Stochastic Motion Planning for the Telebot

Yonah Elorza, Miami Dade College, USA
Sevugarajan Sundarapandian*, Acharya Institute of Technology, India
Jerry Miller, Florida International University, USA

This paper evaluates stochastic motion planning in a three dimensional space for TeleBot#, Florida International
Universitys telepresence robot. Stochastic motion planning is necessary in an operator controlled robot due to
device latency, device failure, connection failure, or user error. As such, three different modeling methods and their
corresponding motion planning algorithms are evaluated for use in stochastic motion planning. The modeling and
planning algorithms used are Configuration Spaces (C-Spaces) with Sampling Based Motion Planning, Denavit-
Hartenberg (DH) Parameters with Inverse Kinematics, and the Universal Robot Description Format (URDF) with
the Open Motion Planning Library (OMPL).

Keywords: Telebot, telepresence, motion planning, Denavit-Hartenberg (DH), Inverse Kinematics,
C-Spaces, URDF, OMPL, Robotic Operating System.

1. INTRODUCTION

Telebot’s[Prabakar and Kim [2013]] role as a telepresence robot meant for law enforcement dictate
that the majority of its usage would be in the field, i.e. in stochastic environments. Being an
electronic representation of a human, it does have various limitations which affect operation of
the robot, and creates limits on the operator. As such, the operator cannot be made reliable
for complete control of the robot, as a number of failures could occur, and some form of semi-
autonomy should be implemented in the form of motion planning algorithms which attempt to
control the robot based off existing configurations and intended goal positions. The idea is to
find a model and planning algorithm which can handle stochastic environments (in other words,
pre-planning is not needed to encourage movement), and implement it into the robot.

The planning algorithms explored in this paper branch from the modeling methods used to
describe the robot. The first modeling method, configuration spaces (C-Spaces), involve us-
ing a mathematical framework from sets which defines a robots configuration, the region where
it can move, and obstacle regions which the robot cannot pass through. The second model,
Denavit-Hartenberg (DH) Parameters, defines the serial-link mechanism geometry [Hartenberg
and Denavit. [1955]; Corke [2007]] of a manipulator on a robot, through transformation matrices
for all links to one base link, and then allows different algorithms to attempt motion planning.
The third model, Universal Robotic Description Format (URDF) [Garage [2012]], is a model-
ing method coupled with the Robotic Operating System (ROS)[Quigley. et al. [2009]] which
defines every part of the robot in terms of links and joints, and allows for exact description of
maneuverability of any part of the robot.

Motion planning is a central problem in robotics, where any robotic or autonomous device can
find efficient paths to any goal position. The problem is shown to be PSPACE-complete [Canny
[1988]], indicating no complete solution to the problem. Existing motion planning algorithms
settle on finding a weaker completeness for any problem solved. Sampling-based motion planning
[Kavrak and LaValle [2008]] is a planning method which branches off from C-Space Modeling,
and it places random nodes in the region of movement which wont position the robot in a collision
with an obstacle. The nodes are then connected via vertices which attempt to navigate from the

*Corresponding author

#The TeleBot project is an ongoing effort at the Florida International University (FIU) Discovery Lab, where
researchers are designing, developing and testing a new telepresence robot designated as TeleBot. More specifi-
cally, the work has been focused on the design and implementation of a smart telepresence robot with enhanced
functionalities.

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

100 . Yonah Elorza, Sevugarajan Sundarapandian and Jerry Miller

initial position of the robot to the goal position through the shortest amount of vertices. Various
algorithms exist for this planning method which attempt to optimize the path as well as the
robots orientation when it comes to planning where the robot moves to. Inverse kinematics, which
branches from DH Modeling, defines any goal point in three dimensional space, and attempts to
lead an end-effector from its three dimensional starting position to the goal position. It does this
through a series of transformation matrices for each link starting from the base link and finishing
at the end-effector. The Open Motion Planning Library [Sucan and Mark Moll [2012]] is an open
source library coupled with ROS, and branches off from URDF Modeling. It consists of multiple
planning algorithms which solve complex motion planning problems without much input from an
operator. The OMPL is not a single planning algorithm, but is rather a collection of them, which
accurately determines which planning algorithm should be used in any particular situation.

Throughout this paper, we evaluate the efficiency, simplicity, and usability of the different
modeling methods and motion planning methods in order to determine the best model and
algorithm to attempt stochastic motion planning.

2. MODELING

The Telebot was first modeled using C-Spaces. An arbitrary center point was defined at the point
where his neck and body connected (as this allowed for the most convenient reference point for
defining the actuators and end effectors). From this, the following model was made:

W CR?

ccw
{Cops € C:—0.3025 < z < 0.3025, 0185<y<0185 —0.63 < z}
Cfreezi

obs
x—0.325
Cl g Cf'r‘ee : (0.772) + 0(1'/7)72 + 0 772 - 1}

Co C Cpree : THEBE 4 W) é% =1}

The workable region, W, for the robot is three-dimensional. In this workable region, a robotic
configuration space, C, can be found. An obstacle configuration space, Cyps is found with the
body, with a central point in the center of the chest, which creates a rectangular region as
defined above. A free configuration space, C'yree can then be defined by the components of the
configuration space not made up of the obstacle space. From this, two configuration spaces, C
and Cs, for the arm can be created. This is done by creating an sphere-shaped region (the actual
region an arm can travel) offset from a central point, again defined as the center of the chest,
and using the shoulder as the origin point for the sphere. The 0.3025 in both arm configuration
spaces represents the offset in meters from the chest to either shoulder, while the 0.77 represents
the length of the arm in meters.

A major difficulty in this modeling was attempting to define the arms as obstacle spaces,
as both arms can collide with each other, thus being obstacle spaces that can move around a
designed free configuration space. Another major difficulty is trying to define moving objects
in the configuration space as obstacles, as the Cyce-space and the Cgpe-space would have to
be constantly updated with changes, making it non-optimal for use in stochastic environments
where obstacle regions change frequently due to no pre-made map being used. Finally, making
this model involves writing the code completely, and creating programs which can understand
the framework of the model. This requires us to explore other options for modeling.

The second model used for the Telebot was DH parameters. We define each arm’s hand actu-
ator as the end effector, and the shoulder actuator as the base actuator for each arm, and define
all other actuators in terms of this base. The arm is modeled as seen in Fig. 1.

From this, we can begin to describe all the actuators using transformations. For reaching the
end effector from the base actuator, it is defined as the following:

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

Stochastic Motion Planning for the Telebot : 101

Jaint 1

" Joint

Joint 4

4 Jaint &

Figure 1. Denavit-Hartenberg Visual Representation

Left Arm =
TZ(do)RZ(ao)Tz(dl)Rz(Hl)Rz(al)
Tz(dQ)RZ(QZ)Ty(dS)RZ(QS)TZ(1)R.
Right Arm =
Tz(do)Rz(ao)TL(dl)RL(Gl)RZ(O&l)
TZ(dQ)RZ(OQ)Ty(dS)Rz(QS)TZ(1)R.

6, =60, =1

— _ — S __ T
Qp = Q1 = Q2 = Q3 =04 = 5

Where every T and R is a translation and rotation pair(overall, one single transformation)
from a link i to a link i+1. All d; are distances between respective link pairs, a; represents angle
offset from link pairs, and 6; represents the angle offset from link pair’s axis of actuation. This
is simple for the actuators in Telebot in particular, as all the z-axis of the actuators line up,
eliminating the need for the 6; parameter of the DH in a lot of cases, only requiring «; and a;.
d; is excluded by default since all the actuators are revolute, not prismatic. The difficulties of
DH Parameters are mostly implementation, as all the code and modeling would have to be done
from the ground up, as well as the fact that any modifications done to the actuators or positions
of the hand would need an entire rework of the model. Additionally, it is relatively difficult to
model obstacles, and often requiring some external mechanism.

The final modeling used for the Telebot is URDF. URDF is coupled with ROS, and is a XML
based modeling format. The model can be visually represented with ROS’s built in visualization
software, Rviz. This visualization can be seen in Fig. 2.

Every component of the robot is defined using visual, collision, and inertial models with links
and joints. This can be shown as a state model, a graphic representation of XML components in
the robot model, in Fig. 3.

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

102 . Yonah Elorza, Sevugarajan Sundarapandian and Jerry Miller

Figure 2. Telebot Model in URDF

URDF modeling has various advantages the other two models don’t have, including it is an
existing framework and modeling software is coupled to it. It also deals with the fact of collisions
with each arm as well as the body, through collision modeling. Disadvantages include a lack of
obstacle defining in the URDF, instead having to create custom URDF files for each obstacle.

3. MOTION PLANNING ALGORITHM

The first planning algorithm approached was sampling-based motion planning using C-Spaces.
The goal of sampling based motion planning is to connect the initial configuration, which is the
state that the robot is intended to begin operation, to the goal position through a series of nodes
which navigate through the Cfy,... space.

Implementing this algorithm would involve finding a way to create arbitrary nodes in three-
dimensional space a unit distance from each other, and some sort of vertex implementation
which attempts connecting the nodes and determining the shortest path to the goal from the
initial position. It would also involve creating an obstacle region for the arms, where the arms
can collide with obstacles, and each component of the arm must be maneuvered within the joint
ranges to avoid collisions or else the planning would fail. This segmentation of the arm into
components which can collide causes problems, as several obstacle spaces must be created which
are also moving.

Additionally, creating nodes in three-dimensional space proves to be problematic, as the most
non-trivial way to do so is to divide the three-dimensional space into various unit thickness
two-dimensional slices, which involves huge amounts of grid polling to test for possible node
positions, and either requires large unit distances between slices, or large computational power
to do grid polling for large amounts of grid slices (as the thickness of the two-dimensional grid
slices decreases, computational time increases, as more two-dimensional grids can be added). The
amount of two-dimensional slices also determines the possible movement areas of the robot, and
limiting the amount of slices limits move-able areas for the robot.

Finally, and most importantly, attempting to do sampling based motion planning in a stochas-

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

Stochastic Motion Planning for the Telebot : 103

y2:000.59
tpy:0-00

middle_joint

bodyl_link

yz: 00037
y:0-00

middle2_joint

23 fkyz: 00025
py:0-00

xyz: 0.3025 00.23
y:0-00

neck_joint

Ish_link neck_link | rsh_link
Ikyz 0.050-0.0325 |xyz: 000.105 Ixyz: -0.05 0-0.0325
py: 0-00 Py:0-00 Py:0-00

12sh_link head_link r2sh_link

yz:00-0.16 yz:00-0.16
y:0-00 py:0-00

relbow_joint

lelbow_joint

yz:00-0.075 y2: 000075
py:0-00 py: 0-00

Iforearm_joint rforearm_joint

If_link

Figure 3. Telebot URDF Model State Diagram

tic environment in three-dimensions involves the earlier difficulty of C-Spaces having problems
with moving objects in the spaces, as well has having the requirement of re-polling the three-
dimensional grid as soon as an object moves, and doing so quickly enough that it’s practical in
real time, which is not easily achieved with sampling based motion planning.

The second planning algorithm analyzed for use was Inverse Kinematics, which attempts reach-

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

104 . Yonah Elorza, Sevugarajan Sundarapandian and Jerry Miller

ing a three dimensional point using transformation matrices from an end effector, and moves all
other actuators by manipulating the actuators through the DH model.

Implementation of this algorithm involves defining the arms using the parameters, as is done
with the model, and then finding targeted three-dimensional points from this.

Immediate problems are seen with the model, the most basic of which involves the lack of any
form of obstacle detection or obstacle accounting in the model. There is no way to define three-
dimensional through DH Parameters, requiring some other modeling method to do so. There
are also difficulties to modify transformation matrices based off of obstacles, requiring a different
planning algorithm to do so. Finally, three-dimensional points must be somehow pre-defined or
some way of picking arbitrary three-dimensional points has to be implemented for the planning
to actually occur. In stochastic environments, it would constantly have to pick different three-
dimensional coordinates through an operator instead of being semi or completely autonomous,
and works more for reaching an obstacle, not avoiding them.

Finally, the OMPL is evaluated for possible Telebot implementation. The OMPL features a
variety of planning algorithms[Sucan and Mark Moll [2012]]. Tt polls a desired goal position and
then determines the best planning algorithm to arrive at said goal position.

An important feature of the OMPL is the native support with ROS, as this allows for easy
communication with the model and other programs. Another key aspect is the integration with
the visualization software Rviz, offering a visual aspect to the motion planning which would have
been implemented separately with the other two models and planning algorithms. Finally, the
visualization software allows for adjustment of actuator positions into intended goal positions,
and polls whether the new position is possible, and then attempts to move to that position.

Weaknesses with OMPL are the fact that the user cannot choose which planning algorithm
is to be used without changing a number of configuration settings. There is also no stochastic
area gathering that is native, requiring code modification. However, there does exist a large
amount of ROS packages which allow for obstacle detection and mapping onto Rviz, eliminating
that problem. A final problem is the lack of ability to visualize robot movement over an area
which the other two models do allow. However, this is circumvented with the additional use of a
simulation software built closely to ROS, Gazebo.

4. SELECTION OF BEST METHOD

From comparison of the three different modeling and planning methods, the most suited for
stochastic motion planning for Telebot (as well as stochastic motion planning in general) seems
to be the OMPL with URDF modeling.

For modeling, URDF offers an existing framework for creating a model computationally which
is based off of XML, while Configuration Space modeling and Denavit-Hartenberg Parameter
modeling only exists mathematically, requiring some computational interface to be created in
order to actually model the robot. There is also visualization software for URDF modeling
through Rviz, which is not offered for the other methods and as thus would have to be created.

In terms of motion planning, the Open Motion Planning Library is more efficient than sampling
based motion planning and inverse kinematics, as the Open Motion Planning Library includes a
host of different planning libraries which are selected in runtime for optimal efficiency.

The main issue that determined which model and planning algorithm to use was how each re-
sponded to stochastic environments. While none of the models have native support for stochastic
environments, URDF modeling works off a simple three dimensional coordinate system, and as
such moving objects are easily described as changing coordinates, while Configuration Spaces
involve manipulation of three-dimensional spacial sets, and Denavit-Hartenberg Parameters in-
volve three dimensional matrices of an object relative to a defined base link. For motion planning,
sampling based motion planning has to wait for sets to be properly defined (no movement for any
instant) before any planning can be done, and inverse kinematics involves series of complex trans-
formation matrices for objects to move, while the Open Motion Planning Library only requires

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

Stochastic Motion Planning for the Telebot : 105

the position of the object, and can respond to movements in close to real-time.

5. IMPLEMENTATION

The actual model and motion planning algorithm to be implemented onto the Telebot is URDF
modeling with OMPL. As such, implementation of these two components must be considered.

The first aspect of implementation was to connect the model made in URDF with the robot
itself. With the model itself, on the Rviz visualization software, the robot is capable of displaying
the model as well as controlling it through a built-in graphic user interface(GUI) which controls all
moveable joints. Through rviz, a ROS publisher is running which constantly outputs each joint’s
position (in its own reference frame) to a ROS topic called joint_states. As such, to reflect these
changes to the robot, a simple subscriber/publisher node(telebot_pub) has to take this input,
convert it into positions that the Telebot understands, and then publish these new coordinates
to a node(telebot_sub) which outputs the positions to the actual robot. A diagram of this can
be seen in Fig. 4.

Jioint_state:

&S [robot_state_publisher
/joint_state_publisher Dy;

oint_states
Jtelebot_pub

/telebot_sub

Figure 4. Telebot ROS Node Map

From this, the next step is to implement the OMPL with the URDF model, thereby imple-
menting the OMPL onto the Telebot. This involves creating a package using the URDF which
launches files such as controllers, kinematics solvers, and more. ROS has a built in assistant to do
this called the Movelt Setup Assistant which creates all these files for the user with some input
through a setup window. After creating this, launching the startup file will open the existing
model with a OMPL GUI in Ryviz.

However, this Rviz visualization and OMPL GUI do not have the capability to capture real-
time images to use as obstacles in the visualization software, instead needing previously created
models. As such, some form of capture device needs to be connected and needs to broadcast
obstacles in the region of the robot to the visualization software, to allow for motion planning
with real-time obstacles.

The final issue to be implemented is some form of statistical analysis as well as a predictability
model into the OMPL, as the current library is not capable of predicting future goal positions,
instead requiring the user to specifically state where the intended goal position is. Instead, we
want more autonomy in the cases of user error, equipment error, or latency, and as such we need
the robot to predict for itself where the operator intended any part of it to go. Some form of
statistical framework has to be created alongside the OMPL, and needs to be efficient enough
that it can predict with minimal latency where the operator intended any particular part of it to

go.

6. CONCLUSIONS

This paper has discussed three different modeling methods and planning algorithms: Configura-
tion Spaces with Sampling Based Motion Planning, Denavit-Hartenberg Parameters with Inverse

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

106 . Yonah Elorza, Sevugarajan Sundarapandian and Jerry Miller

Kinematics, and Universal Robot Description Format models with the Open Motion Planning
Library, and we discussed the difficulties and advantages of them.

We then determined which model and planning algorithm would be best suited for stochastic
motion planning for the Telebot, and how to implement said model, which in our case was URDF
modeling with the OMPL.

Acknowledgement

This research work is based upon work supported by the National Science Foundation under Grant
No. CNS-1263124. The authors thank Professor S. S. Iyengar, who is the founding Director of
the Discovery Lab for his support of this project. Thanks to Lt. Cmdr. Jeremy Robins for
his initial contribution to the project. The authors like to thank all the individuals in the FIU
Discovery Lab for their help and support in making this paper, especially Irvin Cardenas and
Shadeh Ferris-Francis.The authors would also like to thank DoD for sponsoring the internship
for Yonah Elorza for ten week duration.

References

CANNY, J. 1988. The Complexity of Robot Motion Planning. MIT Press, Cambridge.

CORKE, P. 2007. A simple and systematic approach to assigning denavit hartenberg parameters.
IEEE Transactions on Robotics Vol.23, No.3, pp.590-594.

GARAGE, W. 2012. Urdf - unified robot description format.

HARTENBERG, R. S. AND DENAvVIT., J. 1955. A kinematic notation for lower pair mechanisms
based on matrices. J. Appl. Mech. 77, 2, pp.215—-221.

Kavrak, L. E. AND LAVALLE, S. M. 2008. Motion Planning. Springer Handbook of Robotics.
Springer, Berlin.

PraBAKAR, M. AND KiMm, J. H. 2013. Telebot: Design concept of telepresence robot for law
enforcement. Proceedings of the 2013, World Congress on Advances in Nano, Biomechanics,
Robotics, and Energy Research, 34—42.

QUIGLEY., M., GERKEY, B., CoNnLEY, K., Faust, J., FooTE, T., LEIBS, J., BERGER, E.,
WHEELER, R., AND NG, A. 2009. Ros: an open-source robot operating system. Proc.
Open-Source Software Workshop Int. Conf. Robotics and Automation, Kobe, Japan.

Sucan, I. A. AND MARk MouL, L. E. K. 2012. The open motion planning library. [EEFE
Robotics and Automation Magazine. Vol.19, 4, pp.72-82.

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

Stochastic Motion Planning for the Telebot : 107

Yonah Elorza is an undergraduate currently finishing his B.S. in Computer Engineering
from Columbia University in New York.

S. Sevugarajan is currently working as a professor at Acharya Institute of Technology,
Bangalore, India. He obtained his BSc degree in 1995 with Physics as a major subject
and completed his MSc in the field of material Science in 1997 at Anna University. He
joined Indian Institute of Science (IISc) at Bangalore in 1997 and there he earned an
additional research Master’s degree (MSc[Engg]) in Instrumentation Engineering. Af-
ter submission of his Master’s thesis at IISc in 1999, he continued his research work at
IISc and obtained his PhD degree in 2005. Immediately after completing his PhD, he
Joined Indiana University, USA as a post-doctoral fellow and in 2006 he joined Vander-
bilt University, USA as a research associate. At Vanderbilt University he designed and
developed a Dual-Source Electrospray/MALDI Ion Mobility-Mass Spectrometer (IM-MS)
for Biomolecular Structural Characterization. During 2015 he worked as a visiting fac-
ulty at Florida International University, USA, where he worked on the TeleBot project. His research interests are
Design and development of Ion-Mobilty Mass Spectormeters, Telepresence Robots, Automated Unmanned vehicles
and Deep Learning techniques.

Jerry Miller, USAF (Ret.) is the Research Coordinator at Florida International Uni-
versity’s (FIU) Discovery Lab—an undergraduate robotics and autonomous vehicles lab—
within the School of Computing and Information Sciences. Col. Miller holds an MS in
Telecommunications and Networking from FIU, an MA in Management and Human Re-
sources from Webster University, and a BS in Basic Sciences (Engineering) from the U.S.
Air Force Academy. He served for over 27 years in a variety of positions in the United
States Air Force, including rescue/special operations helicopter pilot and Foreign Area
Officer. He has been at FIU since 2006 and has conducted research as a Principal Inves-
tigator in renewable energy and strategic culture studies, and as Co-PI in cybersecurity
and privacy of computer networks.

International Journal of Next-Generation Computing, Vol. 8, No. 1, March 2017.

