to mature middleware implementations renders the specializations tedious and error prone to
implement.

In this paper, we presented an automatic, systematic and reusable process for specializing
general-purpose middleware that enables the vertical decomposition of middleware along the do-
main concerns by deducing the invariant properties, inferring the specializations and generating
the transformations required to specialize middleware sources. These specializations are based
upon a comprehensive taxonomy for specializations that we developed based on a survey of the
literature. Our AutoMAS approach is realized within the FORMS and GeMS tools. We also
provided detailed evaluation of the process by quantifying the developer productivity improve-
ments and reduction in latency, response time and memory footprint of the resulting specialized
middleware.

7.1 Discussion and Lessons Learned

Adaptive middleware specialization is still an ongoing research that requires more work in the
following areas. First, domain-specific middleware services requires serious attention as special-
ization approaches tend to be addressing domain problems. Several projects have successfully
provided common-services in middleware. To enable reuse and separation of concern in each
specific application-domain, however, domain-specific middleware services should also be widely
available. Second, mutable middleware specialization provides a powerful and at the same time
dangerous dynamic specializations that are more likely than other types of middleware special-
izations to turn an application into something totally different and unexpected. This can be
confirmed from the Table I that a very few approaches employ mutable specialization. To benefit
from mutable middleware, we should harness its power by techniques such as safe specialization.
Third, applying overlapping specializations to a distributed application may cause inconsistency
in the application. This is the same problem as feature interaction problem in pattern recognition
that needs to be addressed in middleware specialization also. Finally, we realized that there is
no one middleware specialization solution that can suit all distributed applications. There are
a few new areas such as context-aware middleware and publish-subscribe (pub-sub) middleware
that could benefit a lot from the various specialization techniques. While there is ongoing re-
search, there is still substantial amount of work to be done in order to achieve the benefits of
specialization.

Finding an optimized and adaptive middleware specialization solution using current state-of-
the-practice middleware specialization approaches is not an easy task. A developer needs to
know all available middleware approaches and should spend a lot of time and money to find the
optimized solution. Developing tools, techniques and high-level paradigms that assist a developer
in this tedious process is a useful research area that promotes development of adaptive software.
Inventing domain-specific specialization pattern languages can serve as guidelines for the synthesis
of such tools.

7.2 Guidelines for Middleware Specialization

We now provide guidelines for middleware specialization based on our taxonomy that practitioners
can adopt for their usecases. We use the lifecycle dimension as the dominant dimension since it
imparts a systematic ordering to the process of performing middleware specialization. We believe
the guidelines can apply to any systems software, such as an operating system, web server or a
database management system.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

110 · Dabholkar & Gokhale

a. Development-time specializations: During development-time the middleware developer
can program the application code with features that need to be loaded at initialization-time
and features that can be swapped in/out at run-time through strategies. MDE and AOP based
techniques are more effective to program development-time specializations. In this phase,
feature-augmentation should be the goal.

b. Compile-time specializations: Compile-time specializations can be used to transparently
weave-in (augment) or weave-out (prune) features code. AOP is the key enabler for performing
compile-time specializations.

c. Deployment-time specializations: Deployment-time specializations mainly address target
platform-specific concerns such as type of data transport, database drivers, etc. The middle-
ware features are matched to make optimal use of the underlying platform feature constraints.
Special tools which perform the task of setting up the deployment can use reflection to query
the platform features and use AOP to transparently change the underlying bindings or supply
the required configuration parameters when launching applications.

d. Initialization-time specializations: Feature configuration is performed at initialization-
time using the configuration parameters that are pre-programmed either at development-time
and/or compile-time or supplied during the application startup-time.

e. Run-time specializations: At run-time, features can be swapped in or out using either
reflection or dynamic aspect weaving depending upon the conditions prevalent after the ap-
plication is executing. However, too much dynamism can lead to unpredictable application
behavior leading to unstable specializations that are difficult to verify for safety criticality and
correctness. To benefit from mutable middleware, we should harness its power using techniques
such as safe specialization. So most of the dynamic feature swapping needs to be statically
programmed before hand.

f. Integrated specializations: Since no single modularization technique can specialize mid-
dleware over all phases of the application lifetime, multiple techniques need to be applied and
validated in unison starting with MDE and AOP at pre-postulated time whereas computa-
tional reflection at just-in-time. It is important to restrict feature changes at run-time that
conflict with the design-time feature configurations. Applying overlapping specializations may
cause inconsistencies in the applications. This is the same problem as the feature interaction
problem in pattern recognition that needs to be addressed in middleware specialization also.
Inconsistency can be caused when FOP, AOP or MDE augments a dependent feature set during
pre-postulated phases but reflection prunes one of the features from the set during just-in-time
phases which may lead to unpredictable runtime behavior and failures. Inconsistencies can
also occur within the same life-time phase. Hence, tools and techniques are needed to validate
specializations when multiple customization techniques are applied in tandem not only within
a phase but across entire application lifetime.

g. Optimal specializations: Finally specialization tools should not only validate but also op-
timize various feature changes so that they are not only consistent but satisfy the quality of
service (QoS) requirements of the applications.

REFERENCES

Agha, G. A. 2002. Introduction. Communications of the ACM 45, 6, 30–32.

Apel, S., Leich, T., and Saake, G. 2008. Aspectual feature modules. Software Engineering, IEEE Transactions

on 34, 2 (March-April), 162–180.

Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., and Schmidt, D. C. 2005. A

Platform-Independent Component Modeling Language for Distributed Real-Time and Embedded Systems. In

RTAS ’05: Proceedings of the 11th IEEE Real Time on Embedded Technology and Applications Symposium.
IEEE Computer Society, Washington, DC, USA, 190–199.

Blair, G. S., Coulson, G., Robin, P., and Papathomas, M. 1998. An Architecture for Next Generation
Middleware. In Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open

Distributed Processing. Springer-Verlag, London, 191–206.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 111

Brooks, F. P. 1987. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE Computer 20, 4

(April), 10–19.

Cacho, N. and Batista, T. V. 2005. Using AOP to Customize a Reflective Middleware. In OTM Conferences

(2). Lecture Notes in Computer Science, vol. 3761. Springer, 1133–1150.

Chakravarthy, V., Regehr, J., and Eide, E. 2008. Edicts: Implementing Features with Flexible Binding Times.
In AOSD ’08: Proceedings of the 7th International Conference on Aspect-oriented Software Development. ACM,

New York, NY, USA, 108–119.

Corsaro, A., Schmidt, D. C., Klefstad, R., and O’Ryan, C. 2002. Virtual Component: a Design Pattern for

Memory-Constrained Embedded Applications. In Proceedings of the 9th Annual Conference on the Pattern

Languages of Programs. Monticello, IL.

Czarnecki, K. and Eisenecker, U. W. 2000. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading, Massachusetts.

Dabholkar, A. and Gokhale, A. 2011. FORMS: Feature-Oriented Reverse Engineering-based Middleware
Specialization for Product-Lines. Journal of Software (JSW) - Special Issue on Recent Advances in Middleware

and Network Applications 6, 4, 519–527.

David, P.-C., Ledoux, T., and Bouraqadi-Saadani, N. M. 2001. Two-step Weaving with Reflection using

AspectJ. OOPSLA 2001 Workshop on Advanced Separation of Concerns in Object-Oriented Systems.

Demir, Ö. E., Devanbu, P. T., Wohlstadter, E., and Tai, S. 2007. An aspect-oriented approach to bypassing

middleware layers. In AOSD, B. M. Barry and O. de Moor, Eds. ACM International Conference Proceeding
Series, vol. 208. ACM, 25–35.

Developer, B. 2007. The source-navigatorTM ide. http://sourcenav.sourceforge.net/.

Elliott, C. 2007. The makefile, project, and workspace creator (mpc). www.ociweb.com/products/mpc.

Fábio M. Costa and Gordon S. Blair. 1999. A Reflective Architecture for Middleware: Design and Implemen-
tation. In ECOOP’99, Workshop for PhD Students in Object Oriented Systems.

Gokhale, A., Kaul, D., Kogekar, A., Gray, J., and Gokhale, S. 2007. POSAML: A Visual Modeling Language
for Managing Variability in Middleware Provisioning. Elsevier Journal of Visual Languages and Computing

(JVLC) 2007 18, 4, 359–377.

Gottlob, G., Schrefl, M., and Röck, B. 1996. Extending object-oriented systems with roles. ACM Trans.

Inf. Syst. 14, 3, 268–296.

Hunleth, F. and Cytron, R. K. 2002. Footprint and Feature Management Using Aspect-oriented Programming

Techniques. In Proceedings of the Joint Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES 02). ACM Press, Berlin, Germany, 38–45.

Institute for Software Integrated Systems. Vanderbilt Universitya. Component-Integrated ACE ORB

(CIAO). www.dre.vanderbilt.edu/CIAO.

Institute for Software Integrated Systems. Vanderbilt Universityb. The ADAPTIVE Communication En-

vironment (ACE). www.dre.vanderbilt.edu/ACE/.

Jin, J. and Nahrstedt, K. 2004. On Exploring Performance Optimizations in Web Service Composition. In

Middleware. 115–134.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and Irwin, J. 1997.

Aspect-Oriented Programming. In Proceedings of the 11th European Conference on Object-Oriented Program-
ming (ECOOP’97). 220–242.

Klefstad, R., Schmidt, D. C., and O’Ryan, C. 2002. Towards Highly Configurable Real-time Object Request

Brokers. In Proceedings of the International Symposium on Object-Oriented Real-time Distributed Computing

(ISORC). IEEE/IFIP, Newport Beach, CA.

Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L., and Campbell, R. 2000. Monitoring,
Security, and Dynamic Configuration with the dynamicTAO Reflective ORB. In Proceedings of the Middleware
2000 Conference. ACM/IFIP.

Krishna, A., Gokhale, A., Schmidt, D. C., Hatcliff, J., and Ranganath, V. 2006. Context-Specific Middle-

ware Specialization Techniques for Optimizing Software Product-line Architectures. In Proceedings of EuroSys

2006. Leuven, Belgium, 205–218.

Lohmann, D., Spinczyk, O., and Schröder-Preikschat, W. 2006. Lean and Efficient System Software Product

Lines: Where Aspects Beat Objects. Transactions on AOSD II 4242, 227–255.

Marlet, R., Thibault, S., and Consel, C. 1999. Efficient Implementations of Software Architectures via Partial
Evaluation. Automated Software Engineering: An International Journal 6, 4 (October), 411–440.

Mezini, M. and Ostermann, K. 2003. Conquering aspects with caesar. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development. ACM, New York, NY, USA, 90–99.

Mezinia, M. and Ostermann, K. 2004. Variability Management with Feature-oriented Programming and Aspects.
SIGSOFT Softw. Eng. Notes 29, 6, 127–136.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

112 · Dabholkar & Gokhale

Mohapatra, S., Cornea, R., Oh, H., Lee, K., Kim, M., Dutt, N. D., Gupta, R., Nicolau, A., Shukla,

S. K., and Venkatasubramanian, N. 2005. A Cross-Layer Approach for Power-Performance Optimization in
Distributed Mobile Systems. In Proceedings of International Parallel and Distributed Processing Symposium.

Nicoara, A., Alonso, G., and Roscoe, T. 2008. Controlled, systematic, and efficient code replacement for
running java programs. SIGOPS Oper. Syst. Rev. 42, 4, 233–246.

Nuseibeh, B., Kramer, J., and Finkelstein, A. 1994. A framework for expressing the relationships between

multiple views in requirements specification. IEEE Trans. Softw. Eng. 20, 10, 760–773.

Object Management Group 2000. Interceptors FTF Final Published Draft , OMG Document ptc/00-04-05 ed.

Object Management Group.

Object Management Group 2001. Model Driven Architecture (MDA), OMG Document ormsc/2001-07-01 ed.

Object Management Group.

Object Management Group 2005. Real-time CORBA Specification, 1.2 ed. Object Management Group.

Ömer Erdem Demir, Dévanbu, P., Wohlstadter, E., and Tai, S. 2007. An Aspect-oriented Approach to
Bypassing Middleware Layers. In AOSD ’07: Proceedings of the 6th international conference on Aspect-oriented

software development. ACM Press, Vancouver, British Columbia, Canada, 25–35.

openArchitectureWare. 2007. openArchitectureWare. www.openarchitectureware.org.

Parnas, D. L. 1972. On the Criteria To Be Used in Decomposing Systems into Modules. Communications of the

ACM 15, 12 (Dec.).

Popovici, A., Alonso, G., and Gross, T. 2003. Just-in-time Aspects: Efficient Dynamic Weaving for Java.

In Proceedings of the 2nd International Conference on Aspect-oriented Software Development. Boston, Mas-
sachusetts, 100–109.

Prehofer, C. 1997. Feature-Oriented Programming: A Fresh Look at Objects. In ECOOP’97—Object-Oriented
Programming, 11th European Conference, M. Aksit and S. Matsuoka, Eds. Vol. 1241. Springer, Jyväskylä,

Finland, 419–443.

Roman, M., Campbell, R. H., and Kon, F. 2001. Reflective Middleware: From Your Desk to Your Hand. IEEE

Distributed Systems Online 2, 5 (July).

Sadjadi, S., McKinley, P., and Kasten, E. 2003. Architecture and operation of an adaptable communication
substrate.

Schmidt, D. C. 1997. The ADAPTIVE Communication Environment (ACE).
www.cs.wustl.edu/∼schmidt/ACE.html.

Schmidt, D. C. 2006. Model-Driven Engineering. IEEE Computer 39, 2, 25–31.

Schmidt, D. C., Natarajan, B., Gokhale, A., Wang, N., and Gill, C. 2002. TAO: A Pattern-Oriented Object

Request Broker for Distributed Real-time and Embedded Systems. IEEE Distributed Systems Online 3, 2
(Feb.).

Schmidt, D. C., Schantz, R., Masters, M., Cross, J., Sharp, D., and DiPalma, L. 2001. Towards Adaptive

and Reflective Middleware for Network-Centric Combat Systems. In CrossTalk - The Journal of Defense
Software Engineering. Software Technology Support Center, Hill AFB, Utah, USA, 10–16.

Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F. 2000. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, Volume 2. Wiley & Sons, New York.

Sharp, D. C. and Roll, W. C. 2003. Model-Based Integration of Reusable Component-Based Avionics System.
Proceedings of the Workshop on Model-Driven Embedded Systems in RTAS 2003.

Sullivan, G. T. 2001. Aspect-oriented programming using reflection and metaobject protocols. Commun.
ACM 44, 10, 95–97.

Suri, D., Howell, A., Shankaran, N., Kinnebrew, J., Otte, W., Schmidt, D. C., and Biswas, G. 2006.

Onboard Processing using the Adaptive Network Architecture. In Proceedings of the Sixth Annual NASA
Earth Science Technology Conference. College Park, MD.

Szyperski, C. 1997. Component Software: Beyond Object-Oriented Programming. Addison-Wesley Professional.

Tambe, S., Dabholkar, A., and Gokhale, A. 2009. Generative Techniques to Specialize Middleware for Fault

Tolerance. In Proceedings of the 12th IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC 2009). IEEE Computer Society, Tokyo, Japan.

Tripathi, A. 2002. Challenges Designing Next-Generation Middleware Systems. Communications of the
ACM 45, 6 (June), 39–42.

Trujillo, S., Batory, D., and Diaz, O. 2007. Feature oriented model driven development: A case study for
portlets. In ICSE ’07: Proceedings of the 29th international conference on Software Engineering. IEEE Com-
puter Society, Washington, DC, USA, 44–53.

Vanderperren, W., Suvée, D., Verheecke, B., Cibrán, M. A., and Jonckers, V. 2005. Adaptive Program-
ming in JAsCo. In AOSD ’05: Proceedings of the 4th International Conference on Aspect-oriented Software

Development. Chicago, Illinois, 75–86.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

AutoMaS: An Automated Middleware Specialization Process for Distributed Real-time and Embedded Systems · 113

Varghese, G. 2005. Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices.

Morgan Kaufmann Publishers (Elsevier), San Francisco, CA.

Verheecke, B. and Cibrn, M. A. 2003. Aop for dynamic configuration and management of web services. In In
Proceedings of 2003 International Conference on Web Services. 2004.

Wohlstadler, E., Jackson, S., and Devanbu, P. 2003. DADO: Enhancing Middleware to Support Crosscutting

Features in Distributed, Heterogeneous Systems . In Proceedings of the International Conference on Software
Engineering. Portland, OR.

Yang, Z., Cheng, B. H. C., Stirewalt, R. E. K., Sowell, J., Sadjadi, S. M., and McKinley, P. K. 2002.

An aspect-oriented approach to dynamic adaptation. In WOSS ’02: Proceedings of the first workshop on

Self-healing systems. ACM, New York, NY, USA, 85–92.

Zhang, C., Gao, D., and Jacobsen, H.-A. 2005a. Generic Middleware Substrate Through Modelware. In
Proceedings of the 6th International ACM/IFIP/USENIX Middleware Conference. Grenoble, France, 314–333.

Zhang, C., Gao, D., and Jacobsen, H.-A. 2005b. Towards Just-in-time Middleware Architectures. In AOSD ’05:

Proceedings of the 4th international conference on Aspect-oriented software development. ACM Press, Chicago,
Illinois, 63–74.

Zhang, C. and Jacobsen, H.-A. 2004. Resolving Feature Convolution in Middleware Systems. In OOPSLA

’04: Proceedings of the 19th annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications. ACM, New York, NY, USA, 188–205.

Zinky, J. A., Bakken, D. E., and Schantz, R. 1997. Architectural Support for Quality of Service for CORBA

Objects. Theory and Practice of Object Systems 3, 1, 1–20.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

114 · Dabholkar & Gokhale

Dr. Akshay Dabholkar is currently a Principle Member of Technical Staff at Oracle
Corporation, Santa Clara, CA, USA. Prior to that he was a Distributed Systems Engineer
at Nimbula, Mountain View, CA, USA. Dr. Dabholkar obtained his PhD in Computer
Science from Vanderbilt University in April 2012.

Dr. Aniruddha Gokhale is an Associate Professor in the Department of Electrical
Engineering and Computer Science, and Senior Research Scientist at the Institute for
Software Integrated Systems both at Vanderbilt University, Nashville, TN, USA. His cur-
rent research focuses on developing novel solutions to emerging challenges in mobile cloud
computing, real-time stream processing, publish/subscribe systems, and cyber physical
systems. He is also working on using cloud computing technologies for STEM education.
Dr. Gokhale obtained his B.E (Computer Engineering) from University of Pune, India,
1989; MS (Computer Science) from Arizona State University, 1992; and D.Sc (Computer
Science) from Washington University in St. Louis, 1998. Prior to joining Vanderbilt, Dr.
Gokhale was a member of technical staff at Lucent Bell Laboratories, NJ. Dr. Gokhale is
a Senior member of both IEEE and ACM, and a member of ASEE. His research has been
funded in the past by DARPA, US DoD and NSF including a NSF CAREER award.

International Journal of Next-Generation Computing, Vol. 7, No. 2, July 2016.

