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Modern technologies related to Pervasive and Ubiquitous computing require software to self adapt to different
operating environments and situations, in a word, to different contexts. Several approaches have been proposed
to solve this problem both in the Data Management and in the Programming Languages communities, however
these efforts have proceeded along separate paths with little, if no interaction.

We claim that there are complementary features which can bring different paradigms in the Data Management
and Programming Languages domains to a fruitful cooperation in building Adaptive Systems. In fact, data
collected by sensor networks can be directly used by application programs as well as used to determine the context
the application is working in, so attaining a context-aware behavior obtained by triggering the execution of specific
program modules or the connection to relevant web services.

In this paper, we use the PerLa pervasive data management language and JCop Context-Oriented Programming
Java language extension to show the feasibility of this approach applied to the classical case of keeping an office
room climate comfortable under several environmental constraints and to the management of a ski resort.

Keywords: Adaptive systems, Pervasive Data Management, Context awareness, Ubiquitous com-
puting, Heterogeneous sensor networks, Middleware infrastructure, PerLa, Context Oriented Pro-
gramming paradigms.

1. INTRODUCTION

Pervasive Computing is becoming one of the most wide-spread computing technologies. Today,
the majority of computationally capable devices surround us hidden in everyday life objects and,
with the advent of the Internet-of-Things (IoT), this trend will dramatically increase (Borgia,
2014), (Editorial, 2007), (Chui, Loffler, and Roberts, 2010). Among the properties of a Pervasive
Computing System (PCS) (ubiquity, mobility, heterogeneity, ...) self adaptation is a must. In
order to achieve self adaptation, a system must know the state of the environment, the state of
the system itself and the behavior it must exhibit in this environment; changes in the environment
entail changes in the system behavior, possibly causing actions on the environment itself.

The environment can be constituted by physical objects or variables or by human-generated
input, including data generated by social networks: we shall refer to it as the PCS working contexzt.
The concept of context, describing the “situation of every entity in the environment” (Dey, 2001),
becomes a first-class citizen since it allows to tailor the available data for the user, reducing the
“information noise” (Bolchini, Curino, Orsi, Quintarelli, Rossato, Schreiber, and Tanca, 2009).
Furthermore, this perspective opens the way to a proactive interaction with the environment,
enabling the possibility of enacting, for each particular user in a particular situation, the actions
to be performed by the PCS, possibly by means of intelligent actuators. In a physical system, the
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data values defining a context can be obtained by sensors (numerical observables) and translated
to the symbolic observables required by the specific context model (Coutaz, Crowley, Dobson,
and Garlan, 2005)

As we show in Section 5, there are several projects that create pervasive systems environ-
ments, but there isn’t any standardized, integrated framework out there for developing pervasive
applications (Cheng, 2009), therefore work has still to be done for engineering such systems. In
our previous work (Schreiber, Tanca, Camplani, and Vigané, 2012) we started focusing on this
goal, using sensors to characterize and discover possible contexts, and defining suitable actions
accordingly.

Like every computer system, besides the hardware resources, PCSs are constituted of software
- developed in some programming language - and of data - managed by some data management
system. Both the Programming Languages (PL) and the Data Management (DM) communities
have developed contezt-aware paradigms and techniques following parallel lines, with little or
no interaction between them. Taking the hint from a famous statement about the relationship
between science and philosophy by Kant (Kant, 1787), we argue that Programs without Data
are empty, Data without Programs are blind; therefore a convergence between the two fields is
strongly needed.

Scientists and engineers have made significant efforts to design and develop systems able to
adapt their behavior according to specific changes. These systems address adaptivity in various
respects, including performance, security, fault management, control theory, etc. (IBM, 2006),
(Diao, Hellerstein, Parekh, Griffith, Kaiser, and Phung, 2005). While adaptive systems are used
in a number of different areas, software engineers focus on their application in the software
domain, called self-adaptive software.

Software adaptivity requires that a system be able to modify itself based on observations or
occurred events (Intercession property) (McKinley, Sadjadi, Kasten, and Cheng, 2004). This
property is strictly connected to the basic idea of context. An adaptation mechanism is expected
to trace system changes and to take appropriate actions according to the designed rules and this
aim can be achieved through monitoring all the entities that can directly affect the behavior of
the whole software system or a group of modules.

Summarizing, adaptive systems can be defined as follows (Cheng, 2009): “Adaptive systems
are able to adjust their behavior in response to their perception of the environment and of the
system itself”.

Furthermore, a system able to retrieve data, to build and manage contexts and to properly
reason on them, is called context-aware. In (Pascoe, 1998) a context-aware system is defined as
follows: “A system that provides services or information to the users according to the context”.

In context-aware systems context encompasses the following pieces of the whole environment
in which it operates:

— Computing environment: available processors, devices accessible for user input and display,
network capacity, connectivity and costs of computing.

— User environment: location, collection of nearby people, and social situation.

— Physical environment: all external phenomena relevant to the system.

Adaptivity and context-awareness are strictly related to each other and in many real situations
are even interchangeable. However, context-awareness is more related to “information tailoring”,
i.e., it refers to the ability of the system to know exactly at any time the current contextual
information and to provide it when required (Bolchini et al., 2009), while adaptivity refers to the
execution of behavioral variations in response to changes of the entities that can affect the behav-
ior of the system, also the internal software itself. Therefore adaptivity and context-awareness
are complementary in building applications for PCS.

In this paper we strive for showing how combining the PerLa pervasive data management
language and the Context-Oriented Programming (COP) paradigm makes the implementation of
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context-aware and adaptive pervasive systems possible. We consider the classical application of
keeping an office room climate comfortable under several environmental constraints as a running
example.

The remainder of the paper is organized as follows: in Section 2, we introduce the background
material on context management from the data as well as from the programming languages
perspectives; in Section 3 we present our proposal for the integration of the Data Management
and Programming Languages views; in Section 4 our approach is applied to the management of a
ski resort; in Section 5 projects addressing similar issues are briefly surveyed; finally, we discuss
the conclusions (Section 6).

2. BACKGROUND

As a first step toward the integration of data, services and programs into a general purpose
development framework for adaptive pervasive systems, the PerLa system, designed for managing
data in Wireless Sensor Networks (WSN) (Schreiber, Camplani, Fortunato, Marelli, and Rota,
2012), has been extended with the ability of declaring and managing contexts (Schreiber et al.,
2012), thus allowing to apply context-awareness to generic system operations. Moreover, as
shown in detail in Section 2.1.4, since the number of possible contexts can rapidly grow with the
complexity of the application, the design phase is also supported by a tool that leverages the
possibility to speed-up and modularize the definition of the data and operations associated with
each specific context. In the following sections we shall discuss how operations can be expressed as
Layers in a Context Oriented Programming language (Salvaneschi, Ghezzi, and Pradella, 2012a)
and as calls to web services.

2.1 Context: the Data Management view

Reduction of the retrieved data volume and of the information noise have been the main reasons
for adopting context-aware data management techniques in Pervasive Systems. A survey of some
context models which have been proposed in the literature is presented by Bolchini et Al. in
(Bolchini, Curino, Quintarelli, Schreiber, and Tanca, 2007); in this section we briefly introduce
the context model as well as the language and the framework which we defined to specify the
actual context and the consequent actions.

2.1.1 Context Dimension Tree (CDT). The Context Dimension Tree (CDT) (Bolchini et al.,
2009), (Bolchini, Quintarelli, and Tanca, 2013) has been proposed as a model to represent context
at a conceptual level and to derive the actual contexts definitions. According to the CDT model,
the set of possible contexts of the environment can be modeled as a labeled tree composed of
dimension (black) and concept (white) nodes. The former are used to capture the different
characteristics of the environment, while the latter are used to represent the admissible values
that can be assumed by each dimension. Both dimensions and concepts can be semantically
enriched using attributes (square nodes) that are parameters whose values are provided at run-
time. Moreover, the tree term suggests that the designer can model the environment using
the preferred granularity, nesting more than one level of dimensions with the unique restriction
that every dimension can only have concept children and vice versa. This constraint imposes
that black and white nodes alternate while descending the tree, as in Figure 1, where the CDT
of our running example is shown, containing the fundamental aspects of context in the office
environmental condition management scenario. In this scenario sensors are located (Location
dimension) in offices or meeting rooms, and they monitor several parameters, like the presence
of smoke (Smoke dimension), the humidity (Humidity dimension) and others, in order to avoid
the rise of stressful working conditions (e.g., overheating of the offices) or of dangerous situations
(e.g., fire).

In order to denote that a dimension has assumed a certain value we use the (Dimension =
Value) notation, called a context element. A context C' can then be formalized as the conjunc-
tion of one or more context elements: C' = A\, (Dimension; = Value;,). It is worth noticing that
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Context_root

Location Env_Humidity

office  meeting_  none  Iittle persistent  cold mild  hot

room

Fig. 1. Context Dimension Tree (CDT)

not all possible subtrees are valid contexts. Consider for instance the three possible values of the
dimension Env_Temp in Figure 1: cold, mild and hot; being children of one dimension, they are
always to be instantiated in mutual exclusion. The designer can specify further constraints, like
the useless context constraints, forbidding some context elements to be used in the same context
definition (Bolchini et al., 2009).

2.1.2 A Pervasive Data Management Framework. As extensively presented in (Schreiber
et al., 2012) PerLa is a framework to configure and manage modern pervasive systems and,
in particular, wireless sensor networks. PerLa adopts the database metaphor of the pervasive
system: such approach, already adopted in the literature (Madden, Franklin, Hellerstein, and
Hong, 2005), is data-centric and relies on a SQL-like query language. PerLa queries allow to
retrieve data from the pervasive system, to prescribe how the gathered data have to be processed
and stored and to specify the behavior of the devices. The most relevant query types supported
by PerLa are: i) Low Level Queries (LLQ), which define the behavior of every single or of a
homogeneous group of nodes, and specify the data selection criteria, the sampling frequency and
the computation to be performed on sampled data; ii) Actuation Queries (AQ), which provide the
mechanisms to change parameters of the devices or to send commands to actuators. A SQL-like
high level interface is also provided towards standard Data Stream Management Systems. The
other fundamental component of PerLa is a middleware whose architecture exposes two main in-
terfaces: a high-level interface, which allows query injection and a low-level interface that provides
plug&play mechanisms to seamlessly add new devices and support energy savings. All nodes in
the sensing network are abstracted by the PerLa middleware as logical devices called Function-
ality Proxy Component (FPC). The FPCs have common and homogeneous interfaces, and are
used by PerLa queries to access the data gathered from the network nodes. No knowledge of the
nodes hardware and computational characteristics is needed to perform a PerLa query. Moreover,
thanks to the FPC abstraction, the language is not tied to any particular type of sensing device
so allowing to gather data also from sources other than physical devices, such as social networks.

2.1.3 Embedding context into PerLa. In order to push the knowledge of context from the
application down to the middleware level, in a previous work (Schreiber et al., 2012), we designed
and implemented:

— an extension of the existing PerLa language syntax, called Context Language (CL), in
order to declare, inside PerLa, the CDT, the contexts as well as the actions to be performed
accordingly;

— the Context Manager (CM), able to maintain and manage the declared CDT, detect
active contexts and perform the desired actions;

The syntax of the CL has been divided into two parts, called CDT Declaration and Context
Creation, both presented in details in (Schreiber et al., 2012).
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Listing 1: The Context Dimension Tree

CREATE DIMENSION Location
CREATE CONCEPT office

WHEN location = ’office’
CREATE CONCEPT meeting_room
WHEN location = ’meeting_room’

CREATE DIMENSION Smoke
CREATE CONCEPT none
WHEN smoke < 0.4
CREATE CONCEPT 1little
WHEN smoke >= 0.4 AND smoke <= 1
CREATE CONCEPT persistent
WHEN smoke > 1
CREATE DIMENSION Env_Temp
CREATE CONCEPT cold
WHEN temperature < 18
CREATE CONCEPT mild
WHEN temperature >= 18 AND temperature < 24
CREATE CONCEPT hot
WHEN temperature >= 24
CREATE DIMENSION Humidity
CREATE CONCEPT h_level
CREATE ATTRIBUTE $h_value

CDT Declaration. :

This part allows the user to specify the CDT. A set of CREATE DIMENSION/CONCEPT
statements allows to declare the dimensions as well as their concept nodes. When creating a con-
cept of a dimension, the designer must specify the name and the condition for assuming the speci-
fied values by means of numeric observables that can be measured from the environment ( WHEN
clause). When the design requires the presence of attributes, the CREATE ATTRIBUTE clause
must be used, using the $§ sign as a prefix before the name of the attribute, meaning that its
value will be supplied by the application at runtime.

As an example of its usage we report in Listing 1 the syntax to completely define the CDT
presented in Fig. 1. The CDT defines four dimensions: Location, that can assume ’office’ and
"meeting_-room’ values; Smoke, Env_Temp and Env_Humidity, that represent the actual condition of
the environment. Notice that, while Smoke and Env_Temp are quantified by symbolic observables,
Env_Humidity values are directly used as numerical observables provided by sensor readings.

Labels of the fields in the WHEN clause (e.g. location, smoke, humidity, ...) refer to external
input data (like data coming from the sensors or other kind of input) while the labels in the
CREATE DIMENSION or CREATE CONCEPT clauses refer to the labels of the CDT nodes.

Context Creation. :

Listing 2 shows the part of the syntax which allows the designer to declare a context on a
defined CDT and control its activation by defining a contextual block, which is composed by
four components:

— ACTIVATION component: allows the designer to declare a context, using the CREATE
CONTEXT clause and associating a name to it. The ACTIVE IF statement is used to
translate the Context = /\” (Dimension; =V alue;) statement into PerLa.

— ENABLE component: introduced by the ON ENABLFE clause, allows to express the actions
that must be performed when a context is recognized as active;

— DISABLE component: introduced by the ON DISABLE clause is the counterpart of the
previous one, allowing to choose the actions, if any, to be performed when the declared
context is no longer active;

— REFRESH component: instructs the middleware on how often the state of the context
variables in the ACTIVE IF statement is to be checked.
In Listing 2 we report the declarations for two possible contexts: the first one represents
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Listing 2: Examples of contexts in PerLa

CREATE CONTEXT normal

ACTIVE IF Env_Temp = ’mild’ AND Humidity.h_level >= 40
AND Humidity.h_level <= 65
AND Smoke = ’none’

ON ENABLE:

SELECT humidity, temperature
SAMPLING EVERY 1im
EXECUTE IF location = ’office’
ON DISABLE:
DROP normal
REFRESH EVERY 5m

CREATE CONTEXT fire

ACTIVE IF Env_Temp = ’hot’ AND Smoke = ’persistent’
ON ENABLE:

SET alarm = TRUE
ON DISABLE:

DROP fire

SET alarm = FALSE
REFRESH EVERY 5m

ON ENABLE ...:
N SELECT temperature
SAMPLING EVERY 1m
ON ENABLE ...:
SELECT humidity, temperature
SAMPLING EVERY 1m
ON ENABLE ...:
N\ SELECT humidity
SAMPLING EVERY 1im

Fig. 2. Partial (ENABLE) components definition

the “normal” situation, in which the environment has comfortable values of temperature and
humidity, while the second context represents the rise of a possible dangerous situation (a fire
alarm).

2.1.4  Contextual Block Composition. In the previous sections we mentioned how a growing
tree depth of the CDT allows the designer to capture the aspects of the environment with different
granularities, since more dimensions (and thus concepts) allow to express more possible contexts.

The number of possible contexts that can be generated from a complete CDT, with a single
dimension layer having D nodes and N concept nodes each, amounts to [[;Z, N;. Even if many
of these contexts can be meaningless, nevertheless the designer is charged with the hard task of
declaring: i) every single context and ii) a set of actions for each one of them; so her/his task
becomes rapidly unfeasible. In the following we show the possibility of relieving the designer
from this cumbersome task, enabling the middleware to automatically build the contextual block
starting from the contextual block components (Schreiber et al., 2012).

Partial components. :

The syntax of the PerLa language allows to separate the block components into one or more
partials, as shown in Figure 2. A partial contains a subset of the statements and clauses included
in the original block, with the only constraint that this subset must be valid from the point
of view of the PerLa QL syntax. This division is particularly meaningful for the ENABLE and
DISABLE components; the only block that can not be divided is the ACTIVATION block since it
deals with the definition of the context itself.

Automatic composition. :

With the introduction of partials, the concepts behind the automatic composition of contextual
blocks can be described. The main idea, already adopted in (Bolchini et al., 2013) for the tailoring
of data, is illustrated in Figure 3. The designer must only associate one or more partials with
each context element of the CDT. When the system has to compose a contextual block, it starts
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from the partials associated with the context elements which are part of the context and combines
them by means of a generic operator, represented here by the symbol &.

The association of the partials with the CDT context elements can be performed using the
syntax in Listing 3, which enriches the CDT declaration section of the CL.

Listing 3: Modified CL syntax to support partial components

CREATE DIMENSION <Dimension_Name >
[CHILD OF <Parent_Node>]
[CREATE ATTRIBUTE $<Attribute_Name>]* |
{CREATE CONCEPT <Concept_Name>
[WHEN<condition>] [EVALUATED ON <"Low_Level_Query">]
[WITH ENABLE COMPONENT: <"PerLa_Query">]
[WITH DISABLE COMPONENT: <"PerLa_Query">]
[WITH REFRESH COMPONENT: <Period>]
[CREATE ATTRIBUTE $<Attribute_Name>
[EVALUATED ON <"Low_Level_Query">]]x}x*

The WITH ENABLE COMPONENT clause may contain any query expressed using PerLa.
The same holds for the WITH DISABLE COMPONENT clause. The last clause (WITH RE-
FRESH COMPONENT) allows to specify the time period (always using PerLa’s syntax) to be
used. Finally the composition can be carried out both at design and at run-time (Schreiber et al.,
2012).

When the association phase is complete and before the system is put into an operational state,
it is possible to combinatorially generate all the possible contexts that are defined by the CDT
and that are not forbidden by the constraints. For each possible context the relative contextual
block is then automatically generated composing the partials associated in the previous phase.
In Algorithm 1 the composition algorithm is shown in pseudo-code (Schreiber et al., 2012).

This algorithm, as its first step, retrieves all the relative context elements, i.e., the couples
(Dimension; = Value;) for all possible contexts (getContextElements() function, Algorithm
1 line 4).

With these context elements, the CM exploits three functions' in order to retrieve the partial
components associated with every context element retrieved at the previous step (getEnable
Components(), getDisableComponents() and getRefreshComponents() functions, Al-
gorithm 1 line 6-8). When all these inputs have been retrieved a composeBlock() function is
invoked. This function firstly creates an empty contextual block. All the retrieved partial compo-
nents are chained (attach() function) to the empty block, as from the code in Algorithm 1, lines

L Algorithm 1 reports only the ENABLE function, the other two being identical from an operational point of view;
the only difference is in the query statement block (ON ENABLE, ON DISABLE or REFRESH) on which they
operate.

S

[Ele[E]le[E]l+—
{D]e[D] «+—— [D]
[R]« [R]

Fig. 3. Contextual block composition & p
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Input : The C set of all possible contexts
Output: BS set with the composed contextual blocks

1 BS=0);
2 for (context ¢; € C) do

3 /*Context elements retrieval*/ |

4 CE[ ] + getContextElements (c;);

5 /*Components retrieval*/ |

6 E[ ] + getEnableComponents (CE[ ]);
7 D[] + getDisableComponents (CE[ ]);
8 R[] « getRefreshComponents (CE] ]);
9 B; + composeBlock (E[ ],D[],R[]);

10 optimizeBlock (B;);
11 if (parseBlock (B;)=="OK’) then

12 | BS =BS U{B;};

13 end

14 else

15 | return WARNING('Parse Error’)
16 end

17 end

18 return BS;

19 Procedure composeBlock(E[ |,D[ [,R[ ]) ;

20 B =0;

21 for (enable comp. e € E[ ], disable comp. d € D[] ) do
22 attach (B.E, e);

23 attach (B.D, d);

24 end

25 B.R = min(R[])

26 return B;

27 /*Identical for Disable and Refresh*/ |

28 Procedure getEnableComponents(CE[ ]) ;
290 EB = {);

30 i = 0;

31 for (ce € CFE) do

32 if (Context_Enable_Rel(ce) # () ) then

33 EBli] = Context_Enable_Rel(ce);
34 i++;

35 end

36 end

37 return EB;

Algorithm 1: Composition Algorithm Pseudocode

19-26 (using the dot notation to indicate the access to a precise component of a contextual block).
As far as the REFRESH component is concerned, the composeBlock() function computes (and
attaches) the lowest refresh value among the ones contained in the R[] set. It seems reasonable, in
fact, that the context whose state must be controlled with a higher frequency (smallest temporal
values) is the most critical one and its refresh value is to be chosen during composition. Except
for the discussed REFRESH component, the ENABLE and DISABLE components are formed by
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multiple clauses expressed using PerLa syntax: simply appending, one after the other, all the
clauses contained in this components is not enough. An optimizeBlock() function is in charge,
acting on the composed ENABLE and DISABLE components, of placing every single PerLa clause
in the (€, D, R) blocks and put these blocks in the right position according to the specific query
syntax, described in (Schreiber et al., 2012); some of the function tasks are: removing duplicate
clauses and reordering and rearranging them in order to enhance the system performances.

The last step of the algorithm instructs the CM to inject the composed contextual block into
the middleware QueryParser component using the parseBlock() function. The QueryParser
validates the syntax and the semantics of the composed block and raises a warning message in
case some inconsistencies are detected.

Alternatively, the composition of a contextual block can be carried out at run-time only when
its relative context is recognized as active by the middleware (Schreiber et al., 2012), so avoiding
the generation of many contextual blocks even if their actual activation happens very seldom.
However, more than one context can be active simultaneously, and switching between contexts
may be frequent; therefore the on-line composition of several context elements, possibly involving
complex partials, could potentially slow down the whole system performance.

2.2 Context: the Programming Languages View

Several programming paradigms have been proposed in the literature (Salvaneschi et al., 2012a)
in order to support context-awareness in object-oriented and modular programming languages.
So far, the programming language level has been considered an alternative to a solution at the
architectural level removing, in this way, the need of designing dedicated components to achieve
the same functionality.

While in Section 5 we briefly review different approaches which have been proposed to manage
context in programming languages, namely Aspect-Oriented Programming (AOP) (Kiczales and
Al., 1997) and Behavioral Programming (BP) (Harel, Marron, and Weiss, 2012), in this section we
analize Context-oriented Programming (COP) (Appeltauer, Hirschfeld, Haupt, Lincke, and Per-
scheid, 2009), (Hirschfeld, Costanza, and Nierstrasz, 2008), (Salvaneschi, Ghezzi, and Pradella,
2011) since the context model adopted by a program that follows the COP paradigm is the one
that best fits the PerLa context model. In particular the COP concept of layer can be easily
compared to the concept of context element in the CDT, while the layer composition procedure
is the COP translation of the concept of CDT context: in PerLa, a context is the conjunction of
different context elements while in COP it is the composition of several layers. Anyhow, we do
not exclude the possibility to integrate other paradigms (AOP, BP, ...) in future works.

2.2.1 Context-Oriented Programming. Context-oriented Programming (Salvaneschi et al., 2012a),
(Appeltauer, Hirschfeld, and Lincke, 2013), (Hirschfeld et al., 2008) enables changes in the be-
havior of the application depending on the current context. COP treats contextual information
explicitly and provides a complete support to behavior adaptation at run-time; it introduces new
keywords that may depend on the underlying language and the specific library, in order to pro-
vide complete support to the programming paradigm. Several libraries have been introduced to
implement COP in most of common programming languages, such as Java, Python, and others.

Context for COP is simply intended as any information which is computationally accessible
by any part of the system and may determine behavioral variations; when a context is active, a
program must be able to behave in one of a determined set of alternative ways.

The main concept of COP is the behavioral variation. Each behavioral variation is related to

a specific piece of context and can be dynamically activated or deactivated at run-time, enacting
a behavioral change; it represents the modularization unit of such piece of behavior.
Many different solutions have been proposed to create a connection in the program between the
contextual information and dynamic behavioral variations; since the layer-based model (Desmet,
Vallejos, Costanza, and Hirschfeld, 2007) is the most widespread, we will refer to it in the follow-
ing.
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Layers

Layers are entities which group related context-dependent behavioral variations and contain
partial method definitions that implement the functionality of behavioral variations. Layers can be
dynamically activated and deactivated at run-time. Depending on the current context, different
layers will be selected for further program executions. Several solutions have been proposed in
COP for layers activation. In the JCop Java extension, layers are first-class entities, which can
either be defined within the classes for which they provide behavioral variations (layer-in-class),
or in a dedicated top-level layer similar to an aspect (class-in-layer) (Appeltauer et al., 2013). In
the layer-in-class case all the possible variations are directly encapsulated in classes which need
adaptations. Layer activation is dynamically scoped: it affects the behavior of the program not
only for the method calls syntactically inside the code block, but also for all the calls triggered
in turn. In the class-in-layer case it is possible to modularize adaptations independently of the
base code, obtaining code that is free of context-specific concerns.

Other COP languages, namely EventJC, do not rely on a monolithic block structure, rather,
they separate the layer activation control mechanism and the execution of the context-dependent
behavior. Layer activation is controlled by a state transiton model; transitions between layers
are triggered by events and are specified by a rule-based sublanguage (Kamina, Aotani, and
Masuhara, 2011), (Kamina, Aotani, and Masuhara, 2013). This separation allows the changes
of context and the execution of context-dependent behaviors to happen at different points in
a program; however, the lack of a clearly defined dynamic scope can entail some consistency
problem during the program execution (Salvaneschi et al., 2011).

Layers dynamic composition

COP directly provide all the features necessary to perform context-based behavioral variations
at run-time, without using metaprogramming or other different frameworks. If the execution of
a method is not affected by context, it is called plain method (Appeltauer et al., 2009). Context-
dependent behavioral variations, called layered methods since they are involved in layers compo-
sition, (Appeltauer et al., 2013) are expressed as partial method definitions. In layered methods,
a base method describes the normal behavior; it is executed when no active layer provides a cor-
responding partial method, and at least one partial method definition exists (Appeltauer et al.,
2009). The dispatching mechanism is intuitive: when activated, layered method calls are dis-
patched to the partial method provided by the layer. So, partial methods provide a different
behavior compared to base methods and they can be executed before, after, or around a base
method.

Keywords with and without provide an explicit layer composition mechanism, because they
specify which layers must be activated (deactivated) for the scoped block. However an explicit
layer composition, based on with statements, is not enough in many cases; for this reason many
different activation mechanisms have been proposed (Salvaneschi et al., 2012a).

Event-based composition

Dynamically scoped activation is a general model in which the with statements activate a
sequence of layers in the code block.

In a pervasive environment, context changes are event-driven; events can be handled in a
synchronous way, especially those bounded to changes in the environment and in the system, or
asynchronously, such as those related to the user interactions. JCop provides specific constructs
for declarative and event-based composition.

The declarative layer composition model consists of a logic concatenation of predicates, which
represent events, and of a composition block, which contains some with (or without) statements.
Moreover, it introduces two new constructs in order to solve the problem of scattered with
statements: i) the keyword on which identifies an event in the program execution flow; ii) an
optional keyword ¢n to bind the object on which the composition declaration should be evaluated.

This model is a good solution, in particular in case of composition based on predictable events.
In situations that are connected with unexpected events, the explicit specification of those events
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with on statements can be complex and could become really verbose.

For this reason JCop, in addition to on, introduces the when statement. This statement
specifies an expression that represents an event occurred in the program control flow and, if
it is evaluated to true, layered methods in the code block are activated. Composition made
with when statements is called conditional. The on statement specifies the points “where” the
composition takes place, whereas the when statement allows to declare “when” the composition
of layers must start. Furthermore, JCop provides a first-class context construct; contexts are
special singleton types that can not be instantiated. The construct can host both declarative
and event-based composition statements and auxiliary methods and fields. For a more complete
explanation of layers composition models see (Appeltauer et al., 2013).

3. INTEGRATING PERLA AND OTHER PARADIGMS

In this section we provide some examples of how PerLa can be extended with other paradigms to
apply it in a wider range of possible scenarios. We shall focus on two main examples: the possi-
bility to integrate Web Services considering them as sensors, so expanding the sensing capability
of the middleware, and on the integration between PerLa and COP, to enhance the expressive
power of the system allowing more complex context-aware operations thanks to the extension of
the query language with new semantics.

Figure 4 synthetically shows how PerLa can be used to monitor the context state by means of
the ACTIVE IF, ON ENABLE, and ON DISABLE clauses within which context-aware actions
can be performed on data, through native PerLa statements, or by web-services or COP programs,
through existing APIs or layer activation mechanisms respectively.

CREATE CONTEXT context_name
ACTIVE IF context_elements
ON ENABLE

L COP layer for
Procedural actions
Layer

activation

PerLa native statements for
data management

PerLa Context Manager

Service activation
procedure

ON DISABLE
action

Fig. 4. General structure of a C-A self-adapting system

3.1 PerLa and Web Services

In its first versions PerLa connected only sensors through the TCP/IP protocol. In the current
version (Rota, 2014) the communication structure has been enriched in order to allow the retrieval
of information also from other systems.

In fact, many Web Services exist which offer APIs, like weather forecast services (providing
temperature, pressure and other weather-related parameters). These APIs give information that
PerLa can model like a virtual sensor.

The enabling feature for this new paradigm is the implementation of a Channel supporting
the HTTP communication protocol. The real challenge is to create this channel as generic as
possible, so it will be independent of the content-type used by the HTTP call for transferring
data (in the request or in the response).
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3.1.1 PerLa Channel design. The PerLa Channel is the component responsible for the com-
munication between the FPC and a real device. In this case the device is represented by a Web
Service with an HTTP interface (ex. SOAP or JSON/REST).

In order to define and configure a channel, PerLa offers three base classes: i) AbstractChan-
nel is the abstraction of any communication channel between the PerLa FPC and the real device
(through a TCP socket, a WebSocket or the HTTP protocol), #7) ChannelRequestBuilder
is the Java object used by the FPC for creating the requests to be passed to the channel and
iii) Request is the Java object created at run-time when a FPC needs to retrieve some data
from a device.

The channel provides synchronous requests which are added to the queue shared between the
channel and the FPC. The FPC can process the response immediately (synchronous call) or it
can postpone the answer and process it just when it is needed (asynchronous call).

PerLa Channels are dynamically built at run-time through the translation of a Descriptor
(Java representation of XML descriptor) into PerLa objects.

This translation is performed by some Java objects: the ChannelFactory is responsible for
the XML channel descriptor validation; the ChannelRequestBuilderFactory is responsible for the
validation of the XML request descriptor; the ChannelDescriptor is the Java representation of
channel XML tag and the RequestDescriptor is the Java representation of the request XML tag.

The HTTP Channel implementation has been realized as a specialization of the generic classes
described earlier in this subsesction, providing a set of Java objects and methods that extends
the basic ones with all the features required to properly handle the HT'TP channel.

The inclusion of Context-aware Services (Maamar, Benslimane, and Narendra, 2006) in the
picture, as described above is a further step towards the building of comprehensive Context-
aware systems. A first prototype which integrates PerLa and web services in order to optimise
energy consumption in buildings has been implemented in the SENSORI project?.

3.2 PerLa and COP

In this section we are going to present how the context is managed in PerLa and, in particular, how
its components perform behavioral variations, comparing it with the COP paradigm. However, it
is not in the aim of this work to review all the possible languages that refer to the COP paradigm;
such comparison can be found in (Salvaneschi et al., 2011), (Salvaneschi et al., 2012a).

We choose the COP paradigm, and in particular the JCop Java extension, as a first integration
attempt because the core of the PerLa middleware is deployed in Java and JCop includes all the
features needed to build the first system prototype.

As presented in Section 2.2.1, COP languages focus on the activation at run-time of context-
dependent behavioral variations; in particular, it provides features to directly perform the vari-
ation of the involved modules, starting from some significant contextual information. COP can
provide behavioral variations for events generated by the program code of the application, i.e.
for events related to the interactions among its internal objects or modules. If the goal is the
implementation of the adaptive part of an application, we think that using the COP paradigm
is the easiest solution.

Context management

As mentioned in Section 2.1.2; the PerLa framework already provides a general context model:
the CDT. The designer must only declare a dedicated CDT and write the application related CL
queries and the middleware will be responsible for its management. This reduces the chances
that, for large and distributed applications, some kind of inconsistencies occur or some kind of
contextual information be not properly modeled. Moreover, PerLa CL has been designed for the
creation of a direct inter-relationship between the context model, data, and adaptations; it allows
to define: i) which data affect a context; ii) how sub-contexts can be composed to create higher
level contexts; iii) which actions must be executed when changes in active contexts are detected.

2SENSORI has been funded by Industria 2015 program n® MI01_00091 of the Italian government
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At the current development stage, besides the web services APIs, PerLa provides contextual
features that mainly focus on data, and the actions that can be performed in response to contex-
tual changes are limited to the execution of PerLa SQL-like statements (Schreiber et al., 2012).
Context has the role of a data “tailor”, i.e., it allows the user to define which data, retrieved by
sensors, must be selected in a specific situation. The actions permitted are essentially limited
to the activation or deactivation of devices, to the setting of some sampling parameters or to a
limited range of tasks performed by some actuators, as presented in the office example of Section
2.1.

Moreover, PerLa has been designed to work with several data streams, produced by the sensing
devices; the Low Level Queries allow to set their working mode: the sampling intervals, which data
must be selected and the computation to perform on the sampled data. With CL, the designer
can define a contextual dynamic view on a data stream. On the contrary, COP languages are not
directly aware of how context information is provided; in fact they do not directly manage sensors,
but they use the information provided by them, to perform behavioral variations. Adopting
JCop, the developers must implement a mechanism to monitor continuous data sources, in order
to provide contextual information; other approaches (e.g., Flute (Bainomugisha, Vallejos, Roover,
Carreton, and Meuter, 2012)) instead provide also mechanisms to directly monitor continuous
data sources.

The CDT model deals naturally with contexts belonging to different groups of sensors and to
distributed instances of the application. The nodes at the lower level of the tree could be used
to abstract several instances of a dimension, creating a local CDT for each instance. In this way,
context data can be distributed to different locations, leading to the introduction of a combined
CDT comprising a primary CDT and one or more local CDTs. PerLa is very suitable for context
distribution and this feature has been used in the Green Move application, in which - for privacy
- a portion of the CDT is maintained locally to the user’s devices and is used to complete the
context-based data filtering (Panigati, Rauseo, Schreiber, and Tanca, 2012).

Even if several threads may exist for each local instance and each thread adapts its own
behavior w.r.t. the instance in a different way, with JCop it is only possible to implement the
behavioral variations of the instances; mechanisms to compose information coming from different
local contexts, in order to infer a higher level context, and for data sources monitoring are not
supported. For this reason, it may become necessary to introduce dedicated components to
generate significant contextual information, starting from rough data provided by sensors, and
to decide which layers must be activated on the application.

The PerLa middleware has the components already designed for this purpose: the CM for what
concerns the context and the application actions management, and other low level components
for what regards the data sources monitoring, their operational impact being hidden to the user.
Designers, through the PerLa CL, are relieved of the responsibility to develop dedicated compo-
nents for context management which could result a rather complex task. With the possibility to
define new contexts by composing other contexts at run-time, it becomes easier to specify the
desired number of contextualized actions.

Let us now suppose that in the office rooms a new air conditioner and an air outlet have been
installed; the devices functions, shown in Figure 5, are available as soon as we plug them into
the system, without the necessity of applying further changes to it. The air conditioner can work
in different modes depending on the room environment status: it can lower or rise the room
temperature, it can dry off humidity and it can set a fan speed. The PerLa code in Listing 4
shows that, by installing the new air outlet in the offices, its activation becomes possible in case
of persistent smoke.

The context SmokeMonitoring presented in Listing 4, is actually an extension of the fire con-
text (Listing 2) since it performs additional actions (e.g. it stops the ventilation not to spread
the smoke and it opens the outlet to let it flow away) in order to be more effective in case of
fire. PerLa CL creates a direct connection between monitoring and adaptations: it checks for the
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Listing 4: The SmokeMonitoring example in PerLa

CREATE CONTEXT SmokeMonitoring
ACTIVE IF Location = ’'office’ AND Smoke = ’'persistent’
REFRESH EVERY 1h

ON ENABLE (SmokeMonitoring)
SELECT smoke

SAMPLING EVERY 10 m

EXECUTE IF EXISTS (smoke)

SET PARAMETER air_outlet = TRUE
SET PARAMETER alarm = TRUE

SET PARAMETER fan_speed = 0

ON DISABLE (SmokeMonitoring) :
DROP SmokeMonitoring

SET PARAMETER air_outlet = FALSE
SET PARAMETER alarm = FALSE

amount of smoke in an office and the context SmokeMonitoring is automatically activated if the
smoke is persistent.

off

———Q ac_temp cool

heat
ioff
Jon

AIR CONDITIONER |———Q ac_dry

—0 fan_speed set

off (FALSE)
AIR OUTLET L state on (TRUE)

Fig. 5. The office new equipment

Enacting behavioral variations

To implement the office example with JCop, an external mechanism to monitor changes in
context must be specified in addition to the definition of layers and when they have to be activated.
An intuitive solution could be the introduction of a thread to monitor the temperature and the
risk of fire, and another thread to monitor the smoke level in the room. The context construct of
JCop allows to encapsulate changes related to the smoke detector. In fact, we can assume that,
in case of fire, the activation of the fire alarm is the “normal” behavior, whereas the activation
of both the fire alarm and the air outlet represents a variation.

In order to provide a comparison between PerLa and COP, we adopt the conditional compo-
sition approach for the next examples, due to the presence of the context construct and the
when clause. If the context is active and therefore the condition in the when clause of the
corresponding concept is satisfied, an established action is performed.

The proposed JCop code (Listing 5) translates the PerLa example of Listing 4: the main
SmokeMonitoring thread instance sm sleeps for ten minutes® (cf. the PerLa SAMPLING EVERY
10m clause) and, when resumed, it controls the smoke level in the room; if it detects persistent
smoke within the smokeRisk method of the SmokeMonitoring thread (cf. the PerLa ACTIVE IF
clause), it activates context smokeRisk(), equivalent to PerLa Location = "office” AND Smoke =
"persistent” (Listing 4), in which the with statement will activate the SmokeLayer in the class
ActiveActuators, so executing the same actions that the PerLa code invokes in the ON ENABLE
clause. The ON ENABLE and ON DISABLE clauses of PerLa CL could apparently have a

3The sleep (600000) is part of the thread instance code and it is not shown in the listing.
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Listing 5: The SmokeMonitoring example in JCop

context SmokeRisk {
in (SmokeMonitoring sm) && when (SmokeMonitoring.smokeRisk ()) {
with (SmokeLayer) ;
}
}

class ActiveActuators {
public activeAlarm() {
// When this method is called by thread
// SmokeMonitoring,
// the air outlet will be opened
Alarm.activateFireAlarm();

}

layer SmokeLayer {
activeAlarm() {
// If the layer is activated, the air outlet will be opened
Outlet.sendOpenCmd () ;
}

Listing 6: The OverheatMonitoring example in PerLa

CREATE CONTEXT OverheatMonitoring
ACTIVE IF Location = ’office’
AND Env_Temp = hot AND Env_Humidity.h_level > 0.65
REFRESH EVERY 30m
ON ENABLE (OverheatMonitoring)
SELECT temperature, humidity
SAMPLING EVERY 10 m
EXECUTE IF EXISTS (temperature, humidity)
SET PARAMETER ac_temp = 'cool’
SET PARAMETER ac_dry = ’on’
SET PARAMETER fan_speed = 0.65
ON DISABLE (OverheatMonitoring)
SET PARAMETER ac_temp = 'off’
DROP OverheatMonitoring

behavior similar to that of the with and without statements of JCop mentioned in Sect. 2.2.1,
since they enable (or disable) a given procedure, retrieving some data from the sensors and thus
operating on them.

If SmokeLayer has been activated and a high amount of smoke is detected, the partial method
activeAlarm() switches to ”open” the state of the air outlet. When the layer is deactivated, the
state of the actuator is switched to ”close” (SET PARAMETER ac_temp = "off”), going back
to the previous situation.

This example shows that context in JCop is driven more by events than by rough data; it
also introduces other similarities between PerLa and JCop, at least from a conceptual point of
view. The concepts of partial components and partial methods could be considered based on the
same idea of composing different entities to provide a new behavior; the PerLa context query and
the COP context construct contain dedicated statements to declare when context changes and
which actions must be executed in response.

PerLa partial components and COP context entities refer to context composition and adapta-
tions as a whole, i.e., from the composition of different basic data in order to obtain a new higher
concept, to the execution of combined actions, covering both data management and behavioral
variations.

As an example of how the coordination of several actions related to different contexts can be
achived by the CL in a simple way, Listing 6 shows how the context OverheatMonitoring checks
every thirty minutes if, in the set of data provided by a group of devices, there is a value in
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the temperature field higher than the settled threshold, and if it finds it, the air conditioner
switches on the cooling function. Now, suppose that a context VentilationMonitoring (Listing
7) is declared in order to monitor when the office temperature lowers too much: in this case
there would be a partial overlap between the data required by contexts VentilationMonitoring
and OverheatMonitoring. In fact, both contexts need the current temperature value as a partial
context while only OwerheatMonitoring requires the humidity value (see Fig. 2); the PerLa
middleware deals with both the composed contexts to provide data and to perform actions in
order to set the air conditioner variables: the fan speed, the humidity and the temperature
control.

Listing 7: The VentilationMonitoring example in PerLa

CREATE CONTEXT VentilationMonitoring
ACTIVE IF Location = ’office’

AND Env_Temp = cold
REFRESH EVERY 30m
ON ENABLE (VentilationMonitoring) :
SELECT temperature
SAMPLING EVERY 10 m
EXECUTE IF EXISTS (temperature)
SET PARAMETER ac_temp = 'heat’
SET PARAMETER fan_speed = 0.65
ON DISABLE (VentilationMonitoring)
SET PARAMETER fan_speed = 0.3
DROP VentilationMonitoring

The separation of context definition and activation management sections from the code specify-
ing the context-aware behavior of the system, and the contextual block composition mechanism,
introduced in Section 2.1.4, are similar to the composite layers mechanism introduced in EventCJ
(Kamina et al., 2013) to overcome the linguistic problems connected to units of behavior which
can correspond to different contexts and, possibly, can be executed under a combination of con-
texts.

In general, by adding the context management features, besides for sensor data collection and
querying, PerLa can be adopted for applications performance monitoring. Sensors can be con-
figured for this purpose and the collected data can be used to change the working parameters
of the monitored application, e.g., in order to increase its efficiency; the application developers
must declare the significant context changes and which actions must be performed in different
situations, with no need to implement anything at the operational level.

3.3 Implementation issues

In the previous sections, we saw how the COP paradigm introduces the problem of choosing the
most appropriate way to compose the application, including the choice of the layers composition
mechanism. For example, dynamically scoped activation approaches are convenient when all the
entities in the control flow are context-dependent, while per-object activation is a suitable solution
when behavioral variations intersect only a little part of the application structure (Salvaneschi
et al., 2012a).

A solution to the implementation of a Context-Aware self-adapting system can be to delegate
everything related to the configuration of sensors, the intermediate computations on data, and
contexts declaration and management to PerLa which, as shown in Section 2.1, provides a com-
plete support for managing all the entities involved in the pervasive environment, and to use COP
languages to perform behavioral variations, using the contextual information provided by PerLa;
a context can be viewed as a particular context data stream, i.e. a normal PerLa stream, prop-
erly adjusted to provide only data related to the defined context. This operation is performed
by the CM: it manages the CDT and the actual contexts, and creates the contextual streams

accordingly. Some simple actions, such as those of the office examples, can be still performed by
the CM.
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COP, in turn, can handily use the information inserted in context data streams to implement
the desired behavioral variations. The programmer has only to care about the definition of
layers, with statements, partial methods, etc., for the entities whose normal behaviors must be
dynamically adapted.

Moreover, the activation of a layer at the client application can be seen as a particular case
of firing external events from the PerLa middleware. Therefore, since the concept of event
represents a general notification the system sends to a remote application, we extended the
Context Language, the CDT declaration language and the representations of these constructs
with the possibility of declaring events by means of the EVENT interface. This clause, which can
be inserted both in the ON ENABLE / ON DISABLE and in WITH ENABLE COMPONENT
/ WITH DISABLE COMPONENT clauses, is composed of three parts:

Type of event This part is a token that defines which event will be fired. In our implemen-
tation we define two types of events: i) in order to detect the change of the activation status
of a COP layer the token COPLAYER; ii) the second one - REST - represents a remote
request to a REST web service. Both events are represented by an object that inherits from
the event interface, in particular the Layer class and the Rest class.

Command This part declares the actions that must be performed when the event is fired.
It is specific of the type of event.

Attributes In this part, all the parameters (mandatory or optional) that are needed to
further specify the event are declared.

As to the communication pattern between the PerLa middleware and the client, we chose a
lightweight implementation of the publish-subscribe mechanism which is fit for sending a large
number of messages to subgroups of connected applications, based on the type of message and
its content, without directly managing the connections.

The resulting architecture is shown in Figure 6, while in Figure 7 the sequence diagram of the
interactions among the components is presented.

Referring to (Angaroni, 2015)* for a detailed description of the extended system, we mention
here only the most relevant updates to the PerLa language and middleware.

Language clauses

In order to bind the change of status of a context in PerLa to the activation or deactivation
of layers the EVENT clause is used, followed by the COPLAYER token for which three types of
commands have bee defined:

LOAD This action defines that the specified layer has to be activated and that the activation
command will be sent to the interested applications.

DROP This action is the opposite of the previous one and it is used to deactivate a layer; it
can be declared only if a layer has been already activated using the LOAD clause.

TOGGLE This action specifies that a layer will switch from active to inactive when the
context it is associated with changes its status.

We must notice that the uncontrolled use of LOAD and DROP actions can cause inconsistencies
and an unforeseable behavior as, for instance, in the case a layer is activated an unbounded
number of times. Anyhow, we decided to keep them in order to leave complete freedom to the
designer, but to address this problem, we defined the attribute MAX, whose default value is
”unbounded”, for the LOAD command in order to set an upper bound to the maximum times a
layer can be activated; if the TOGGLE command is used you need not care about this problem.

Other attributes for the commands are:

4http://perlawsn.sourceforge.net /files/documentation,/2016_04_Angaroni.pdf
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Fig.6. The system architecture

Identifier This attribute is mandatory and defines the unique identifier common to the system
and the remote applications. Therefore, if two layers are declared with the same identifier
the system will treat them as the same layer. This value is also used to link the particular
event fired by PerLa and the COP layer in the remote application.

Domain This optional attribute is used by the LOAD and TOGGLE commands to declare
to which domain of the publish-subscribe it will be distributed. It is particularly useful when
the designer wants to define different types of applications that can be connected to PerLa;
it can also be used to define a security policy in which only the applications that connect to
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Fig.7. The components interactions sequence diagram

the specific domain can receive that event. If not specified, the event will be published on
the public domain.

Shared This is an optional boolean attribute used by the LOAD and TOGGLE commands.
If set to TRUE, it signals to the client’s layer manager that this type of layer can be activated
by the client application independently of PerLa. The default value is FALSE.

PerLa can also call a REST service for performing the POST, GET, PUT, and DELETE
operations in order to obtain some environmental information and possibly to update the web
site when a context changes its status. The only constraint for this type of operations is that they
must refer to an existing web service; this condition is checked at run-time by the RestManager.

The attributes that can be specified in a REST event are:
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URI This attribute specifies which web service the action is directed to.

Content In this attribute the content to be sent to the web service is specified. It is available
only for the POST and the PUT commands; its value is a string, but the user, by inserting
the name of a concept or of an attribute preceded by the dollar sign, can specify the name
of some values that will be inserted when the event is fired. This attribute must be declared
in the CDT and it must be used in the current context declaration.

Middleware components

In order to manage the new event related language clauses, the ContextEvent class has been
defined. It inherits from the class Context, allowing the context manager to treat in the same
way a normal context and a context that contains some events. Then we created an interface
named EVENT that defines a generic event; as previously seen, it can be specialized for every
type of event that can be fired. In our case, we created the Layer and the Rest entities.

The Dispatcher is the main entry point to define a context that needs to fire some events.
It manages and keeps track of the different ContexEvent which have been created. It receives
the notification from the Context Manager and it distributes the events to the event-specific
managers.

When the context changes its status, the Dispatcher notifies the EventManager interface
the event with the specific actions, which will be executed by the appropriate event manager.
The ability of the EventManager to keep track of all the declared and activated ContextEvent
objects has two main advantages: i) it centralizes the management of these objects and avoids
useless replication in the other managers; ii) it allows a general consistency check. A UML schema
of the middleware components is shown in Figure 8

ContextManager

Dispatcher

; O camrmce> |
_ =<Interface=> =<Interface>> <<Interface>>

| LayerManager | | RestManager | | Layer Rest

Fig.8. The middleware UML diagram

Events distribution
The publish/subscribe mechanism has been implemented by using Apache ActiveMQ which
has all the features that are deemed important for this kind of application, namely:

— Loose coupling between the applications and the middleware;
— Assurance of delivery;

— Capability to deal with a large number of connections;

— Ability to manage heterogeneous types of messages;

— Easily extendable to new types of messages;

— Ability to manage clients that disconnect and reconnect;

— Ability to send the client only the messages it is interested to;
— Having a security policy;

— Being lightweight.
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Moreover, it allows to implement the subscriber in different languages.

Since not all the applications must receive all the events that can be fired, we need some kind
of security policy in the distribution of the events. Therefore, we give the system the possibility
to divide the different connected applications into domains on the basis of the topics of interest; if
a topic is published in one domain, it will be invisible to the others. Additionally, in the different
domains some encryption mechanism can be set.

Two domains are originally created: i) a public domain in which the unprotected topics are
published. This domain contains all the available messages. The applications that subscribe to
this publisher need not provide any credentials. ii) a system domain in which the information of
the PerLa system, if any, will be published. Other domains will be created only when the system
is deployed in a specific environment.

On the server side, the MainServer class creates the publisher; it receives the subscriptions
by the applications, then it checks if the application needs to subscribe to a specific domain and if
it has the right credentials. Then the Publisher, specific for each type of event, is assigned to a
domain. It dispatches the messages and assures that all of them are received by the subscribers.
Once created by the MainServer, the Publisher is passed to the specific EventManager that
receives the notifications of the events from the Dispatcher. Then the EventManager selects the
right Publisher, creates the message and sets some parameter in the header in order to allow
filtering at the client side.

On the client side, the Subscriber receives a specific kind of event and notifies it to the ap-
propriate EventManager. When the user initializes the PerLaClient class it selects in which
type of events it is interested in order to allow the PerLaClient to create the proper managers and
the subscribers. Additionally, the domain from which the applications must receive the events
must be set, and, if required, some credentials must be provided. Moreover, in order to filter the
received messages, some user information can be set by using the JMS Message Selector class. If
some consistency on the reception of the events is to be assured, such as those referring to layer
activation, the subscriber must be set as durable.

The client
The client, which receives the event notifications, is made of three components:

the Subscriber classes which receive the messages;

the EventManager classes that manage the events and create the Subscriber classes for
the different kinds of events and domains.

The PerLaCLient class that creates the different EventManager classes.

In general, an application can decide directly at which kind of events it has to subscribe;
however, for the specific case of layers activation and deactivation, the client application delegates
the management of some layers to PerLa. Thus, the PerLaCLient automatically configures the
LayerManager and the Subscriber classes.

As to the domain, the application designer must specify at which domain the application must
connect. If this parameter is not set, the EventManager will automatically connect to the public
domain.

The LayerManager allows to activate or deactivate layers and modify the behavior of the
targeted application. When the layer manager receives, as a parameter provided by the appli-
cation, the JCOP class, which is the main controller of the composition of layers in JCop, it
checks if the defined layers are actually declared in the application itself and retrieves them. Then
it creates the Subscriber and sets the specified layers as a filter, in order to receive only the
relevant messages.

When a layered event arrives, the LayerManager decides which action is to be performed
based on the command attribute. If it is a LOAD it adds the layer to the current composition
of layers enabled by PerLa, if it is a DROP it will remove the specified layer from the current
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composition and if it is not present it will raise an exception. Other consistency constraints are
detailed in (Angaroni, 2015). In Fig. 9 the UML schema of the client is shown.

PerLa Client |

Subscriber k>_< EventManager > PerLaClient

Tk Client
Application

LayerManager

Fig.9. The Client UML diagram

4. A CASE STUDY

In order to show the possible applications of PerLa we shortly describe a real-world example
where this system can make a difference in the control of the environment and the prevention of
risks. The chosen site to monitor is a well known ski resort in the Italian Alps (Angaroni, 2015).
In such environment, there is a large number of parameters which are normally controlled by the
staff, but the automation of such functions can make a real difference, in particular as to risk
monitoring.

By allowing every person (either staff member or customer) to know in real-time what is hap-
pening in the resort, if risky conditions arise, it can alert users to be careful, and possibly it can
suggest the staff to shut down the chair lifts and evacuate the customers. Moreover, it allows to
automatize some operations; for example, if there is reduced visibility due to harsh weather, the
system can automatically switch on the light signals that are placed on the pistes.

Among the physical environment status indexes, the most important one is the snow conditions.
A block of snow can be characterized by its depth, temperature, density and snow water equivalent
(SWE, water content obtained from melting a sample of snow). These measures tell how much
snow is on the slopes and its conditions and can be used to decide whether artificial snow should
be added. Another important measure is the snow density: if it is too low, the intervention of
a snow-groomer is needed in order to prepare a surface suitable to ski, and it can also alert for
an increased avalanche risk; if it is too high, it signals the presence of ice and, also relying on
their skiing ability, a possible augmented risk for the users. The weather conditions such as the
temperature, humidity, wind force and direction, snowfall or fog must be also considered.

Other factors to be accounted for are, for example, the chair lifts state, the presence of equip-
ment or rescue squads on the slopes, and others that are useful to give a view of the system to
the staff and to make customers to be aware of the risks in order to prevent accidents.

4.1 System architecture

In our scenario, smart sensor networks, composed of devices having the ability to sense, compute
and communicate the environment temperature, light intensity, pressure, and other snow proper-
ties, are used for monitoring the snow composition on the pistes, data which, suitably aggregated,
can be used for many purposes.

In order to measure the snow conditions, the CIT-1 snow sensor is a reliable and sensible
sensor with automatic snow melting control, while the 260-700 Ultrasonic Snow Depth one is
an inexpensive solution for remotely measuring snow depth or water levels. In order to connect
them directly to the electrical grid, most of the weather sensors have been located near the Base
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Listing 8: The ski resort CDT

CREATE DIMENSION SnowCondition

CREATE CONCEPT Icy WHEN temperature: < -5 AND snow_density > 0.30
EVALUATED ON EVERY ONE SELECT temperature, snow_density

SAMPLING EVERY 2 h

EXECUTE IF EXISTS (temperature) AND (snow_density)

CREATE CONCEPT Slushy WHEN temperature > 8 AND snow_density BETWEEN 0.12 AND 0.29
EVALUATED ON EVERY ONE SELECT temperature, snow_density

SAMPLING EVERY 2 h

EXECUTE IF EXISTS (temperature) AND (snow_density)

Stations - which are to receive the data from the deployed sensors - at the start and arrival
point of the chair lifts. This allows the use of more powerful devices and reduces the cost of
deployment and maintenance. Other devices are to be powered by batteries and solar panels and
communicate by radio channels with the base stations.

All users in the resort have their own devices - equipped with a WiFi or GSM receiver - running
the client PerLa system which connects to the FPCs through the base stations for getting the
needed data.

A database is used in order to manage the static data of the resort.

4.2  The context

Using the CDT model explained in Section 2.1, we consider as primary context dimensions the
Role of the user, his/her Location, the WeatherCondition, the SnowCondition, and the possible
Risk. In Listing 8 an excerpt of the CDT declaration is shown:

Once the context model has been declared, contexts have been defined on it as explained in
Section 2.1; in Listing 9 a couple of contexts which use the SnowCondition dimension are shown:

Icy Pistes. Icy pistes can be a problem for the skiers because they have less control in the
presence of ice. For this reason we created a context that represents this information which could
then be displayed on the website of the sky resorts and on the skiers devices in order to make
them more careful.

Slushy Pistes. The opposite situation than icy pistes are slushy pistes. When the snow keeps
melting and refreezing, the snowflake structure is lost and many little lumps of ice are left. This
context is defined in order to inform the skiers to be careful since the pistes are not in optimal
conditions.

4.3 Application programs

There are two main types of applications that use the data provided by the system: the first is
a mobile application that runs on the devices of the users (see the clauses EVENT COPLAYER
TOGGLE ... in Listing 9); the second one is the resort’s web services (see the clauses EVENT
REST PUT ... in Listing 9).

From the point of view of the mobile application, PerLa provides the commands to activate
or deactivate the layers which enact the behavioral variations in the application program. For
example, if the application knows that the user is an amateur skier and the layer IcySlopes is
activated, it can send him an alert message to slow down due to the presence of ice in the pistes.
In order to identify the user from the credentials he/she provides to the applications, a connection
to the web services is needed; his/her role can completely modify the behavior of the application..
For example, the application used by a snow lift controller will be focused on the wind conditions
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Listing 9: Context declaration example

CREATE CONTEXT IcyPistes

ACTIVE IF Place = Slope AND SnowCondition = Icy AND Role = Customer
ON ENABLE: EVERY 30 m SELECT temperature, snow_density

SAMPLING EVERY 10 m

EXECUTE IF EXISTS (temperature) OR EXISTS (snow_density)

REFRESH EVERY 1 h

EVENT COPLAYER TOGGLE Icypistes ,

EVENT REST PUT www.AlpSkyResort.com/SlopesState/IcyPistes

CREATE CONTEXT SlushyPistes

ACTIVE IF Place = Slope AND SnowCondition = Slushy

AND Role = Customer

ON ENABLE: EVERY 30 m SELECT temperature, snow_density
SAMPLING EVERY 10 m

EXECUTE IF EXISTS (temperature) OR EXISTS (snow_density)
REFRESH EVERY 1 h

EVENT COPLAYER TOGGLE SlushyPistes ,

EVENT REST PUT www.AlpSkyResort.com/SlopesState/SlushyPistes

Listing 10: Example of behavioral variation in the client application

when (Device.inSlope () && Device.Role() .equals ("AmateurSkier")
with (LayerManager.GetLayers() );

layer Icypistes {

public void DeviceAlert.update () {

// Alarm beep

}

public void Display.update () {

// Message: Slow down the snow is too icy

}

}

class Device {

public static boolean inSlope () {
/x checks GPS and RFID data =/

}

public static String Role() {
/*Return the role of the user x/
}

}

class DeviceAlert {

public void update () {

// Do nothing.

}

}

class Display {

public void update () {

// Message: The snow condition are optimal.
}

}

and the congestion on the chair lifts, while for a rescue squad it will be focused on showing the
possible dangers that can show up in the resort area, e. g.: a possible avalanche or a rescue
request.

Listing 10 refers to a fragment of a JCop application program showing a behavioral variation
in case of difficult snow conditions for an amateur skier.

5. RELATED WORK

A very comprehensive analysis of other projects active in the context-aware systems research field
can be found in (Hong, Suh, and Kim, 2009). From these works a similar approach to context-
aware systems management emerges, in which context is mainly analyzed at the application level,
a dedicated language is used to retrieve all the necessary information from the sensors (Reichle,
Wagner, Khan, Geihs, Lorenzo, Valla, Fra, Paspallis, and Papadopoulos, 2008). This is the
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case of CIS (Judd and Steenkiste, 2003), where contextual data is stored in a central database
later queried using SQL. CASS (Fahy and Clarke, 2004) adopts a similar centralized database
approach. In CoBrA the context is represented as a Context Knowledge Base (Chen, 2004) for
the specific application of event/meeting management. On top of this knowledge base temporal,
spatial and event/meeting reasoners (based on contextual rules) operate to deduce more abstract
contextual information. iQueue (with the igl language (Cohen, Purakayastha, Wong, and Yeh,
2002)), on the contrary, allows to compose contextual information according to data specification
requirements and provides a library that can be used to build context-aware applications. The
SOCAM project (Gu, Pung, and Zhang, 2005) proposes an extremely general ontology-based
context model. Sets of extensible ontologies are exploited to express contextual information
about user, environment and platform In (Schreiber et al., 2012) we presented a middleware-
based approach in which the overall computational complexity grows linearly with the number
of deployed sensors.

The literature also contains some detailed surveys on the different models adopted to represent
context as well as on available pervasive management system frameworks. The work presented in
(Bolchini et al., 2007) defines a framework used to compare and classify sixteen different context
models, while (Bettini, Brdiczka, Henricksen, Indulska, Nicklas, Ranganathan, and Riboni, 2010)
provides a historic overview. As far as pervasive management system frameworks are concerned
a detailed comparison can be found in (Schreiber et al., 2012).

Until 10 years ago, only solutions at the architectural level dealt with context and software
adaptivity. In the recent past, researchers tried to find other ways to deal with those issues
and, particularly, the focus has shifted on solutions at the programming language level. For
this reason researchers started to move in the direction of embedding context management and
context-dependent behavioral variations directly in the program code.

The capability of the system to adapt its behavior according to its knowledge of the whole
global context is the most important aspect. The more information a system is able to retrieve,
aggregate and manage, the more accurate its reasoning will be. Hence, every solution at the
language level must allow the programmer to develop a full context-aware application, which can
properly achieve three type of behavioral variations: User-, Environment- or System-dependent.

Many different models for the development of context-aware applications have been proposed.
One of the most widespread frameworks created to support context management and adaptivity
is Context Toolkit (Salber, Dey, and Abowd, 1999); it simplifies the activities of building context-
aware applications using the Java programming language.

This framework represents an example of the relationship between adaptations and context.
In fact, it provides specific components for context management, but also specific components
for the encoding of behaviors, called Services.

Its current main features are:

Abstraction of contexts, sensors, and actuators using Widgets.
— Resource Discovery of distributed components.

— Rule-based reasoning for context-aware applications through FEnactors, components which
encapsulate the application logic and simplify the acquisition of context data.

— Machine learning reasoning for context-aware applications.

— FEzxplanation of application behavior and reasoning through the Intelligibility Toolkit.

Control facility through Enactors.

The most important components are the Widgets, which are responsible for encapsulating the
details of the devices for sensing context while providing applications with the needed context
information.

Moreover, pervasive and ubiquitous applications have often to deal with distributed computing
environments, and the problem of uniformly reasoning on different separated contexts is one of

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.



Context-aware Self Adapting Systems: a Ground for the Cooperation ... : 57

the main problems of a distributed architecture. Context Toolkit introduces a rough model of
context distribution related to two different concepts:

(1) the context model distribution, i.e., how the global context is split in many sub-contexts,
each one with specific attributes and properties.

(2) how to reason on the distributed context, i.e., how the system utilizes sub-contexts to form
a bigger piece of context since each context Widget is responsible for a sub-context captured
by a sensor.

In Lee et Al. (Lee, Pham, Kim, and Youn, 2011) a hierarchical context model is proposed for
reasoning on distributed context. It is composed by several layers: the highest level represents
the global context of the whole system, while the lower levels represent the contexts of any local
source of information. This abstract model shows a tree structure, which is very useful and
manageable in many real situations. Higher level contexts are inferred from lower levels, without
directly considering the original local information. This model allows to delegate the management
of different pieces of context to different parts of the system and also to distribute the reasoning
process to many independent entities.

We think that the approach presented in this paper, which merges the power of an object
oriented programming language and of web services with the flexibility of a context-management
system, provides a very general and application independent solution to the problem of building
context-aware adaptive software.

Leaving the details to (Salvaneschi et al., 2012a), we present in the following some other context-
aware programming paradigm; further possible approaches are described in (Bainomugisha et al.,
2012), (Salvaneschi, Ghezzi, and Pradella, 2012b) and (Gonzilez, Cardozo, Mens, Céddiz, Lib-
brecht, and Goffaux, 2010).

Aspect Oriented Programming (AOP) has as main goal the modularization of orthogonal func-
tionalities in software by allowing a clear separation of cross-cutting concerns, where a concern is
a set of information which affect program code. It might also happen that a concern implemen-
tation affects other concerns, creating code duplication and/or dependencies (cross-cuts) (Fabry,
Dinkelake, Noy, and Tanter, 2015). Aspects are features which, while being not related to the
program primary function, affect many part of the program; aspects are defined and designed
not to violate the separation of concerns principle. The place in the main program where the
code implementing an aspect is to be executed is specified by a join point; a set of join points
constitute a pointcut. When, during the main program execution, a join point belonging to the
pointcut is reached, an additional code - an advice - is executed in order to modify the standard
behavior, so attaining a context-dependent behavior.

Behavioral Programming (BP) (Harel et al., 2012) is a fully scenario-based approach based on
the concept of behavior threads (b-threads). Each thread models a specific scenario (e.g. a specific
usage context), by defining the sequence of events that must be detected in order to identify it.
A sequence may contain also negations or be indifferent to the presence of specific events. There
may also be a set of conditions to be verified together with the sequences of events to recognize
the context, and each b-thread may output other events during its execution. A thread may be
totally, partially or incompletely independent from other threads; the interaction among them
gives the integrated system behavior. All the threads are synchronized and a thread may forbid
other threads to generate their events by generating and emitting its own events. Inter-thread
communication is event-mediated (a direct message exchange between threads is not possible),
so a thread sequence detection may depend from the generation of a particular event by another
thread. b-threads are orthogonal to objects, and may not be anchored to a given scenario or to
a particular physical object.

6. CONCLUSIONS AND FUTURE WORK

In this work we propose a hybrid solution to the problem of building context-aware adaptive
systems based on the PerLa framework to design, declare and manage context; Context Oriented
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Programming Java extension JCop is used to write complex layered procedures where each layer
is bound to a specific context; the invocation of web-services allows the inclusion of virtual sensing
devices.

After building a first prototype, the context management modules of the system are currently
under implementation; at the end, an evaluation campaign is planned in order to asses the per-
formance of the system itself as well as to compare both technical performance and effectiveness
of our approach against those of other systems proposed in the literature.

Further work is going on in order to provide a full-fledged software system which can be
used in many different application areas spanning from healthcare systems to intelligent energy
management in smart buildings. This extension consists of embedding a context manager and a
part of the CDT in the client software so enabling context inference to be made directly on the
user device so obtaining a better response. Given the current technological developments, which
embed different sensor types on devices such as smartphones, the possibility emerges of extending
the sensing network without deploying it by simply inserting an XML device descriptor in the
user device.
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