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Ever-evolving malware continues to flood the Internet at an alarming rate. This makes it challenging for security

organizations and anti-malware vendors to devise effective solutions. It is, therefore, imperative to study automated

tools and techniques for quick detection of malware, possibly limiting or preventing any impact on the target. The
code or behavioural patterns obtained from malware analysis can be used to classify new malware samples into their

existing families and recognize those which possess unknown behaviour and thus need a closer manual inspection.

This paper provides a comprehensive review of techniques and tools currently employed for malware analysis
and classification. It includes the comparison of tools and techniques for collecting malware, analyzing them

statically and dynamically for extracting features and finally classifying these using machine learning methods. It
also provides the examples from the literature that analyze executables for extracting useful features and apply

machine learning for discriminating malicious software from benign ones.
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1. INTRODUCTION

In this era, the Internet is an indispensable part of day-to-day life. People have become habit-
ual of services being provided by the Internet which includes online banking, shopping, social
networking, finance, education etc. At the same time, there exist some people who use the Inter-
net with profane intentions and endeavor to augment themselves through malevolent activities
which are achieved using malicious programs called malware. These are becoming sophisticated,
persistent and unknown day by day. The security systems like IDS/IPS and antivirus (AV) use
signatures for detecting malware which are created manually and require the malware samples to
be analyzed minutely. McAfee1 catalogs about 69 new malware samples every minute. According
to Symantec Threat Report (2016)2, 430 million new malicious samples are discovered in the year
2015, which is about 36% more than those discovered in 2014. A report by Trendmicro3 says
that the malware specimens are growing exponentially in volume (growing threat landscape),
variety (innovative malicious methods) and velocity (fluidity of threats) . These are evolving,
becoming more sophisticated and using new ways to target computers and mobile devices. It
has now become possible for malware authors to create new malicious specimens within seconds
through the readily available online tools.
According to Bayer et al. [2006], a malware is a piece of software program that accomplishes
the destructive intent of an attacker. There are different classes of malware depending upon
their characteristics like the ways they infect the systems, get propagated etc. The most com-
mon classes of malware are Worm, Virus, Trojan-horse, Spyware, Backdoor, Rootkit, Botnet and
Adware etc. The most popular ways through which a system is infected by malware are: Drive-
by Download, Social Engineering and Exploiting Network Services Vulnerabilities. Advanced

1http://www.scmagazine.com/the-state-of-malware-2013/slideshow/1255
2https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
3http://www.trendmicro.com/cloud-content/us/pdfs/business/white-papers/wp addressing-big-data-security-

challenges.pdf
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Persistent Threats (APTs) violation against social, political, economic and military networks
necessitates the continual insight to mitigate risks and ensure resilience for securing the nation.
In order to detect the signs of malware on the network, it is essential to understand the ways by
which it gets into the network, spreads within, and as a final point starts moving data out of it.
The whole Cyber-attack sequence typically follows a kill chain cycle (Figure 1) as published by
Cloppert [2009].

—Reconnaissance: In this step, the attacker tries to understand the internal structure of the
target organization. He tries to collect the information that can be used for social engineering
attacks.

—Weaponization: The attacker makes efforts to find vulnerabilities in devices of target organi-
zation and the ways to exploit them, so that, he can get control of those devices.

—Delivery: After finding vulnerabilities and the ways to exploit these, the payload is delivered
to the target user by making her to click on a link or visit a website containing malware.

—Exploitation: In this step, the exploit code is executed on the target organization by the at-
tacker to get the control. This process may be a multistage process in which first a downloader
gains control of the machine of target organization and then downloads other exploit code.

—Command and Control (C&C): In this step, the compromised device establishes contact with
its control network to receive and execute further instructions.

—Exfiltration: This is the step in which the attacker starts to pick the stolen data.

Figure 1. Cyber Attack Progression

In the initial phases of the kill chain (in Reconnaissance and Weaponization phases), the issues
are difficult to observe, whereas the events that occur in the subsequent phases (starting from
delivery phase) are easy to identify and analyze because the evidences reside on the system that
has been compromised. These evidences are, in fact, very useful in detecting zero-day malware.
The process of malware detection involves 3 major steps:

—Malware Acquisition
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—Malware Analysis

—Malware Classification

This paper aims to provide an overview of tools and techniques for capturing malware, analyzing
these statically or dynamically for extracting features and finally classifying them using machine
learning algorithms. It also provides the examples from the literature that analyze executables
for extracting useful features and apply machine learning for discriminating malicious software
from benign ones. An overview of the tools and techniques described in the paper in context to
malware detection is shown in figure 2.

Figure 2. Outline of Tools and Techniques Discussed in the Paper

2. MALWARE ACQUISITION

The initial step for performing malware analysis is to collect specimens of malicious programs.
There are various tools which can be used for collecting malware samples. Most of these rely on
honeypots (such as Mwcollect4, Nepenthes explained in Baecher et al. [2006], Honeytrap project5,
and Billy Goat discussed in Riordan et al. [2006] etc.) and spam traps described in Prince et al.
[2005]. A discussion on honeypots based tools can be found in Zhuge et al. [2007]. Another
method for collecting malware samples is to use web crawlers or by using an executable sniffer,
deployed at the network edge for sniffing the PE files passing through the network. In addition
to these methods, there are some sources6 which provide free or after registered access to the
malware samples contained on their websites.
Clean files can be collected from the system itself. For instance, the files from the directories of

4http://alliance.mwcollect.org
5https://sourceforge.net/projects/honeytrap
6http://zeltser.com/combating-malicious-software/malware-sample-sources.html
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Windows Operating System (OS) can be used as clean files. These can also be collected from
http://download.cnet.com/windows/ where various software programs are available for down-
loading.

3. MALWARE ANALYSIS

It is the ability to cut-apart the malevolent code for understanding its working and behaviour,
so that, it can be identified and defeated. The malicious programs and their competence can
be examined using two broad categories of malware analysis: Static Analysis (inspecting the
code statically) and Dynamic Analysis (executing malware binaries in a virtual environment and
monitoring their behaviour) as shown in figure 3. This section provides the description of Static
and Dynamic malware analysis techniques and tools (shown in figure 4).

Figure 3. Malware Analysis Techniques

Figure 4. Tools and Techniques for Malware Analysis

3.1 Static Malware Analysis

Investigating malicious programs without executing them is known as static malware analysis.
Basic static analysis inspects the malicious program without viewing the actual instructions.
Technical gauges gathered with basic static analysis include file information (like name, size, and
type) and the corresponding hash value which are recognized by AV detection tools. Advanced
static analysis loads malware into a disassembler to reverse engineer and analyze its instructions
and functionality. This type of analysis provides additional details about malware that are
generally not revealed through basic static analysis.
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3.1.1 Existing Techniques. Static malware analysis is usually conducted manually and can
be applied on different representations. Various techniques can be used for performing static
malware analysis. The most widely used are as follows.
PE Header Information: The PE header contains the information of great value to the

malware analyst. It includes information about the import/export functions, required library
functions (dynamic or static), type of application, time of its compilation etc. These are important
components of a program which provides an insight into its actions. Many AV vendors use this
information for detecting suspicious binaries.
Sequence: One of the features that can be extracted from an executable is the raw byte level

content. It is most widely used by AV vendors for detecting malware. The simplest method
is hashing the contents of the file and comparing it against a database of blacklisted hashes.
Another method is to find static string signatures that represent the patterns in a malware’s
raw content to uniquely identify it. This method is efficient and more effective than matching
hash values. Regular expressions are the extensions of string matching technique and are able
to detect malware variants. Though it is an efficient and fast method, yet, is unable to detect
polymorphic malware variants.
Instruction Sequence: The instruction contents of a program can be more resilient than the

byte level content, if these are considered by their type or mnemonics. The malware needs to be
disassembled before finding the instructions and opcodes.
API Calls: These are the application programming interface programs which are invoked to

interact with the underlying OS & libraries and can be identified statically to have an insight
into the programs intent.
Flow Graph: Static analysis can be done using various types of graphs representing the

control flow, execution path flow and data flow of a program. A code sequence (at byte level
or instruction level) without any control transfer is called a basic block. The basic blocks along
with their dependencies can be grouped together to construct a directed control flow graph. In
these graphs, the nodes act as the basic blocks and edges as the control flow of the concerned
procedures. The control flow graph for different procedures can be combined together to represent
the complete program. These can have an additional structure that models the possible execution
paths called the call graphs. A program’s data flow represents the set of possible data values
that a program can assume. Data flow analysis methods look at the specific value of the data at
various program points.

3.1.2 Tools for Static Malware Analysis. Most of the malicious programs are very large and
complex. Generally, the key features are focused rather than understanding every detail of such
programs. Different tools and approaches can be used for analyzing malware. These may have
sometimes overlapping functionalities.
A program titled as Strings7 can quickly examine ASCII and Unicode strings in binary files, but it
can easily be thwarted by using packing and string obfuscation techniques. This is accomplished
by using packer tools. After getting packed, the program binary looks very much different
and its logic along with metadata is hard to recover. PEiD is used to detect the packed files.
The executable needs to be unpacked before performing static analysis. The disassembler and
debugger tools like IDA Pro8 and OllyDbg9 present a binary program as Intel X86 assembly
instructions, which provide insight into the malicious activities of the program. Memory dumper
tools like OllyDump10 and LordPE11 are used to investigate packed binaries which are tricky to
disassemble. PEframe12 is a tool developed using python that helps to perform static analysis

7http://bit.ly/ic4plL
8https://www.hexrays.com/products/ida/support/download freeware.shtml
9http://www.ollydbg.de/
10http://www.woodmann.com/collaborative/tools/index.php/OllyDump
11http://www.woodmann.com/collaborative/tools/index.php/LordPE
12https://github.com/jt6211/peframe
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on malware. In addition to performing some useful analysis on the PE file, it also helps in
understanding if the malware is having any anti-debug function that blocks execution during
dynamic analysis. There are many other static analysis tools like PE View, Dependency Walker,
PE Browse etc. Their details can be found in Sikorski and Honig [2012]. The tools for performing
static malware analysis are summarized in table I on the basis of their functionality.

Tool Name Functionality

Strings To search an executable for strings.

PEid Detecting packed files. It can detect the type of packer/compiler used

to build an application.

Dependency

Walker

Lists dynamically linked libraries and functions imported by an exe-

cutable.

PE View, PE
Browse, PE

Explorer

Give details of the PE files structure. PE header, individual sections
and import/export tables can be viewed using these.

Resource

Hacker

Display information about PE file sections: code, data and resource

sections.

IDA Pro Interactive X86 disassembler, providing functionality as function dis-

covery, stack analysis and local variable identification.

LordPE, Olly-
Dump

Memory Dumper tools. Very useful when analyzing packed executa-
bles, which encode or encrypt their instructions.

OllyDbg, Im-
mDbg

Debugger for malware analysis. ImmDbg is derived from OllyDbg

Table I: Static Analysis Tools with their basic Functionalities

An outstanding tool available online for performing static malware analysis is VirusTotal13. It
was launched in the year 2004 and attained by Google in 2012. It provides the detailed static
properties of malicious files within no time.

3.1.3 Negative Aspects of Static Malware Analysis. Most Malware authors are smart enough
to thwart static analysis by making use of obfuscation techniques. These techniques transmute
the malicious binaries into unique structured and compressed files which make the static analysis
process expensive and untrustworthy. Usually, the source code of malicious programs is not
available. When using binary executables, the information like variables or data structure gets
lost, thus, complicating the static analysis of malware as specified by Egele et al. [2012].
Through their work, Moser et al. [2007b] reveal the fact that static analysis alone is not sufficient
for classification of malware but the dynamic analysis is an indispensable complement to it
because it is less susceptible to code obfuscation translation.

3.2 Dynamic Malware Analysis

Monitoring the actions performed by a program while it is being run in a safe environment is
called dynamic analysis. It doesn't necessitate the malicious binary to get disassembled before
performing the analysis. It actually monitors the behaviour of malware during its execution
which is more flexible as compared to static analysis. The basic dynamic analysis reveals the
information like domain names, IP address, registry keys, file path locations, additional files
located on the system or network. In some cases, the basic dynamic analysis is not able to
provide productive results as the malware may require some additional information to run. So,
advanced dynamic analysis is performed which uses the debugger or some other special tools to
extract detailed information from the malware file while it is being executed.

13https://www.virustotal.com//
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3.2.1 Existing Techniques. There are several approaches which are used for dynamic malware
analysis. The most common are introduced in this sub-section.
Function Call Monitoring: The semantic knowledge of a program can be gained by tracking

the functions called by it. Tracking functions called by a program is done by using a process known
as hooking. The executable being analyzed is maneuvered in such a way that a hook function
is called along with the intended functions, which logs the invocation details. The OS provides
many application programming interfaces that are used by applications for performing several
tasks like file manipulation, network communication etc. It provides the system call interface
API, which helps a user-mode application to carry out tasks on its behalf by switching to the
kernel mode. On the invocation of a system call, the system first changes to the kernel-mode and
performs the desired actions after verifying the access rights. Like non-malicious programs, the
malicious programs (executing in the user mode) also need to invoke the system calls. Most of
the malware are able to gain access to the kernel-mode and don’t require a system call interface,
thus, elude the malware analysis.
Function Parameter Analysis: It makes use of the actual values passed while invoking a

function. Grouping of the actual values passed and returned by function into joint sets give an
insight into the behaviour of the program.
Information Flow Tracking:The Information flow tracking highlights the dissemination of
data right through the system while it is being manipulated. The data under observation is
particularly marked with a label. The marked label is propagated while it is being processed by
the application.
Recording Instruction Tracing: These are the machine instruction sequences that the pro-
gram executed while it is being analyzed. These are very troublesome to read and interpret
but contain significant information which is not revealed in a high-level abstraction like reports
generated by function calls.
Autostart Extensibility Points (ASEPs): It is the mechanism that permit a program to get
invoked automatically when an application is launched or the OS is booted. It is interesting to
keep an eye on these ASEPs when a malicious program is analyzed as some of their components
attempt to accumulate with one of the ASEPs.

3.2.2 Tools for Dynamic Malware Analysis. This sub-section provides an outline of the tools
that are used to analyze the malicious programs. The outcome of these tools provides a valu-
able insight into the behaviour of malware. Different monitoring tools like Process Explorer14,
Process Hackerreplace15, Process Monitor16, Capture BAT17, Wireshark18 and Regshot19 are
installed and activated before executing the malicious programs. Different information such as
file attributes, domains & protocols, registry settings, API calls, command & control and so on is
gathered while analyzing malware using these tools. It is required to set up a laboratory system
that can be used for malware analysis without affecting the production environment.
Process Explorer: It is a free tool by Microsoft, which gives information pertaining to the

active processes and the various properties associated with those processes. It consists of two
windows. One showing a list of active processes, and the other displaying the information based
upon the mode of process explorer. If it is in the handle mode, the 2nd window displays the
handles that the selected process has opened. If it is in the DLL mode it displays the DLL
and memory-mapped files that the selected process has loaded. This tool is useful for tracking
DLL-version problems due to its unique capabilities.
ProcMon: It is a sophisticated monitoring tool for Windows which brings together and en-

14https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
15http://processhacker.sourceforge.net/
16https://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
17https://www.honeynet.org/node/315
18http://www.wireshark.org/
19http://sourceforge.net/projects/regshot/
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hances the features of two utilities i.e Filemon and Regmon and is discussed in Sikorski and Honig
[2012]. It provides the real-time information about the file system, registry and process activities.
Though procmon is a useful tool, it is not able to capture the user-mode component activities of
device driver and certain GUI calls like SetWindowsHookEx. This tool displays various columns
which contain events information including the time stamp, sequence number, and the name of
the process etc. This detailed information is too long to understand and analyze. It provides
the filtering capability which can be used on individual system calls for the better analysis of
malware behaviour.
WireShark: It is an open source packet-sniffing tool that provides packet flow analysis and

detailed analysis of individual packets. It gives an insight into the network behaviour of malware
by sniffing packets as malware communicates.
Regshot: It is a light weight open source tool that compares the key changes that a program

makes to the file system and the registry.

3.2.3 Negative Aspects of Dynamic Malware Analysis. The major drawback of dynamic anal-
ysis is that it is time exhaustive as every sample needs to be executed for few minutes to observe
its behaviour. Thus it leads to uplifting the scalability concerns. A controlled environment is
required to be set up before performing dynamic analysis. This environment is completely differ-
ent from the actual one. The malicious programs may be designed to behave in different ways in
such environments resulting in synthetic behaviour rather than the real one. Moreover, some of
the malicious programs are designed to execute under specific circumstances (like on execution
of a specific command or on a specific date etc.) thus, thwarting the dynamic analysis.

3.2.4 Automated Malware Analysis Tools. Automated malware analysis is the simplest way
to analyze malicious programs. Various commercialized and open source automated tools have
been designed and developed with the intention of resolving the challenges raised by the large
volume of malware samples. These systems seem to be similar at first glance, but use different
technologies at the backend. The reports generated by automated systems provide information
about the malware including both static and dynamic attributes like meta data of the file, mutex
creation, file system activities, registry activities and network activities etc. Such automated
analysis systems can help in providing the feature vectors or similarity measures for the process
of discriminating malicious files from the clean ones using machine learning techniques. This sub-
section discusses some of the popular free and open source automated malware analysis tools.
Anubis: Anubis (Analysis of unknown binaries) project20 has evolved from TTAnalyzer de-

veloped by Bayer et al. [2006]. It executes the malware binary (to be analyzed) in an emulated
OS environment (Qemu Bellard [2005]) and generates a report containing enough information to
have an idea about the purpose of the binary. It monitors the Window Native API calls, Window
system API calls and system service calls (along with the parameters passed). It is also able to
monitor all processes created by observing the API and system calls responsible for the same.
Multiple-Path Exploration: Dynamic analysis tools observe only a single program execu-

tion. However, some malware trigger their malicious behaviour only under certain circumstances.
In order to address this problem, Moser et al. [2007a] presented a tool (by extending Anubis)
possessing a capability to look at multiple execution paths and recognize the malicious behaviour
that is revealed only under specific circumstances. Whenever, the tool detects the branch points
for which the return value of a system call is responsible for control flow decision, a snapshot
of the running process is taken. After the process terminates, the system is reset to the earlier
stage snapshot and the value responsible for control flow decision is manipulated resulting in the
execution of alternate path.
CWSandbox: It is developed by Willems et al. [2007] for executing the samples either natively

or in a virtual windows environment. It captures the behaviour of malware samples pertaining
to file system, network communication, registry changes and OS interaction. It uses rootkit

20http://anubis.iseclab.org/
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techniques to hide system stuff that could reveal the presence of the analysis environment. It
also uses hooking functions to keep a check on API level.
Norman Sandbox21: It runs the executables in a virtual environment simulating a Windows

OS. It simulates a host computer and the attached local area network. This simulated system
provides support for all OS mechanisms. Packed and obfuscated samples are not able to evade
the analysis as these are executed in a simulated environment. Its main focus is to detect Worm
(that spreads via email or P2P network) and Virus (that gets replicated using the network). It is
able to log the information regarding function calls and their arguments. It also keeps a check on
autostart extensibility points that some malware use to ensure automatic invocation after reboot.
Joebox: It is designed by Buehlmann and Liebchen [2010] to run on a real hardware instead of

relying on emulation or virtualization. It uses a client-server model where client machines perform
malware analysis and the server machine coordinates multiple clients and collect the analysis data.
It provides various activities (like the file system, registry activities etc.) performed by the sample
under analysis in the form of log files.
HookFinder: Some malicious programs make use of hooking techniques to get notified on

the occurrence of some specific events. For instance, Keylogger may create a hook using API
call SetWindowHookEx and get notified when a key is pressed. It is possible to detect these
hooking techniques and generate the reports pertaining to where these hooks are and how these
are entrenched into the system.
Ether: Dinaburg et al. [2008] pointed out that the analysis tools are usually detected by

malicious code being monitored. In order to address this issue, they proposed a transparent
malware analysis framework called “Ether”. It is based on hardware virtualization extensions
and is implemented in a hypervisor. It has the capability to monitor memory writes, executed
instructions and system calls.

Table II shows an overview of the type of features that can be captured by using different
automated tools for analyzing malicious programs.
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API Calls 3 3 3 3 3 3 7

System Calls 3 3 3 3 3 3 3

Function Parameters 3 3 3 3 3 3 7

File System Operation 3 3 3 3 3 3 7

Process Creation 3 3 3 3 3 3 7

Instruction Trace 7 3 7 7 7 3 3

Info. Flow Tracking 7 3 7 7 7 7 7

Multipath Exploration 7 3 7 7 7 7 7

ASEP 7 7 7 3 7 3 7

Table II: Comparison of various sandboxes

3.2.5 Tools to deal with Packed Binaries. Malware authors make use of packer tools which
automatically transforms malicious executable into a representation which is equivalent seman-
tically but differ in syntax. It is done by using obfuscation techniques. Using this method, the
malware instances obfuscate the malicious part of their code at compile time and unpack them
back into executable code at runtime. Analyzing these binaries dynamically is not different from
those of non-packed binaries.
Royal et al. [2006] proposed a technique named as “PolyUnpack” which has the capability to

21http://download01.norman.no/product sheets/eng/SandBox analyzer.pdf
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automatically extract the hidden code bodies of such malware. It combines the static-dynamic
analysis method to recognize the execution of code generated at runtime. It is based on the two
step algorithm. In the first step, binary is disassembled. In the second step, binary is executed
in a virtual environment for monitoring instruction traces by performing in-memory disassembly
for every executed instruction. If the instruction sequence obtained from the second step is not
present in the disassembled binary obtained from the first step, it means that the code is dynam-
ically generated and is about to execute. Another similar technique named as “OmniUnpack”
was developed by Martignoni et al. [2007], which monitors the program in real time while it is
being executed and detects when the program has detached from the several layers of packing.
This tool reverses the packed binaries and scans the recovered code using AV software. Renovo,
proposed by Kang et al. [2007] is another tool which is used to deal with packed binaries.

4. MALWARE ANALYSIS EVASION TECHNIQUES

Malware writers tend to design the programs which use stealth techniques and multiple de-
fense mechanisms to evade detection. These include self-modification of malware binaries while
propagating, dynamically generated code and the approaches that assist them to obscure their
malicious behaviour while executing in instrumented environment. This section discusses the
techniques that malware authors use to evade malware analysis. These may also be used by
authors of legitimate programs to protect their programs from being analyzed.

4.1 Detecting Static Analysis Environment

In order to thwart static analysis, malware authors use self-modifying parts in the code. Recently
developed packer tools obfuscate/encrypt the executable to a new executable, which is seman-
tically equivalent to the original one. An unpacker routine deobfuscates/decrypts the binary to
the original representation, which then performs the intentional malicious tasks. For example,
Polymorphic and Metamorphic are two classes of malware which have the capability to change
their code while propagating.
Polymorphic malware has two parts: one is encrypted malware body and second is decryption rou-
tine. Their variants can easily be created by using random keys for encryption. On launching an
infected application the decryption routine decrypts the malware body back to its original form.
The decryption routine remains the same which makes it a little easy for AV program to identify
the malware. Metamorphic variants, on the other hand, also mutate the unpacking/decryption
routine and every succeeding version of the malcode is different from the preceding one which in
turn impedes its detection. You and Yim [2010] describes obfuscation techniques (like subroutine
reordering, insertion of dead code, instruction substitution etc.) being used by malware authors
for creating polymorphic and metamorphic malware.

4.2 Detecting Dynamic Analysis Environment

In dynamic analysis, the information features are collected when the program is executed in the
virtual environment. It may miss some of the important information due to the design being
used by malware authors for evading its detection. In this context, the main task of malware
authors is to determine if the code is running in a real target machine or in a virtual environment
for monitoring purpose. To this end, many techniques have been developed and being used by
malware writers. Some of these are discussed as follows:

4.2.1 Human Interaction . Malware authors make use of the fact that sandboxes emulate
physical systems without having any interaction with the user.
Mouse Click: Malware may start to perform malicious activities only after detecting a left

mouse button click. For instance, Upclicker22 from a Trojan family, analyzed in December, 2012

22https://www.fireeye.com/blog/threat-research/2012/12/dont-click-the-left-mouse-button-trojan-upclicker.html
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used mouse click for detecting human activity. After six months of discovery of Upclicker, another
malware Banechant23 was analyzed which activates only after three mouse clicks.

Dialogue Boxes: Malware can identify a live target by presenting a dialog box which ne-
cessitates a respond from the user side. In order to create dialog boxes in EXE and DLL files,
different APIs of windows like MessageBox and MessageBoxEx are used. In Singh and Bu [2013],
the authors describe how a malware gets activated and start to show their actual behaviour only
after the user click a button on the dialog box.

4.2.2 Configuration Specific. The virtual environments are configured so as to mimic the
physical computers. Malware authors can make use of these configurations to evade malware
automated analysis.
Sleep Calls: An extended sleep call is added to the code, so that, the malware refrains from

any distrustful behaviour during analysis. For instance, a malware named as Trojan Nap24,
discovered in February, 2013, makes use of this approach. This malware used a sleepEx() method
with a timeout of 10 minutes or an API method NtDelayExecution() to delay any suspicious
action. Another API call Sleep() can also be used with time triggers to execute malware. By
using the API method, it can find out the current date and time of local machine. If the file is
designed to be executed on a specific date or time, it calls a sleep() method with parameter value
equal to the time for which it wants to remain inactive. After that, it again checks the current
date and time. If it still has not reached the explosion trigger, it again sleeps and repeats the
loop, until detonation time has reached. For example, a malware called Hastati25 (from Trojan
family) attacked in South Korea in March, 2013, which shows the same behaviour to evade its
analysis.

4.2.3 Environment Specific . Malware authors insert features into the malicious code that
can check whether they are being executed in the virtual environment or not.
Version Check: Some files are designed to execute only on specific OS versions. If the

required version is not installed on sandbox, the malicious file doesn't show its actual behaviour.
For example, a PDF file can make use of JavaScript code which uses viewerVersion() API method
to determine the version of Acrobat Reader installed.
DLL Loader Checks: In order to run a DLL file, normally a run32dll.exe is used or a DLL

is loaded in a process that executes it. Malware authors may design the malicious code, which
requires a particular loader to run the DLL. If the requisite loader is not present, the DLL doesn't
get executed and hence is not detected by the sandbox.
Embedded iframes: Malware authors sometimes make use of legitimate files to evade de-

tection by defenses. One of the approaches is embedding iframe in a non-executable file, like
an Acrobat Flash. These files do not execute by themselves thus do not reveal any suspicious
behaviour in the virtual environment. In fact, they conceal data, which is executed after getting
unlocked by another file waiting for it on a compromised machine. Malware authors make use of
distinctive configuration or environment of a virtual machine to evade malware detection. They
use processes, services and communication port specific to the environment (VMware, VPC or
VirtualBox) to evade malware analysis. For instance26, a VMware makes use of VMX port to
communicate with the virtual machine. The port is checked by malware code. If it is present,
the malware plays dead to avoid detection . A commonly used method to check the presence of
automated malware analysis systems such as CWSandbox and Anubis is to check for a unique
product key.

23https://www.fireeye.com/blog/threat-research/2013/04/trojan-apt-banechant-in-memory-trojan-that-observes-
for-multiple-mouse-clicks.html
24https://www.fireeye.com/blog/threat-research/2013/02/an-encounter-with-trojan-nap.html
25https://www.fireeye.com/blog/threat-research/2013/03/more-insights-on-the-recent-korean-cyber-attacks-
trojan-hastati.html
26https://www.virusbulletin.com/virusbulletin/2013/02/techniques-evading-automated-analysis
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5. MALWARE CLASSIFICATION

This section presents an overview of the machine learning techniques and tools which have been
used in the literature to classify malware samples into their families or underline those that need
a closer human analysis.

5.1 Machine Learning Techniques

Machine learning is a class of Artificial Intelligence that offers computers the ability to learn
without being explicitly programmed. It is similar to the process of data mining which searches
through the data to look for patterns. However, machine learning uses the detected patterns for
adjusting the program actions accordingly.
In machine learning, classification is the process of identifying, to which category a new observa-
tion belongs on the basis of training data set containing examples whose category is known. The
classification process consists of two-steps: Training and Classification. Training step involves the
construction of classification model and classification step is used to foretell the class labels for the
given data. If the training data is labelled, it is called Supervised Learning which contrasts with
the Unsupervised Learning where it is not labelled. There is another class of machine learning
techniques knows as Semi-Supervised Learning, which makes use of both labelled and unlabelled
data. Labelled instances are used to learn the class models, whereas, unlabelled instances are
used to refine the boundaries between classes. It is believed that the unlabelled data, when used
in conjunction with a small amount of labelled data can produce substantial improvement in
learning accuracy.

5.1.1 Näıve Bayes (NB). It is a simple Bayesian classifier which is based on Bayes theorem
(from statistics) with strong (näıve) independent assumptions. It has the capability to predict
the probabilities, with which a given tuple of a data set belongs to a specific class. Han et al.
[2011] explains that a feature-values effect on a given class is independent of the values of the
other features suggesting thereby that all present features contribute independently to calculate
the probability for data classification. This model is useful for very large datasets and is easy
to build. Let the dataset D has a feature vector X = (x1, x2....xn), then according to Bayes
theorem, the posterior probability is computed by using equation (1).

P (c|x) =
P (x|c)P (c)

P (x)
. . . . . . (1)

where, P (c|x) is the posterior probability of class c, given predictor attribute x . P (x|c) is the
probability of predictor attribute given class c. P (c) is the prior probability of class and P (x) is
the prior probability of predictor attribute.

5.1.2 Support Vector Machine (SVM). This algorithm makes use of a nonlinear mapping to
convert the training data into higher dimensions, where a linear optimal hyper-plane separating
the data of one class from another is searched. The hyper-plane is established by using training
tuples (support vectors) and margins defined by them. This algorithm looks for the hyper-
plane with the largest margin. Sequential Minimal Optimization (SMO) algorithms are the fast
implementation of SVM. They solve the problem pertaining to optimization which arises during
the training phase.

5.1.3 Artificial Neural Networks (ANN) . It is a standard for information processing and is
motivated by the system a human brain works. It consists of a number of processing elements
(called neurons) which are organized in layers. Through input layer, the patterns are offered
to the network and thus communicated to the hidden layers where actual processing is done
using weighted connections. The disadvantage of ANN is that their operations/results can be
unpredictable, unlike other conventional computers which use the cognitive approach to solve a
problem. According to Han et al. [2011], a Multilayer Perceptron (MLP) is a feed forward ANN
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model that maps sets of input data onto a set of appropriate outputs. It consists of multiple
layers of nodes in a directed graph, with each layer fully connected to the next one. Except for
the input nodes, each node is a neuron with a nonlinear activation function. MLP utilizes a
supervised learning technique called back propagation for training the network.

5.1.4 Instance Based Learners . These are the learning algorithms that match new problem
instances with those in training data. It is a kind of lazy learning that waits until the last minute
before constructing classification model i.e. it simply stores the training data and waits until it
is given a test data. On getting the test data, it constructs the classification model based on the
matching to the stored training data instances. These learners, however, support incremental
learning. These learners are computationally expensive. These necessitate proficient storage
techniques and are appropriate for implementation on parallel hardware. Examples of this type
of learning are k-Nearest Neighbor (kNN) and IB1 algorithm and are explained in Han et al.
[2011].

5.1.5 Boosted Classifiers . It is an ensemble method which combines the different classifiers
into a composite model and is more accurate than their component classifiers. This method
consists of producing a set of weighted models by learning it iteratively with the help of a
weighted data set. Then it is evaluated and new weights are assigned to data set tuples based
on its performance. These weights and models are then used for predicting the class with the
highest weight as expained in Maloof [2006]. For example, Bagging (Bootstrap Aggregation) is
a meta-algorithm which combines the output of different models to make the final decision more
reliable by reducing the variance error.

5.1.6 Decision Tree. It is a rooted tree with each internal node considered as the test on an
attribute, each branch, as a result of the test and each leaf node holding a class label. Attributes
and corresponding values are used to traverse the tree from root to leaf node and predict its class
label. The tree is built by selecting the attributes and their values for best splitting the training
instances into their appropriate classes. In this way, the nodes, branches and leaves are created
for various attributes and their values. The process repeats itself until a node contains instances
of the same class as discussed in Maloof [2006]. An example of Decision Tree is J48 (a version of
C4.5 Decision Tree), which builds the decision tree based on the labelled training data using the
concept of entropy.

5.1.7 Clustering . It is an unsupervised machine learning technique which intends to divide a
given data set into significant groups called clusters. The objects within one cluster are similar to
each other and dissimilar from objects contained in other clusters. Clustering helps to discover
the structure in the unknown data and can be employed using different methods. The major
fundamental clustering methods can be categorized into three classes: Partitioning, Hierarchical
and Density based methods as explained in Han et al. [2011]. Partitioning Method is a distance-
based technique which finds mutually exclusive clusters of spherical shape. These are effective
for small to medium size datasets. Hierarchical method generates a hierarchical decomposition
of the given data set objects and cant undo the erroneous merges. Density-based methods create
the arbitrary shaped clusters of dense regions. It has the capability to filter out the outliers.

5.2 Data Mining and Machine Learning Tools

Various data mining and machine learning tools including WEKA by Hall et al. [2009], Orange27,
RapidMiner28, and KNIME29 etc. can be used for data analysis along with visualization. (Com-
parative analysis of these tools can be found in Christa et al. [2012]). Among these tools, WEKA
(Waikato Environment for Knowledge Analysis) is the most widely used in literature for classifica-

27http://orange.biolab.si/
28http://rapidminer.com/
29http://www.knime.org/
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tion and clustering in different areas including malware classification. It is a java implementation
of various data mining and machine learning programs. It is freely available and developed at
the University of Waikato, New Zealand. It has visualization capabilities and contains various
algorithms for data analysis along with GUIs for providing easy access to different functionalities.

6. COORDINATING TOOLS AND TECHNIQUES FOR MALWARE ANALYSIS AND CLASSIFICA-
TION

This section offers the instances from the literature which analyze binary files statically or dy-
namically or both and applies machine learning for discriminating malicious software from benign
ones.

Schultz et al. [2001] and Kolter and Maloof [2004] were among the first few researchers who
used the concept of data mining and machine learning for detecting and classifying malware.
Schultz et al. [2001] used three static features (PE features, strings and byte sequence) as a basis
for malware classification using Näıve Bayes and Multinomial Näıve Bayes. In Kolter and Maloof
[2004], authors extracted byte sequences from executable's hexadecimal code and converted them
into n-grams (continuous sequence of n items), which is then analyzed for making a base as a
feature for malware detection and classification using classifiers.

In Saini et al. [2014], the authors presented a scalable method of discriminating malicious files
from the clean ones. They used suspicious section count and function call frequency as the static
features of malware and used machine learning algorithms of WEKA for classification purpose.
The experimental results conducted provide an accuracy of 98.35%.

Kong and Yan [2013] used structural information (function call graph) as a basis for malware
classification. They apply discriminate distance metric learning for finding similarity between
programs.

Nataraj et al. [2011] used image processing technique for malware visualization and K-nearest
neighbor model with Euclidean distance method for malware classification.

Hu et al. [2016] proposed a design for a scalable malware classification system which uses mul-
tiple content features (like strings, section information etc.) and threat intelligence information
from various sources. The evaluation is done on a dataset consisting of 21,741 malicious files to
prove the efficiency of proposed algorithm.

The authors used function length frequency in Tian et al. [2008] and printable string informa-
tion in Tian et al. [2009] to classify the malicious data using machine learning algorithms available
in WEKA. For detecting worms in the wild, Siddiqui et al. [2009] used instruction sequences of
variable length along with machine learning. In Bilar [2007], Santos et al. [2010] and Siddiqui
et al. [2008], the authors used opcode distribution for detecting malware.

After collecting malware using HoneyClients and Amun, Zolkipli and Jantan [2011] identified
their behaviour by executing them on both CWSandbox and Anubis. Their results were cus-
tomized using human behaviour analysis for grouping them into their families. Rieck et al. [2011]
also used dynamic analysis along with clustering for malware classification. Anderson et al. [2011]
used the graphs constructed from dynamically collected instruction traces using Ether and used
SVM for malware classification.

Bayer et al. [2009] proposed a system relying on Anubis with tainted propagation capabilities
for generating execution traces of all the samples. They used clustering for malware grouping.
Tian et al. [2010] extracted API call sequences from executables and made use of WEKA tool for
discriminating malware from clean files and for classifying malicious programs into their families.

In Cho et al. [2016], the authors presented a framework for malware classification which makes
use of the sequence alignment method. API call sequences are logged while executing the ma-
licious files in the virtual environment set up using Cuckoo30 Sandbox. The common parts are
identified from the API sequences and are used to find the similar behaviour of malware variants.

30https://cuckoosandbox.org/
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The experiment is conducted on a dataset of 150 malware samples from 10 families and average
accuracy is found to be 87%.

Imran et al. [2015] proposed a system for malware classification which makes use of a sequence
of system calls obtained after executing the malicious files in CWSandbox along with Hidden
Markov model. The proposed approach is validated on 964 malicious and 50 benign files which
gives an average accuracy of 97.34%.

Bailey et al. [2007] expressed malware behaviour using system state changes. After running
the binaries in sandboxed environment, a behavioural fingerprint related to their activities like
processes created, files written and network connection etc. is created and then a pairwise single
linkage hierarchical clustering of these fingerprints is performed to cluster the malware.

Park et al. [2010] extracted system calls along with their parameters after running the binaries
in a sandboxed environment and generated a directed graph from these. The maximal common
subgraph is used to compute the similarity between the graphs of these programs. Firdausi et al.
[2010] used Anubis for analyzing malware behaviour. The behavioural results thus gathered
are preprocessed into sparse vector models for classification using machine learning algorithms
available on WEKA.

Nari and Ghorbani [2013] also used WEKA for malware classification after extracting network
behaviour from pcap files. Lee and Mody [2006] created a behavioural profile using the infor-
mation recorded concerning sample's interaction with system environment like registry changes,
file activities and network activities. Then they use K-nearest neighbor method for malware
classification.

Authors of Santos et al. [2013], Islam et al. [2013], Anderson et al. [2012] and Gandotra et al.
[2014a] pointed out that using only static or dynamic analysis features is not adequate for detect-
ing malware accurately. Thus, they proposed hybrid techniques which are capable of including
both static and dynamic features simultaneously. They extracted features of both static and
dynamic analysis simultaneously and used machine learning algorithms for their classification.
A detailed review of malware analysis and classification models that are used in the literature
can be found in Gandotra et al. [2014b]. Table III summarizes the techniques used in literature
to classify malware using various tools along with the dataset used and their Accuracy (Acc) or
Area under the Curve (AUC).
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7. INSIGHTS DRAWN AND FUTURE DIRECTIONS

While conducting the study on tools and techniques being used for malware analysis and classi-
fication process, a few of the lessons learned and the insights drawn out of these are discussed in
this section.

—The first step involved in the process of malware analysis and classification is to acquire mali-
cious specimens. Researchers working in this area, acquire these samples from different sources
for conducting experiments to validate the proposed techniques. Typically, the accuracy of
classification methods depends on the dataset selected. It may provide good results to a par-
ticular set of samples and may not give good results on some other dataset. Unfortunately,
there doesn't exist any standard dataset of malware samples using which the researchers can
compare their techniques. So, a dataset of malware samples (consisting of various types) should
be created, so that, researchers can use that as a benchmark for conducting experiments to
validate their techniques and to compare the results with existing techniques.

—The malware analysis techniques discussed in section 3 can be grouped into stages creating
a pyramid that grows in the upward direction in terms of complexity and effort required to
perform analysis (figure 5).

Figure 5. Phases of Malware Analysis Techniques with Complexity

The automated tools don't provide as much insight as an analyst would obtain while investi-
gating the sample manually. However, the reports generated help the security analysts in quick
incident response. It also helps in identifying the specimens which really need closer human
attention and requires to move close to the top of the pyramid. Moreover, the automated
malware analysis tools are being evaded by malware writers thus exposing the organizations
and businesses to a series of new threats.

Basic static malware analysis can be performed quickly as compare to the dynamic behavioural
analysis because these do not require executing the malicious files. Moreover, it provides the
basic pointers of compromise which help in determining if the specimen is a potential candidate
for closer analysis or not.

The dynamic behavioural analysis involves understanding malware's interaction with the sys-
tem and its resources. It involves not only to observe the malware behaviour but also to
interact with it for getting better insights. Thus the process is more complex as compared to
the earlier techniques specified in the pyramid.
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Manually reverse-engineering the malicious code adds valuable insights. It is a rigorous task
as it involves the usage of the debugger, disassembler and other specialized tools. It takes a lot
of time and requires the skilled analysts. All the stages shown in the pyramid, if considered
as sequential steps, simplifies the process of malware analysis as the insights gain at the lower
stage (less complex) can help to put efforts at the upper one (more complex).

—The evasion techniques being used by malware (as discussed in section 4), clears that an arms
race has developed between malware authors and security researchers. As innovative mal-
ware analysis technique is proposed, malware authors react with newer techniques to frustrate
malware analysis. So, there is a need to keep update regarding the new techniques used by
malicious programs and get prepared to take preventive measures. This can be done through
sharing malware intelligence information.

—From the open literature related to malware classification, it is evident that a single vision (ei-
ther static or dynamic) is not appropriate for accurately classifying malicious programs because
of the evasion techniques being used by malware authors. Performing malware classification
using integrated attributes aids better recognizing the malware's intent that may be missed by
static or dynamic analysis alone. So, the need is to adapt a hybrid approach which integrates
both static and dynamic attributes simultaneously for better malware detection and classifica-
tion.

—Today's threat landscape is full of volume, variety and velocity. It calls for the implementation
of big data analytics to enhance malware detection and prediction accuracy. The continuously
streaming network data necessitates new machine learning and data mining algorithms with
novel methodologies and principles intended for renovating raw data into the constructive
information.

In addition to the above insights drawn while conducting the study on malware analysis and
classification tools and techniques, it is comprehended that there is a need to develop a model
that facilitates insights on malware and is able to go beyond the accustomed gaps which remains
owing to traditional malware analysis. This type of model should be able to provide information
of value and interest with respect to the malware along with the intrinsic technical aspects. The
insight so generated can be used for generating early warnings to defend against malware. The
intelligent information obtained can be shared with CERTs (Computer Emergency Response
Teams) and other stakeholders, who can take preventive measures to stop these threats before
they actually cause damage or to mitigate the risk of their impacts on critical infrastructure.

8. CONCLUSION

Malware has consistently been marked as one of the key cyber threats to business, governments
and individuals. For developing the countermeasures against malware, it is imperative to exam-
ine and understand their behaviour and the evasion techniques they might use to evade malware
analysis. This paper presents a high-level description of various tools and techniques that assist
an analyst in getting the quick and detailed knowledge on malware attributes and behaviour.
Automated malware analysis, for instance, produces the reports containing such type of informa-
tion which can further be used to cluster the malware having same behavioural profiles and to
identify those which need closer manual inspection. The paper also highlights the lessons learned
and insights drawn from this study which can help the researchers to innovate new techniques
and design/develop better tools for malware detection and classification.
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