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Facial expressions play an equally important role as the verbal communication and tonal expressions. They echo
the mental state of the person. Expressions can be modeled either by using descriptive features - coded using
facial muscles, or judgmental features - coded using texture information. In this paper, we surveyed mainly
judgmental feature based prominent methods. An image is rich and high dimensional data structure, which can
result into considerable computation when processed directly. Various feature extraction techniques have been
proposed to represent the image efficiently in lower dimensions which can be easily processed by a machine. Until
now, most of the research was centered around the recognition of frontal face expressions. Recent work has been
targeted on processing profile faces and spontaneous expressions by treatment of multimodal fusion. In addition to
features, the dataset is another major aspect of pattern recognition. Multidimensional comparison of various facial
expression databases is also derived in this paper. Moreover, the survey presents scientific challenges touching the
performance of the system.
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1. INTRODUCTION

Affective computing is the next generation computing, in which an automated response is gener-
ated from human behavior and expressions. It focuses on recording, interpreting and modeling
the users’ mental state into appropriate computer actions. Pantic et al. [2006] described Facial
Expression Recognition (FER) as a process of finding the emotional state of the person from
the facial images. Bit by bit, future of computation will be humanistic instead of computer
focused. Automatic facial expression recognition can act as a component of the natural human-
machine interfaces. Synthetic speech with expressions sounds more pleasing and convincing than
a monotonous voice. Fasel and Luettin [2003] and Kanade et al. [2000] have shown that talk-
ing heads, avatars, computer agents can be trained to learn user preferences through the user’s
expressions.

Facial expression is the most grounded segment which mirrors the mental state of an individual.
And as per the studies of Donato et al. [1999], it provides an important behavioral measure to
study emotion, cognitive processes, and social interaction. Human-Computer Interaction (HCI)
is getting key attention in automation of computer-based activities such as motion based gadget
controlling, security frameworks, medical, and entertainment. Customary HCI frameworks do
not account the mental state of the individual. Precise recognition of the facial expressions can
revolutionize human-machine interfaces.
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Facial expressions are not just a physical change on the face, rather it is a physio-psychological
process, which emerges from the mind and reflected on the face in the form of contraction of
muscles. Fasel and Luettin [2003] identified that this adjustment in muscles keeps going for
limited focus period, roughly from 250 ms to 5 sec. Expressions are not always in peak intensity,
18 unique classes of smile are noted by Schmidt and Cohn [2001]. Also, other expressions may
have a number of variants - gentle to peak. Thus, recognition of facial expression is not an easy
task. The intensity of expressions varies over the time for an individual and between two different
persons. Subsequently, it is difficult to determine precise facial expression intensities, without
referring to the neutral face of a given subject. Recognizing expressions from the spontaneous
image is harder as compared to posed still images, which are usually captured in a controlled
environment with peak expression intensity and thus can be identified more easily.

Investigation of the Physiognomy and facial expression dates back to the era of Aristotle (4"
century). Physiognomy is the Greek word, in which physis means “nature” and gnomon means
“judge”. Highfield et al. [2009] defined it as the branch of assessing peoples’ character from
their outer appearance, especially from the face. Over the period, interest in Physiognomy faded
out but the facial expression has been an active area for artists, physicians, and researchers.
In 1649, Bulwer [1649] discussed about effects of expressions on facial muscles movement in his
well-known book “Pathomyotomia”. This can be considered as foundation study in the field.
Another interesting study on facial expressions was performed by French Painter Brun [1698].
He promoted the expression of emotions in his article published in 1698. His lecture at the
Royal Academy of Painting in 1667 on facial expressions and their effects on the painting was
reproduced in the form of book Brun [1734]. Many of the 18*"-century artists had been referring
this book for imitating the expressions in different conditions. The most important work which
has had a direct influence on modern FER research was done by Darvin [1872] in the nineteenth
century. In 1872, he studied the generality of facial expressions across human and animals in
his well-known book “The Ezpression of the Emotions in Man and Animal”. That was the
preliminary experiment on facial expression. He observed how humans and animals exhibit the
common characteristics while expressing their emotions. Both have a tendency to show their
ocular muscles and tighten their teeth when they are in anger state.

Till then, a lot of work has been done in the field of facial expression recognition. It has
played a vital role in social communication and in conveying emotions. According to Mehrabian
[1968], facial expressions alone convey 55% of the information, while vocal and verbal channel
together carry only 45%. Darvins claim of universality in expression was reinforced by the series
of experiments conducted by Ekman and Friesen [1971]. They postulated a range of expressions
into six judgmental classes - anger, disgust, fear, happy, sad and surprise, which are portrayed in
Figure 1. These prototypic expressions are universal across all human ethnicities, cultures, race,
age, gender and locality. Later, Ekman and Friesen [1978] introduced descriptive coding, known
as Facial Action Coding System (FACS). FACS represents the expression in terms of Action Units
(AU), which is a visible measurable change in facial muscles.

Figure 1. Six basic expressions postulated by Ekman and Friesen. From left to right: happy, fear, disgust, surprise,
sad and anger

Suwa et al. [1978] offered pioneer study on auto facial expression analysis from the sequence
of images. In their presented work, they tracked the motion of 20 facial points on image se-
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quence. Since then, both face and facial expression recognition continue to attract researchers
from various fields like image processing, pattern recognition, machine learning, and computer
vision. By the time, processing power had grown unexpectedly and became less expensive. Face
detection and face tracking studies, which are required for FERS, had already made significant
progress. Research on facial expression recognition got the real attention after the modality of
six expressions and experiment by Suwa. Historical developments in facial expression recognition
are summarized in Table 1.

Reference

Contribution

Darvin [1872]

He established the historical background for the study of facial expressions

Mehrabian [1968]

Claimed that the expressions contribute 55% in social communication

Ekman and Friesen [1971]

Classified range of expressions into six basic prototypic expressions

Ekman and Friesen [1978]

Developed FACS to model the facial muscle change in terms of AUs

Suwa et al. [1978]

Proposed first computerized FER system by tracking 20 facial locations

Sirovich and Kirby [1987]

Presented an idea to represent a face as an eigenpicture

Daugman [1988]

Presented a Gabor texture descriptor with neural network for face analysis

Turk and Pentland [1991]

Implemented first facial expression recognition system based on PCA

Chellappa et al. [1995]

Their survey on face recognition using machine has given a new direction to
the field of face recognition

Ojala et al. [1996]

Proposed a powerful texture descriptor called Local Binary Pattern

Yacoob and Davis [1996]

Designed a facial expression recognition system by extracting dynamic tem-
poral features from image sequence using optical flow

Swets and Weng [1996]

Presented an idea of automatic selection of most discriminative features and
most expressive features using PCA and LDA

Belhumeur et al. [1997]

Designed fisherface based facial expression recognition using LDA. PCA and
LDA are highly used in facial expression recognition for optimal feature se-
lection by dimension reduction.

Bartlett and Sejnowski [1997]

Proposed a way of representing a face as a set of independent uncorrelated
components.

Lyons and Akamatsu [1998]

Prepared JAFFE dataset and implemented Gabor wavelet based FERS.
Through experiment they showed that mouth and eye region are the most
promising areas for feature extraction.

Cootes et al. [2001]

Designed Active Appearance Model for efficiently locating fiducial points on
face

Ojala et al. [2001]

Authors extended the functionality of basic LBP to multi-resolution LBP

Fasel and Luettin [2003]

Published a remarkable survey on facial expression recognition

Yang et al. [2004]

Implemented 2D-PCA to overcome the limitations of PCA

Viola and Jones [2004]

Designed Viola-Jones algorithm for face detection

Shan et al. [2009]

Compared performance of various classifiers for LBP features and evaluated
performance of facial expression in low resolution

Guo et al. [2010]

Extended LBP to completed LBP by incorporating sign and magnitude of
LBP response

Moore and Bowden [2011]

Investigated intrinsic potential of different poses for facial expression recog-
nition. Using variants of LBPs, implemented FER for multi-view non-frontal
faces.

Almaev and Valstar [2013]

Presented Local Gabor Binary Pattern (GLBP) which finds LBP pattern of
Gabor convolved image.

Huang et al. [2015]

Proposed spatio-temporal feature extractor LBP-TOP for efficient facial rep-
resentation

Corneanu et al. [2016]

Published remarkable survey on facial expression recognition using multi-
modality.

Table I: Timeline of facial expression research

Rest of the paper is organized as follow. Generic framework of FER system is discussed
in section 2. Section 3 covers the fundamental aspect of the study, various feature extraction
techniques, classifiers, comparisons etc. Detail study of facial expression dataset is outlined in
section 4. Section 5 covers conclusion and discussion followed by references.
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2. FACIAL EXPRESSION RECOGNITION FRAMEWORK

Corneanu et al. [2016] classified coding of expression in two categories: descriptive and judgmen-
tal. Descriptive coding scheme defines the expression in terms of position and relation between
facial muscles. The face is described by the set of facial muscle configuration, called Action Units
(AUs). For a given expression, the presence of AU may be independent or in combination. Ekman
reported more than 7000 different AU combinations. Facial Action Coding Scheme (FACS) and
Facial Animation Parameter (FAP) are widely used descriptive coding schemes. Conventionally,
FACS code is manually labeled by trained observers while viewing videotaped facial behavior in
slow motion. Few of the descriptive features of upper and lower face are portrayed in Figure 2.
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Figure 2. Descriptive facial features: upper face features (top half), lower face features (bottom half)
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On the other hand, judgmental coding scheme describes the emotion based on subtle details
present on the face, like texture, wrinkles, bulges etc. Typically, judgmental features are extracted
using filter or kernel function. If features are extracted holistically, it is known as appearance based
approach. In geometric feature based methods, major face components and/or feature points are
used for feature extraction. Appearance/texture features are more suitable for capturing subtle
changes in appearance (e.g. wrinkles) of the face, while geometric features are more capable of
representing shape and location information of facial components (e.g. mouth, eye, nose etc.).
Normally, texture features require a face normalization to handle errors caused by variations
in pose, size and location of the face, while geometric features have a better tolerance to a
reasonable amount of these variations. However, geometric features have the weakness of losing
regional texture and they also require accurate location and robust tracking of facial landmarks.
Geometric and appearance based judgmental features are demonstrated in Figure 3.

Figure 3. Judgmental features: Geometry-based (left) vs. Appearance-based (right)
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Tian et al. [2005] reported that fundamentally FER system consists of three steps: prepro-
cessing, feature extraction and classification . FER can be performed on still images or image
sequence, classified as a static or dynamic method. Input samples are often pre-processed for
better performance. Face detection and face registration brings up uniformity in samples. Face
registration is often performed using various methods like Eight eye segmentation by Luo et al.
[2013], manual eye localization by Shan et al. [2009], Shih et al. [2008], Yan et al. [2012] or Viola-
Jones face detector by Oliveira et al. [2011], Nagi et al. [2013], Zhang et al. [2012]. A generic
framework for FER system is shown in Figure 4.
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Figure 4. Generic framework for facial expression recognition

As reported by Tian et al. [2005], expression recognition may be performed on 2D images or
3D models, known as image based or model based approach, respectively. Image based approach
considers the intensity values of spatial coordinates of the image plane and extracts expres-
sion representative information. Model-based approach considers the depth as well as intensity
value of the face points. Added third dimension adds the robustness with elevated complex-
ity. Image based approaches fail to handle in-plane or out of the plane rotation of face, while
model-based approaches can deal with such problems by performing affine transformations. In
holistic approaches, features are extracted holistically. In geometry-based methods, individual
face components like an eye, cheeks, lip, eyebrow, nose tip etc. are detected and expression is
classified based on the relation between those local components.

Principal Component Analysis (Turk and Pentland [1991], Sirovich and Kirby [1987], Swets
and Weng [1996]), Linear Discriminant Analysis (Swets and Weng [1996], Belhumeur et al. [1997],
Lyons [1999]), Gabor wavelet (Lyons [1999]), Local Binary Pattern (LBP) (Ojala et al. [1996]),
Line Edge Map descriptor (Gao et al. [2003]), 2D PCA (Yang et al. [2004]), (2D)? PCA (Oliveira
et al. [2011]) etc. have proved good mark in pattern recognition problem.
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2.1 Scope and Challenges

Facial expression is intensively studied topic however, there are certain open issues. Expression
recognition in low-resolution environment is almost unaddressed. Real time videos like conference
recordings, surveillance videos are normally available in low resolution. Precise recognition of
expression in such environment is a challenging task. Tian [2004] used geometric and appearance
based features to perform expression recognition in low-resolution images. Bartlett et al. [2005]
evaluated the performance of Gabor features and achieved noticeable accuracy. Later Shan et al.
[2009] investigated Gabor and LBP features for FER in a similar environment. Jabid et al. [2010]
evaluated the performance of Local Directional Pattern (LDP) features for low-resolution images.
Results of an experiment on low-resolution images are compared in Table 2.

Descriptor | Reference 150 x 110 | 75 x 55 48 x 36 37 x 27
Gabor Tian [2004] 92.2 91.6 - 77.6
Gabor Bartlett et al. [2005] 89.1 £+ 3.1 89.2 £+ 3.0 86.4 £+ 3.3 83.0 £ 4.3
LBP Shan et al. [2009] 92.6 £ 2.9 89.9 + 3.1 87.3 £ 3.4 84.3 £ 4.1
Gabor Shan et al. [2009] 89.8 £ 3.1 89.2 £+ 3.0 86.4 £+ 3.3 83.0 £ 4.3
LDP Jabid et al. [2010] 96.4 £ 0.9 95.5 £ 1.6 93.1 £ 2.2 90.6 £ 2.7

Table II: Performance comparison of different methods in low-resolution environment

Still, accuracy on low-resolution environment is far from acceptable level for the implementation
of realistic system. Accurate detection and tracking of geometric features in such images is always
a difficult task.

Many standard datasets are published for research, but most of them are designed under
controlled environment with fake expressions, which makes the trained model vulnerable to real-
time images. None of the dataset addressed all essential variability required to implement a real
time FER system. Different facial views, in-plane and out of the plane head rotation, illumination
variation, age difference, ethnicity, race, gender etc. are the few factors affecting the performance,
and almost all datasets lack one or more of them. The design of a comprehensive large size dataset
is essential and yet unaddressed.

Expressions in recorded datasets are fake and in their full intensity. Many a times, expressions
appear in mixed state, and intensity of spontaneous expressions may not always be at peak, so
estimation of the exact intensity of expression is also challenging.

Research till date focuses on recognition of expression from frontal pose with single face in
the image. Non-frontal faces and multiple faces in a frame is a realistic scenario but nobody
addressed such issues.

Many appearances based and geometry-based methods have achieved remarkable accuracy on
a certain type of dataset. Very little work is addressed for cross-dataset experiments, and the
reported results are also very poor. Nowadays, standardization and comparability has also got
serious attention from the research community. Lack of commonly accepted evaluation parameter
makes the comparison difficult.

Many efforts have been made towards improving effectiveness of FER, but still there is a need
for common performance evaluation strategies. To provide the standardized platform, Facial
Expression Recognition Analysis (FERA) challenge events are being held by Social Signal Pro-
cessing Network (SSPNET) in conjunction with Face and Gesture Recognition Group. Two such
editions of FERA were held in 2011 at Santa Barbara, California by Valstar et al. [2011] and in
2015 at Ljubljana, Slovenia by Valstar et al. [2015]. FERA 2017 is to be held in Washington, USA
after March 2017. FERA brings the researchers across globe under common roof to understand
and solve the issues of FER.
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2.2 Applications

FER plays a vital role in many applications, such as human-computer interaction, indexing
and retrieving images based on expressions, emotion analysis, image understanding, synthetic
face animation etc. Even it is possible to instruct a robot to behave according to the person’s
emotion. It can also be used in various medical domains like behavioral affective state and clinical
practice. Computer animated characters are now necessary components of many applications,
including computer games, movies, web pages, communication and psychological studies. They
are used in place of actual human performers for many reasons, including freedom to change an
appearance of the characters, simulating a crowd scene, and issues with privacy.

Online Multiplayer Games (MOG) are increasingly becoming popular. Many FER based MOGs
have been studied and proposed by Zhan et al. [2006] and Zhan et al. [2008]. Application of FER
is not just limited to the physiological domain, rather it has touched many aspects of engineering,
medical, social communication, entertainment, and automation. Since the last decade, research on
FER has transformed from simply expression recognition to more complex systems. Application
area of FER covers a wide spectrum, including grading of physical pain, smile detection (Freire
[2002], Whitehill et al. [2009], Shan [2012]), driver fatigue detection (Ji et al. [2004]), patient pain
assessment (Gholami et al. [2010]), video indexing, robotics and virtual reality (Fasel and Luettin
[2003]), depression detection (Zeng et al. [2009]) etc. Recently, Microsoft [2016] developed a very
interesting Emotion API | which detects the face from an image and finds the weight of each
expression. The API can handle an image with size not larger than 4 MB and can operate on the
resolution of 36 x 36 to 4096 x 4096. It can detect up to 64 faces from the query image. However,
it suffers from some technical challenges like large face angle, non-frontal face, and occlusion.

3. STATE OF THE ART METHODS

Since the last decade, LBP has emerged as a powerful non-parametric descriptor, which efficiently
represents the local structure of the image. Ojala et al. [1996] presented the LBP operator.
The strength of LBP lies in its tolerance against non-monotonic change in illumination and its
computational simplicity. Originally, LBP was proposed for texture analysis, but it is being used
extensively in applications like face analysis (Ahonen et al. [2006], Abdenour et al. [2004]), facial
expression recognition (Shan et al. [2009], Liao et al. [2006], Luo et al. [2013]), image retrieval
and classification (Lin et al. [2012]), sign language recognition (Hruz et al. [2012]), image forgery
detection (Muhammad et al. [2014]), smile detection (Freire [2002]), texture analysis (Maenappa
et al. [2000]) etc. A brief survey on LBP can be found in literature by Shan et al. [2009] and
D. Huang and Chen [2011].

LBP establishes the binary relationship with the neighbor pixels and its response is weighted
by the decimal weight matrix. Feature descriptor is derived by generating histogram from these
weighted values. Let i. be the intensity of center pixel (z.,y.) of 3 X 3 local region and intensity
of remaining eight neighbors [ig, 1, , i7] describes the local structure of image. Binary relationship
with neighbor is established as: F = (S(ig — 4¢), S(41 — ic),,S(i7 — ic)), where,

0, ifz<0
S(@) = { 1, Otherwise (1)

Binary numbers are read out in clockwise direction and converted into decimal as,

P-1
LBPP,R(xca yc) = Z 2" x S<Zn - ic) (2)
n=0

Due to its small neighbor size, basic LBP operator failed to capture large structure. Ojala
et al. [2001] presented multi-resolution LBP which can work with any size of neighborhood by
bilinear pixel interpolation. Survey on recent work on LBP in the context of facial expression
recognition is outlined in Table 3.
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Reference

LBP Variants

Remark

Zhao and Pietikainen
[2007]

VLBP + LBP-
TOP

The dynamic texture is modeled using volume LBP. LBP-
TOP is applied to reduce the computation by selecting
local binary pattern on three orthogonal planes.

Shan et al. [2009]

Boosted LBP

Conditional mutual information based feature selection
technique has been proposed for selecting most discrim-
inative LBP features, in conjunction with SVM for classi-
fication.

Guo et al. [2010]

Completed LBP

CLBP_S and CLBP_M represent sign and magnitude part
of the difference of center and neighbor pixels, respectively.
CLBP_S is identical to basic LBP operator

Smith [2010] LBP + FCBF Promising candidate features from LBP is selected using
Fast Correlation-Based Filtering.

Moore and Bowden | Magnitude LBP LBP“?2 is applied to gradient of face image

[2011]

Azmi and  Yegane | Local Gabor | LBP%? is applied to Gabor convolved images with five
[2012] binary pattern | scales and eight orientations. It provides multiscale, multi-

(LGBP) oriented features
Zhang et al. [2012] LBP + FLDA High dimensional LBP features are projected on fisher

space and tested using SVM classifier.

Luo et al. [2013]

Fusion of PCA and
LBP

PCA of full face and basic LBP of mouth and cheek is
given to SVM

Almaev and Valstar
[2013]

LGBP-TOP

LBP pattern of Gabor convoluted Three Orthogonal Plane
(TOP) is used to combine spatial and temporal features.
Results confirm the improved recognition rate of AU.

Ouyang et al. [2013]

LBP map + SRC

Sparse representation based classification is applied to
LBP map. Proposed scheme operates in modest time com-
pare to other discussed approaches.

Connor and Roy [2013]

Modified LBP

Concatenated vector of local magnitude and the local sign
is presented to Random Forest for feature selection.

Ahmed et al. [2014]

Compound LBP

Each neighbor is encoded with two bits, one represents ba-
sic LBP code and second bit represents a sign of the differ-
ence of average magnitude and magnitude of the neighbor
pixel.

Satyanarayanamurty
[2014]

Distinct LBP

5 X 5 sub-images are compressed to 3 x 3 sub-images. Two
DLBPs are derived by triangular pattern between upper
and lower parts of 3 X 3 sub-images.

Abdulrahman et al.
[2014]

Gabor LBP +
Gabo PCA

LBP is applied on Gabor transformed image. LBP and
PCA is applied on this transformed image for feature com-
putation

Chao et al. [117]

es-LBP + cr-LPP

es-LBP is improved version of LBP, it emphasizes the par-
tial information of human face by computing LBP at spe-
cific fiducial points. Class regularized locality preserving
projection is proposed to minimize interclass variation and
maximize the class independence.

Huang et al. [2015] STLBP-IP Spatio-Temporal LBP with Integral Projection is com-
puted by finding LBP of horizontal and vertical projection
of integral images.

Werghi et al. [2015] Mesh LBP Basic LBP code is computed for triangular mesh mani-

fold for the surface. Mesh LBP operates on 3D triangular
meshes and simplifies the computation by eliminating pre-
processing like registration and normalization.

Patela et al. [2016]

Compass LBP

Proposed operator effectively combines properties of LBP
and Kirsch masks, and performs gender classification on
sketch images

Table III: Comparative study of LBP variants for facial expression recognition

Gabor filter is another powerful texture analysis tool, which was first conceptualized by Jones
and Palmer in 1987 Palmer [1987]. For a long time, Gabor dominated the field of texture analysis
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and pattern recognition. The behavior of Gabor filter is similar to that of the human visual system
and it has been found to be appropriate for texture representation and classification. Palmer
[1987], Lyons [1999], Zhang et al. [2014], Liu and Wechsler [2002]. Survey on texture feature
based on Gabor is illustrated in Grigorescu et al. [2002]. In the spatial domain, Gabor function
can be viewed as a sinusoidal plane modulated by a Gaussian envelope. The spatial summation
property of simple cells can be modeled by a family of two-dimensional Gabor functions. Gabor
kernel centered at (z.,y.) in spatial domain is defined as Lyons and Akamatsu [1998], Bashyal
and Venayagamoorthy [2008], Oshidarit and Babak [2010], Zhang et al. [1998]:

33/2 +72y/2 ) 37/
g(x?yv )\39,1?,07 'Y) = exp <_M> (l (27T)\ + ,(/J)> (3)

Where, (z/,y’) is the polar representation of spatial coordinate (x, y). o, and o, are the
standard deviations of Gaussian function, and it is assumed that o, = o, = 0. Parameters A, 0,
and vy represents wavelength of cosine factor, orientation of kernel, phase offset of sinusoidal, and
spatial aspect ratio, respectively. Response of Gabor kernel is computed by its 2D convolution
with input image. Response of imaginary part of Gabor response is useful in efficient edge
detection Oshidarit and Babak [2010]. Generally real part of the convolved image makes sense
for the feature extraction. Survey on Gabor based FER system is presented in Table 4.

Reference Gabor Variants Remark
Lyons [1999] Gabor + Elastic | Features are computed from auto and manual grid setup on
graph amplitude response of Gabor. Saliency map proved that

mouth and eye are a most discriminative facial component
for expression recognition.

Deng et al. [2005]

Local Gabor and
PCA + LDA

High dimensional local Gabor filter response are compressed
using PCA + LDA approach to take care of matrix non-
singularity

Chen [2007]

2-stage classifier on
Gabor

Uses first tier and second tier fiducial points to convolve Gabor
jet. Elastic Bunch Graph Model is created for the feature
extraction.

Bashyal and Venayag-
amoorthy [2008]

Gabor + LVQ

34 fiducial points are used to get Gabor filter bank response.
The performance of Learning Vector Quantization is compared
with MLP.

Oshidarit and Babak
[2010]

Adaptive Gabor

A fuzzy controller is used to tune the orientation parameter.

Moore and Bowden

[2011]

Local Gabor
binary pattern
(LGBP)

LBP%? is applied to Gabor convolved images with five scales
and eight orientations. It provides multiscale, multi-oriented
features

Xibin et al. [2013]

Block Gabor fusion

The face is divided into blocks and each block is weighted
according to the presence of expression in it.

Reddy and Sravanthi
[2013]

Log-Gabor + LDA

Representative features are selected using mutual information
quotient from the log-Gabor features.

Almaev and Valstar
[2013]

LGBP-TOP

LBP pattern of Gabor convoluted Three Orthogonal Plane
(TOP) is used to combine spatial and temporal features. Re-
sults confirm the improved recognition rate of AU.

Zhang et al. [2014]

Random Gabor

Monte Carlo algorithm is used to select set of Gabor con-
volved occluded faces. SVM followed by template matching is
employed for nearest expression identification.

Abdulrahman et al.
[2014]

Gabor LBP +
Gabo PCA

LBP is applied on Gabor transformed image. LBP and PCA
is applied on this transformed image for feature computation

Table IV: Comparative study of Gabor variants for facial expression recognition

According to input sequence, FER methods can be divided into two groups: image sequence
based methods (Kenji [1991], Yacoob and Davis [1996], Otsuka and Ohya [1997], Essa and Pent-
land [1995], Essa and Pentland [1997]), and still image based methods (Shan et al. [2009], Tian
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et al. [2001], Zeng et al. [2006]). The former method deals with sequence of images to extract the
dynamics for efficient facial expression representation. The promising methods include Optical
Flow (Kenji [1991], Yacoob and Davis [1996], Essa and Pentland [1997], Black and Yacoob [1997]),
and Hidden Markov Model (HMM) (Otsuka and Ohya [1997], Otsuka and Ohya [1998], Cohen
et al. [2000]). The latter methods operate on single image for feature extraction. These methods
may be holistic or it may be local. Optical flow (Yacoob and Davis [1996], Rosenblum et al.
[1996]), Eigenface (Sirovich and Kirby [1987], Turk and Pentland [1991]), Fisherface (Belhumeur
et al. [1997]), Laplacianface (He et al. [2005]), Neural networks (Tan et al. [2005]), Independent
Component Analysis (Bartlett and Sejnowski [1997]), Line Edge Map (Gao and Leung [2002]),
2D PCA (Yang et al. [2004]) are few of the widely used holistic methods. Even though these
methods have been significantly used and explored, local descriptors have gained the attention
of researchers because of robustness and invariance property. Local feature extraction methods
operate on local region or small neighborhood of the pixel. Feature descriptor is obtained by
collecting features computed locally. Few well studied local feature extraction methods are Local
Binary Pattern (Ojala et al. [1996]), multi-resolution LBP (Ojala et al. [2001]), Weber Local De-
scriptor (WLD) (Chen and Shan [2010]), Local Directional Pattern (Jabid et al. [2010]), Gabor
filter (Lyons and Akamatsu [1998]), Local Gabor Binary Pattern (LGBP) (Almaev and Valstar
[2013]).Feature extraction techniques can be categorized as image based vs model based, appear-
ance based vs. geometry based, local vs. global, or static vs. dynamic. Research is either feature
centric or classifier centric. SVM (Shan et al. [2009], Shih et al. [2008], Oliveira et al. [2011], Nagi
et al. [2013], Luo et al. [2013]), KNN (Oliveira et al. [2011], Nagi et al. [2013], Taheri et al. [2014],
Ahmed et al. [2013]), ANN (Owusu et al. [2014], Zhang et al. [2012]), Linear Programming (Shan
et al. [2009]), Nave Byse Classifier (Ahmed et al. [2013], Cohen et al. [2003]), Random Forest
Classifier (Ahmed et al. [2013]), HMM (Cohen et al. [2003]), Decision Tree (Ahmed et al. [2013])
etc. classifiers are extensively investigated by the researchers. The face is a complex entity and
possesses massive dimensions. Many feature extraction techniques produce a large number of
features. All features are not of equal importance; some are dominating while some are little
effective. To select the most discriminative features, NSGA (Oliveira et al. [2011]), Boosted LBP
(Shan et al. [2009]), 2D LDA (Shih et al. [2008]), Adaboost (Owusu et al. [2014], Yang et al.
[2009]), mutual information (Zhang et al. [2012]), PSO (Tang and Chen [2013]) etc. methods
have been widely used. Multidimensional survey of recent prominent facial expression research
is summarized in Table 5.

4. FACIAL EXPRESSION DATASETS

Expression dataset is another important aspect of FER research. Datasets are classified based
on various characteristics such as modalities, frame/image sequence, age group, coding scheme,
illumination conditions and ethnicity. Some datasets contain temporal data, taken over a period of
time to add diversity in age. Few of them include variation in illumination, race, view, gender etc.
We categorized databases based on the information available on subject, content, and modality.
Most of the dataset contains basic six expressions postulated by Ekman and Friesen [1971]. CK
dataset is one of the most widely used publically available datasets designed by Kanade et al.
[2000]. CK database set up the modern research in FER. Images and expressions in CK database
are more controlled with categorical labels. CK+ database was published later covering more
number of images with spontaneous expressions, and AU coded images. Lyons [1999] published
Japanese Female Facial Expression Database (JAFFE) dataset which is another widely used
FE database, representing 10 Japanese female models. Images in JAFFE are captured under
uniform lighting condition and have a limited number of subjects with frontal view only. Chen
[2007] designed Taiwanese Facial Expression Image Database (TFEID), which consists of 40
models, including 50% male and 50% female. Subjects of JAFFE and TFEID belong to a single
ethnicity. Recently, Yin et al. [2006] built 3D facial expression databases of 3D static images
and 3D image sequences, and these two databases are called BU-3DFE (Binghamton University
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Ref. G/ | Preprocessing Features FS DB Classifier VM | MRR (%)
L
Oliveira et al. [2011] G Face detection using 2DPCA NSGA JAFFE KNN SVM 10F KNN:91 SVM:
Adaboost 94
Yan et al. [2012] G Manual eye localiza- - - JAFFE ADM - J: 96 CK: 96.9
tion CK Feed- Fed: 88.5
tum
Shan et al. [2009] L Face cropping using LBP Boosted JAFFE SVM LP 10F LP: 82.3
manual eye labeling LBP CK SVM: 86.0
Gao et al. [2003] G Faces are manually LEM - AR - - 86.6
cropped such that
distance between eye
remains 80 pixel
Rahulamathavan G Images are rescaled PCA, - JAFFE NN - 95.24
et al. [2013] to size 51 x 51 pixels | FLDA MUG
LFDA
Shih et al. [2008] G Face is manually DWT 2DLDA JAFFE SVM LOO LOO: 95.71
cropped and rescaled CV: 94.13
to size 168 x 120,
Histogram equaliza-
tion
Nagi et al. [2013] L Eye, nose and mouth LBP CK 1VA SVM 10F SVM: 77.81
are cropped using JAFFE KNN KNN: 77.65
Adaboost detector 3DBFU
Taheri et al. [2014] L Prepared AU Dic- SIFT - Bosph. NN - 88.52
tionary, Faces are CK+
cropped and resized
to 128 x 128
Owusu et al. [2014] L Face components are Bessel Ada JAFFE ML FFNN - J: 96.83
selected using Viola- Transform boost YALE Y: 92.22
Jones descriptor + Gabor
Luo et al. [2016] H - PCA + - - SVM - 91.61
LDP
Zhang et al. [2012] G Face detection using AAM QMI CAS- SVM ANN - SVM: 87.33
Viola-Jones detector PEAL ANN: 66.67
Ji and Idrissi [2012] G - LBP + - MMI CK SVM 10F 2F: 94.00 10F:
VTB 2F 97.00
Yang et al. [2009] L Face images are Dynamic Ada CMU Ada boost - 95.00
cropped and normal- Haar like | boost
ized features
Majumder et al. L Top 1/5th part was Shape - MMI KSOM - 93.53
[2014] removed to locate of lip,
eye eye and
eyebrow
Luo et al. [2013] L Eight eye segmenta- LBP + - InHouse SVM - SVM: 71.5
tion PCA PCA + SVM:
91.5 PCA +
LBP + SVM:
94
Tang and Chen G Images are rescaled Curvelet PSO JAFFE SVM - LibSVM:
[2013] to 100 x 100 87.01
PSOSVM:
94.94
Zhi and Ruan [2008] L Images are manually 2D-DLPP - JAFFE NN - 96.00
cropped CK
Cohen et al. [2003] L - PBVD + - Inhouse Naive - NB: 81.31
AUs video Bayes HMM: 82.46
HMM
Ahmed et al. [2013] L Lip and mouth are LBP - CK+ SVM, 2F 2F: 95.2 10F:
extracted for feature MMI 2NN, RF 10F 96.7
extraction FEED DT, NB
Wang et al. [2015] G Face is cropped and PCA - JAFFE FSVM - KNN: 83.91
resized to 30 x 24 KNN SVM: 85.74
FSVM: 87.75
Huang et al. [2012] L Image is divided in Variations - CK Oulu - CK: CK: 81.54
different size of over- of  spatio CASIA LOO
lapping blocks tempo- CA-
ral LBP SIA:
Gabor 10F

G: Global, L: Local, H: Hybrid F: Fold, LOO: Leave One Out, FS: Feature
CV: Cross Validation

Selection, MRR: Maximum Recognition Rate,

Table V: Comprehensive survey of recent promising appearance based FER approaches

3D Facial Expression) database and BU-4DFE (3D + time), respectively. BU-3DFE database
presently contains 100 subjects (56% female, 44% male), age ranging from 18 - 70 year, with a
variety of ethnic/racial ancestries, including White, Black, East-Asian, Middle-east Asian, Indian,
and Hispanic-Latino.

Figure 5 shows random samples of happy expression from JAFFE, CK, TFEID and BU-3DFE.

AR dataset designed by Martinez and Benavente [1998] consists of only four expression - angry,
neutral, scream and smile. It contains 4000+ static color images of 70 males and 56 females. MMI
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Figure 5. Snapshots of happy expression from various facial expression recognition datasets. JAFFE (top row),
CK (second row), TFEID (third row), BU-3DFE (bottom row).

is image/video database, designed by Pantic et al. [2005]. The database contains more than 1500
images plus video sequences, with frontal and profile view. Age group of subjects covers a wide
range, 19 to 62 years. Belfast Naturalistic Database (BND) is created by Douglas-Cowie et al.
[2003] at Queen’s University of Belfast. BND covers 250 wide range of expression videos, each
expression considers neutral as ground truth and reaches to the apex and again comes back to
neutral. Savran et al. [2010] designed Bosporus dataset which is also 3D dataset with a wide range
of subjects, head pose and a number of expressions. Natural Visible and Infrared facial Expression
Database (NVIE) (Wang et al. [2010], Wang et al. [2013]) contain visible and infrared images. It
contains 412 static images of 215 subjects having age group 17-31 years. A comprehensive survey
on facial expression datasets is described in Table 6.

5. CONCLUSIONS AND FUTURE SCOPES

In this paper, we present the recent advances in facial expression recognition and associated
applications which will create interest to the novice and researchers. In order to do so, we
conducted the survey on FER from its historical origin to recent innovations. We highlighted
the timeline of work on facial expression recognition. We also present the general framework for
facial expression recognition with scopes and challenges affecting the performance along with its
interesting applications. We surveyed various judgmental feature extraction methods which are
extensively used in the research.

Expression evolves from the deformation of the facial muscle groups, that are accountable to
change in facial additives like eye, eyebrow, cheek, mouth etc. Research has shown that both
texture and geometry of face delivers complementary but quite beneficial information for FER.
Certain expressions may have distinctive texture, however, similar geometric features, and vice
versa. Use of both kinds of features might be the better choice. Dataset is another important
aspect of the pattern recognition problems. In this paper, we discussed and compared various
aspects of FER datasets. A comprehensive survey enables the user to make a choice of the
appropriate dataset for his/her research. Almost all the databases described in the survey are
captured under controlled environment and subjects are well posed with fake expressions. None
of the above databases addressed the spontaneous expressions with the non-standard background.
The intensity of spontaneous expressions varies on large scale, as well as cluttered background, low
resolution, pose variation, improper illumination etc. makes real-time facial expression recogni-
tion even more challenging. Expression recognition from the frontal pose and spontaneous facial
expression recognition continues to be an open area for improvement and research. CK and
JAFFE datasets are rigorously exploited by researchers. None of the work has achieved accept-
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CK JAFFE TFEID AR BU- Bosphorus| MMI BND NVIE
3DFE
l SUBJECT l
#Subject 97 10 40 126 100 105 19 125 215
#Male 34 0 20 70 44 60 11 31 157
#Female 63 10 20 56 56 45 8 94 58
Age Group 18-30 N/A N/A N/A 18-70 25-35 19-62 N/A 17-31
Ethnicity Y N N N/A Y N Y N N
CONTENT
V:848
#Img / #Vid 486 213 1975 4000+ 2500 4666 250 412
1:740
Ima / Vid v 1 1 1 1 1 V+1 v 1
Frame Rate 12 fps - - - - - 24 fps - -
Single / Multi Face M S M S M M S S S
Coding Scheme G G G+ C C C C C C C
3D Data N N N N Y Y N N N
640 x 480
Resolution 256 X 256 600 X 768 X 512 X N/A 720 X 576 N/A 1920 x
640 x X 49 480 576 512 1080
MODALITY
Face Pose F F F cap- F F Y, P, CR F —+ F Various F,L, R
tured at captured
00 and by two
450 cameras
Expressions 23 facial AN, DI, AN, DI, AN, AN, DI, AN, DI, 79 facial Wide AN,
display FE, HA, FE, HA, NE, FE, HA, FE, HA, displays range of DI,
+ combi- NE, SA, NE, SA, SC, NE, SA, SA, S108 FE FE,
nation of SU SU, CO SM SU + 25 pure HA,
AUS and 3 SA,
combina- SU
tion of
AUs
Intensity Neutral N/A Slight With NE to Head NE-AP- NE-AP- N/A
to Apex and & W /o AP Posses & NE NE
High Occlu- Occlusion
sion
Posed / Sponteneous PO PO PO PO PO PO PO SP PO +
SP
Light Uniform N/A N/A L, R & N/A N/A Uniform Indoor L &R
All

N/A: Not Available or Not Applicable, Y: Yes, N: No, I: Image, V: Video, AN: Anger, AP: Apex, CO: Contempt, DI: Disgust, FE:
Fear, HA: Happy, NE: Neutral, SA: Sad, SC: Scream, SM: Smile, SU: Surprise, O: Onset, FP: Frontal and Profile, PO: Posed, SP:
Spontaneous, S: Single, M: Multiple

Table VI: Comparison of state-of-the-art facial expression recognition databases

able recognition rate for cross database testing. Shan et al. [2009] reported 51.1% and 41.3%
highest generalization performance for CK-MMI and CK-JAFFE datasets, respectively. In both
cases, CK database was used for training, MMI and JAFFE datasets were used for testing in
respective experiment. Generalization of FER system is still an open area to work upon.
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