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In mobile ad-hoc peer-to-peer (M-P2P) networks, data availability is typically low due to rampant free-riding,
frequent network partitioning and mobile resource constraints. Rare data items are those, which get sudden
bursts in accesses based on events as they are only hosted by a few peers in comparison to the network size.
Thus, they may not be available within few hops of query-issuing peers. This work proposes E-Rare, a novel
economic incentive model for improving rare data availability by means of licensing-based replication in M-P2P
networks. In E-Rare, each data item is associated with four types of prices (in virtual currency), which provide
different rights to the query-issuer concerning the usage of the item. E-Rare requires a query-issuer to pay one
of these prices for its queried data item to the query-serving peer, thereby effectively increasing data availability
and combating free-riders. The main contributions of this paper are three-fold. First, it provides incentives for
replication of rare data items by means of a novel licensing mechanism, thereby improving rare data availability.
Second, it provides additional incentives for MPs to collaborate in groups, thereby further improving rare data
availability. Third, a detailed performance evaluation has been done to show the improvement in query response
times and availability of rare data items in M-P2P networks.
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1. INTRODUCTION

In a Mobile ad hoc Peer-to-Peer (M-P2P) network, mobile peers (MPs) interact with each other in
a peer-to-peer (P2P) fashion. Proliferation of mobile devices (e.g., laptops, PDAs, mobile phones)
coupled with the ever-increasing popularity of the P2P paradigm (e.g., BitTorrent) strongly
motivate M-P2P applications. Mobile devices wirelessly communicating in a P2P fashion facilitate
M-P2P applications by sharing information on-the-fly.

This work focusses on handling rare data items in an M-P2P environment. Rare data items
are those, which get sudden bursts in accesses based on events as they are only hosted by only
a few peers in comparison to the network size. Thus, they may not be available within few
hops of query-issuing peers. The sudden burst in accesses to rare items generally occurs within
a given time-frame (associated with the event), before and after which such items are rarely
accessed. Notably, improving the availability of rare data items is of paramount importance
because although queries for such items do not arrive on a regular basis, they become very
important when a given rare item becomes very popular (i.e., when a sudden burst of queries
occur for the rare data item). Since relatively very few mobile peers would typically carry
information about such rare items, improving the availability of rare data items by means of
replication becomes critical.

Some application scenarios are as follows. Suppose a group of college students in the course
of an expedition in a remote forest, where communication infrastructures (e.g., base stations)
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do not exist. When there is a sudden decrease in temperature and gusty winds, they need to
look for information about shops selling sweaters and wind-cheaters in a nearby town, photos of
such clothing and so on. In a similar vein, suppose a group of adventure tourists unezpectedly
encounters a cave during their journey. They would like to find information about where to buy
gas-masks and associated safety equipment along with instructional tutorials on how to use this
equipment and so on. Similarly, when a motorist driving in a mountainous region, sees a rare
animal, she may wish to find additional information about living habits. Additionally, due to
the sudden onset of a heat wave, a group of botanists on an expedition in a forest may want to
find information such as non-drinking water sources and pictures of the locations of such water
sources. In these application scenarios, M-P2P interactions can facilitate the MPs in finding the
required information.

Such M-P2P interactions for effective sharing of rare data are currently not freely supported by
existing wireless communication infrastructures. In our application scenarios, we assume that no
cellular communication is possible (valid in many situations) and they do not support any such
applications as well; so we have mobile ad hoc communication to share the information across
the mobile peers. Given the absence of cellular infrastructure, we need to adapt mobile ad hoc
networks as infrastructure to share the rare data items and their related information. Even if
we assumed cellular infrastructure at such remote areas, it would not be practically feasible to
provide mobile users with an app to provide such rare data item information. This is because the
queries in mobile ad hoc networks are typically unbounded since we can never know in advance
what kind of rare item information would become important to the users. Moreover, any user
can issue a query for information about any rare data item; hence it is not practically feasible to
store such information about all possible types of rare item information in a centralized system.
Observe how the sudden urgent demand of several MPs for information concerning rare items
(e.g., protective clothing or gas-masks) arises due to the occurrence of events such as the sudden
onset of harsh weather conditions or the users unexpectedly encountering a cave.

Information about rare data items is generated by mobile users. For example, upon seeing
gas-masks being sold at a shop, a mobile user may decide to capture some information about
the shop and store such information in his/her mobile device. The mobile user (mobile peer) has
an incentive to carry this information because when there arrives a sudden burst of queries for
information about the rare data items, the user can earn high amounts of revenue because the
prices of the rare items are significantly higher than that of non-rare items. In essence, the user
is holding on to information about the rare item in the hope that when the rare item becomes
hot, he/she will earn high amount of revenues. As we shall see shortly, our approach does not
broadcast information about rare data items across the peers. Hence, a mobile peer knows about
the existence of such data items in his/her vicinity by issuing a query (search) for information
about the rare data item.

In this work, we assume an environment, where all the MPs collaborate on information sharing
and are trusted. Notably, any distributed trust management schemes [Qureshi et al. 2010;
Rathnayake et al. 2011; Singh and Liu 2003] can be used in conjunction with our proposed work
for managing trust. Furthermore, we assume that there is no connection between the seller of the
rare items and the MPs who own/host information about them. Thus, these MPs are not agents
of any sellers of the rare items. They provide the information that they have collected from their
own use or based on their general interest in some types of rare items. Thus, the scope of our
proposed model is restricted to information exchange about rare items among the MPs within
the M-P2P network (such as in crowdsourcing) as opposed to the buying/selling of the actual
rare items.

Our application scenarios could be collaborative or non-collaborative applications. In case
of collaborative applications, incentive mechanism still remains useful for resource allocation
purposes e.g., even in collaborative environments, we need incentives in order to control the
flooding by messages so that limited resources such as bandwidth, mobile peers’ energy can be
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preserved. For example, in military application in remote areas, the communication bandwidth is
limited and it generates many messages and that clogs the network. Thus, each peer is given some
quota of tokens and based on self-evaluation about the importance of their respective messages,
peers decide to communicate.

Similar to the works in [Hara and Madria 2006; Xia and Prabhakar 2003], our target appli-
cations mainly concern slow-moving objects e.g., adventure tourists in a forest. Our application
scenarios assume data accesses to occur within soft real-time deadlines and as such, we do not
address scenarios where real-time access is required. Additionally, given our assumption concern-
ing slow-moving objects, a query-issuing MP may still be wandering in the region for say, the
next 2-3 minutes. In our work, a user specifies a TTL (hence a soft real-time) for her query, and
if the answer is not found within the TTL, the query fails.

Data availability in M-P2P networks is typically lower than in fixed networks due to frequent
network partitioning arising from peer movement, mobile resource constraints (e.g., bandwidth,
energy, memory space) and mobile devices being autonomously switched ‘off’. (Incidentally, data
availability is less than 20% even in a wired environment [Saroiu et al. 2001].) Rampant free-
riding further reduces data availability since a large percentage of MPs are typically free-riders
[Ham and Agha 2005; Kamvar et al. 2003] i.e., they do not provide any data. Availability of
rare data is further exacerbated since they are generally stored at relatively few MPs, which may
be several hops away from query-issuers. Thus, economic models become a necessity to combat
free-riding and to incentivize MPs to host replicas for improving rare data availability in M-P2P
networks.

Existing replication schemes for improving data availability in mobile ad hoc networks (MANETS)
[Hara and Madria 2006; Khan et al. 2008] do not consider economic incentives for data hosting,
licensing mechanisms, M-P2P architecture and data item rarity issues. Incentive schemes for
MANETSs [Buttydn and Hubaux 2003; Chen and Nahrstedt 2004; Crowcroft et al. 2003; Srini-
vasan et al. 2003] primarily focus on encouraging message forwarding, but they do not address
replication. M-P2P incentive schemes [Wolfson et al. 2004; Xu et al. 2006] do not address the
replication of rare data items.

This work proposes E-Rare, a novel economic incentive model for improving rare data avail-
ability by means of licensing-based replication in M-P2P networks. E-Rare comprises two repli-
cation schemes, namely ECR and ECR+, both of which use its incentive model for improving
rare data availability. The key difference between these schemes is that in ECR, the MPs act
individually towards replication, while for ECR+, the MPs perform replication in groups. In
both these schemes, a given MP issues queries specifying its desired data item, its location and
query deadline.

In E-Rare, each data item d is associated with four types of prices, which provide different
rights to the query-issuing MP M/ concerning the usage of d. The first two price types entitle
M7 to obtain information about d at different levels of detail (e.g., information about a few shops
selling gas-masks versus complete catalogues of more shops selling gas-masks), but they do not
provide M the right (or license) to enable downloads of d from itself. In contrast, the third and
fourth price types concern licensing for partial and full use downloads, and are aimed towards
enabling and incentivizing replication by means of data licensing. Notably, all four price types
depend upon factors such as item rarity score and timeliness of query response. In ECR, the
item rarity score depends upon the variability in the access counts of d during recent periods of
time. Here, we assume that time is divided into equal intervals, each of which is designated as
a time-period. In ECR+, the item rarity score additionally depends upon the number of MPs
which host d.

E-Rare requires a query-issuing MP M; to pay any one of these four prices for its requested
data item to the MP Mg serving its request, depending upon the price type associated with
its query. Furthermore, it requires M7 to pay a constant commission to each relay MP in the
successful query path from which it eventually downloads the data, thereby enticing them to
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forward queries quickly. Note that even though the M has to pay a constant relay commission
to each relay MP, it does not necessarily imply that a shortest path should be applied because
the total payment made by the M; includes both the item price and the relay commissions.
For example, using the shortest path would result in the M; paying a lower amount for relay
commissions, but it could end up paying a higher total cost because the item price may be higher
at the mobile peer (in that path) from which M; would need to eventually download the item.

Observe how E-Rare effectively combats free-riding because free-riders would have to earn
currency for issuing their own requests, and they can earn currency only by means of hosting
items and relaying messages. Notably, given that E-Rare associates rare data items with prices,
it is possible for an M} to avoid accessing the items because of their prices or if the M; has
not earned adequate revenue by hosting items or by relaying messages. Furthermore, in E-Rare,
item prices increase with rarity, thereby providing free-riders with higher incentive [Garyfalos
and Almeroth 2004; Ratsimor et al. 2003; Straub and Heinemann 2004] to host rare items
for maximizing their revenues. By enticing free-riders to pool in their energy and bandwidth
resources to host rare items, E-Rare improves rare data availability due to replication.

In ECR+, a peer group is defined as a set of MPs working together such as an adventure
tour expedition group. MPs provide discounts only to the MPs within their group, thereby
incentivizing MP participation in the group. These discounts are applicable to all the four price
types discussed earlier. Notably, group members need not necessarily be one-hop neighbors i.e.,
they may be scattered across the network due to peer movements.

The main contributions of this paper are three-fold:

—It provides incentives for replication of rare data items by means of a novel licensing mechanism,
thereby improving rare data availability.

—It provides additional incentives for MPs to collaborate in groups, thereby further improving
rare data availability.

—A detailed performance evaluation has been done to show the improvement in query response
times and availability of rare data items in M-P2P networks.

Incidentally, virtual currency incentives are suitable for P2P environments due to the high trans-
action costs of real-currency micro-payments [Turner and Ross 2004]. The works in [Daras et al.
2003; Elrufaie and Turner 2004; Zhong et al. 2003] discuss how to ensure secure payments using
a virtual currency. Notably, these secure payment schemes are complementary to our proposal,
but they can be used in conjunction with our proposal.

We have performed a detailed performance evaluation of both ECR and ECR+. As a baseline
reference, we have also compared against an existing non-incentive and non-economic replication
E-DCG+ scheme for MANETS, proposed in [Hara and Madria 2006], which is the closest to our
scenario. We have used average response times of queries, query success rates, query hop-counts
and the number of messages as performance metrics. ECR+ outperforms ECR due to its group-
based incentives (such as discounts), which facilitate collaborative replication among MPs. ECR
outperforms E-DCG+ essentially due to its economic licensing scheme, which incentivizes MP
participation in the creation of multiple copies of rare items. Both ECR and ECR+ incur more
messages than E-DCG+ because in case of E-DCG+, a large percentage of unsuccessful queries
result in decreased amount of data transfer, albeit at the cost of reduced query success rates.

The results also indicate that both ECR and ECR+ exhibit good scalability with increasing
number of MPs due to increased opportunities for replication. Moreover, ECR+’s performance
improves with increasing group size due to increased replication opportunities. However, beyond
a certain point, further increase in group size does not significantly improve performance due to
saturation. Both ECR and ECR+ perform best when the communication range is neither too
high nor too low. This is because when the communication range is large (i.e., in effect, the MPs
are ‘nearer’ to each other), the effect of gains in query response times is offset by the overheads of
higher number of incoming queries at MPs that host data items and increased relay propagation
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latencies. Conversely, when the communication range is too small, query response times increase
because more hops are required for answering queries.

ECR+ performs best when the discount is neither too high nor too low. This is because when
the discount is too high, MPs hosting rare items have reduced incentives to join the group due to
reduction in their earnings from license prices. On the other hand, when the discount is too low,
MPs trying to obtain licenses for replicating rare items have reduced incentive to participate in
the group. The results also demonstrate that both ECR and ECR+ perform best when replication
is performed neither too early nor too late. Finally, the performance of both ECR and ECR+
degrades with increasing percentage of MP failures due to reduced opportunities for replication.

The remainder of the paper is organized as follows. Section 2 reviews related works, while
Section 3 details the economic model of E-Rare. Section 4 presents the ECR and ECR+ repli-
cation schemes. Section 5 reports our performance study. Finally, we conclude in Section 6 with
directions for future work.

2. RELATED WORK

This section provides an overview of existing works. Notably, the combination of issues such as
node mobility, free-riding, network partitioning and resource constraints (e.g., energy, memory
space) are more relevant to mobile environments such as mobile ad hoc networks (MANETS)
and M-P2P networks, although some of these issues may also arise in other environments. As a
single instance, in static P2P environments, the issue of node mobility does not arise and resource
constraints are not as severe as in M-P2P environments. The free-riding issue in traditional static
P2P environments may be handled by blocking the free-riders. However, in M-P2P environments,
in order to have connectivity in the network, we need to attract free-riders to provide services.

Economic schemes for resource allocation: Economic schemes have been discussed for
resource allocation in distributed systems [Ferguson et al. 1993; Ferguson et al. 1988; Kurose
and Simha 1989]. However, they do not address M-P2P issues such as node mobility, free-riding,
frequent network partitioning and mobile resource constraints. The proposals in [Liu and Issarny
2004; Xue et al. 2006a; 2006b] discuss economic schemes for resource allocation in wireless ad
hoc networks. However, they do not consider replication and data rarity issues. Moreover, their
focus is network-centric, while our focus is data-centric.

Schemes for static P2P networks: Replication schemes have been proposed for static
P2P networks [Bhagwan et al. 2003; Datta et al. 2003b] and also for traditional distributed
systems [Kemme and Alonso 2000]. Incentive-based schemes for encouraging peer participation
in static P2P networks involve formal game-theoretic model for incentive-based P2P file-sharing
systems [Golle et al. 2001], utility functions to capture peer contributions [Ham and Agha 2005;
Ramaswamy and Liu 2003], EigenTrust scores to capture participation criteria [Kamvar et al.
2003] and asymmetric incentives based on disparities between upload and download bandwidths
[Liebau et al. 2005]. However, these approaches are too static to be deployed in M-P2P networks
because they assume peers’ availability and fixed topology. Furthermore, they do not address
mobile resource constraints (e.g., energy) and data rarity issues.

Non-incentive-based replication in MANETSs: The proposals in [Hara and Madria 2006;
2005] discuss replication in MANETs. E-DCG+ [Hara and Madria 2006] creates groups of MPs
that are biconnected components in a MANET, and shares replicas in larger groups of MPs
to provide high stability. An RWR (read-write ratio) value in the group of each data item is
calculated as a summation of RWR of those data items at each MP in that group. In the order
of the RWR values of the group, replicas of items are allocated until memory space of all MPs in
the group becomes full. Each replica is allocated at an MP, whose RWR value to the item is the
highest among MPs that have free memory space to create it.

The work in [Hara and Madria 2005] aims at classifying different replica consistency levels in a
MANET based on application requirements, and proposes protocols to realize them. Consistency
maintenance is performed via quorums and it is based on local conditions such as location and
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time. Incidentally, P2P replication suitable for mobile environments has been incorporated in
systems such as ROAM [Ratner et al. 2001}, Clique [Richard et al. 2003] and Rumor [Guy et al.
1998]. The work in [Sakashita et al. 2010] considers the reduction of delays in P2P streaming
environments, but it is focused on lower level networking layer. Notably, these proposals do not
consider any economic model, M-P2P architecture, data licensing and data rarity issues.

Incentive schemes for combating free-riding in MANETS: The proposals in [Buttydn
and Hubaux 2001; 2003; Chen and Nahrstedt 2004; Crowcroft et al. 2003; Srinivasan et al. 2003]
address free-riding in MANETs. The work in [Buttydn and Hubaux 2001] introduces a virtual
currency to stimulate node cooperation. The works in [Buttydn and Hubaux 2003; Zhong et al.
2003] use virtual currency to stimulate the cooperation of mobile nodes in forwarding messages.
The auction-based iPass [Chen and Nahrstedt 2004] incentive scheme and the works in [Crowcroft
et al. 2003; Srinivasan et al. 2003] also provide incentives for relaying messages. In particular,
the proposals in [Crowcroft et al. 2003; Srinivasan et al. 2003] concentrate on compensating
forwarding cost in terms of battery power, memory and CPU cycles. However, these works do
not consider data rarity issues, data item prices and incentives for data replication i.e., they do
not entice peers to host data.

Non-incentive-based replication in M-P2P networks: The work in [Mondal et al.
2006b] has proposed a context and location-based approach for replica allocation in M-P2P
networks. It exploits user mobility patterns, and considers load and different levels of replica
consistency. The proposal in [Mondal et al. 2006a] has discussed both collaborative replica
allocation and deallocation in tandem to facilitate optimal replication and to avoid ‘thrashing’
conditions. However, these proposals do not consider economic schemes and data rarity issues.

Incentive schemes for combating free-riding in M-P2P networks: The proposals in
[Xu et al. 2006; Wolfson et al. 2004] discuss incentive schemes for combating free-riding in
M-P2P networks. The work in [Xu et al. 2006] provides incentives to MPs for participation
in the dissemination of reports about resources in M-P2P networks. Each disseminated report
contains information concerning a spatial-temporal resource e.g., availability of a parking slot at
a given time and location.

The work in [Wolfson et al. 2004] considers opportunistic resource information dissemination
in transportation application scenarios. An MP transmits its resources to the MPs that it en-
counters, and obtains resources from them in exchange. The works in [Wolfson et al. 2004;
Xu et al. 2006] primarily address data dissemination with the aim of reaching as many peers
as possible i.e., they focus on how every peer can get the data. However, licensing-based data
replication and data rarity issues are not considered in [Wolfson et al. 2004; Xu et al. 2006].

Payment schemes: A small study [Mannak et al. 2004], which was conducted on users’
motivation and decision to share resources in P2P networks, revealed that 50% of the questioned
users would share more, if some materialistic incentives (e.g., money) are dispensed by the appli-
cation. Herein lies the motivation for coupon-based systems like adPASS [Straub and Heinemann
2004]. The works in [Daras et al. 2003; Elrufaie and Turner 2004; Zhong et al. 2003] discuss
how to ensure secure payments using a virtual currency. Another way proposed in [Garyfalos
and Almeroth 2004] describes Coupons, an incentive scheme that is inspired by the eNcentive
framework [Ratsimor et al. 2003], which allows mobile agents to spread digital advertisements
with embedded coupons among mobile users in a P2P manner.

Several non-repudiation [Kremer et al. 2002; Sabater and Sierra 2005] systems, which can
be incorporated to control the deceiving behaviour of peers, have been developed. In many
applications such as content distribution, the price can also be controlled by the service-providers
[Figueiredo et al. 2004]. MoB [Chakravorty et al. 2005] is an open market collaborative wide-area
wireless data services architecture, which can be used by mobile users for opportunistically trading
services with each other. MoB also handles incentive management, user reputation management
and accounting services.

A bootstrap kind of mechanism can also be used in many applications [Datta et al. 2003a].
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Symella is a Gnutella file-sharing client for Symbian smartphones. It expects that illegal acts
occur, such as interpolation or destruction of the distribution history to get incentives. Hence,
the distribution history attached to the e-coupon [Chen and Nahrstedt 2004] is enciphered with a
public-key cryptographic system so that users cannot peruse the distribution history. Moreover, a
message digest (MD) of the distribution history is embedded by digital-watermarking technology
to check the validity of the history. Notably, these secure payment schemes are complementary
to our proposal, but they can be used in conjunction with our proposal.

3. E-RARE: AN ECONOMIC INCENTIVE MODEL FOR RARE DATA ITEMS

This section discusses our proposed economic incentive model E-Rare for improving the avail-
ability of rare data items in M-P2P networks.

In E-Rare, a given query-issuing MP M7 issues a query @ of the form (d, L, 7¢g), where d
is the queried data item. Data item d is described as a combination of keywords. We assume
that each device in M-P2P network has the capability to match keywords to data items stored
in their devices L represents the query location, and is of the form {(z, y), rad}. Here, (z, y)
represents the spatial coordinates associated with a given query @, while rad represents the
radius. For example, M7 may query for an item d within 1 km of its current location L. 7g is the
deadline time of (). The ephemerality of M-P2P environments necessitates timely responses, and
consequently query deadlines. Notably, the query-issuer does not specify an explicit rarity score
for its queried item because rarity scores of any given item can change dynamically depending
upon accesses, and these scores vary across the MPs. Hence, the query-issuer does not necessarily
know the rarity scores of data items that are hosted at other MPs. In essence, we want the rarity
scores to be kept transparent from the query-issuers.

This work assumes that the only way that a MP can obtain a data item is by purchasing it.
Thus, a given MP cannot obtain a data item while relaying it for other MPs. This assumption is
justifiable in practice because each data item is protected through copyright protection, encryp-
tion and security mechanisms [Doriguzzi Corin et al. 2014]. Several existing content authoring
techniques can be used for license protection and restricted distribution [Jokela 2003].

3.1 Computation of the rarity score Ay

Now let us discuss how the rarity score Ay of a data item d is computed in E-Rare. \; depends
upon the variability in the access count of d during the past N periods of time. Observe that
the value of \; should increase with the variability in access count of d over the last N periods
in consonance with our definition of rarity, which incorporates sudden bursts in accesses for rare
items. For example, information about gas-masks and associated safety equipment is heavily
accessed only during a specific time-frame associated with a rare event, while at other times,
such information may not be accessed at all. The computation of Ay follows:

A= [{(ne— (% XZilym)) / maz(ne, & Siym) }+1]/2 (1)
where N is the number of time-periods over which A\; is computed. Here, 7. refers to the access
count of data item d for the current period, while 7; represents the access count of d for the
it" time-period. Our preliminary experiments revealed that N=5 is suitable for our application
scenarios. In this regard, we performed many experiments for several scenarios with different
values for N. Based on the results of those experiments, we found that for values of NV that are
higher than 5, the value of the rarity score does not change significantly. In fact, in most of our
experiments, we found that the value of the rarity score does not change beyond N=3. Hence,
we used N=5 in this work to capture the outlier cases.

Notably, the term ( % Zf\il 7; ) represents the average access count of d during the last N time-
periods. Thus, when the current period’s access count exceeds the past average access count, the
term { (1. — (& Zf\il n:))/ maz (ne, & Ef\il 7;) } lies between 0 and 1. On the other hand,
when the current access count falls below the past average access count, this term lies between -1
and 0. Hence, in Equation 1, we add 1 to this term and divide by 2, thereby making the value of
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Ag between 0 and 1. Observe that the value of Ay may differ among the MPs for the same data
item since it is associated with sudden bursts at each MP.

Based on the value of Ay, a given data item is classified into one of the following three classes:
rare, medium-rare and non-rare. Fach class is associated with a range of \;. For rare items, 0.7
< Ag < 1; for medium-rare items, 0.5 < Ay < 0.7; and for non-rare items, 0 < Ay < 0.5. These
rare data classes are determined based on our experimental results. The ranges for each class are
pre-specified system constants that are known to all the MPs.

Incidentally, the computation of rarity scores requires a distributed collection protocol among
all the peers in the network. The protocol here would be for each peer to maintain in its log a
counter for the download of items at itself. Using this counter, the information about the access
frequency of a given data item is sent to its owner. (Notably, the owner of a given data item
is the MP who provided the first copy of the item. In other words, the owner is the MP that
generated and responded to the first query on the given data item.) Observe that this protocol
incurs communication overhead. We can reduce the communication overhead by piggybacking
onto other essential system status messages.

3.2 Types of item prices in E-Rare

Each query @ for any given item d is associated with any one of four types of prices, which
provide different rights to the query-issuing MP M; concerning the usage of d. We designate
these prices as partial_use_price Py, full_use_price Fy g, partial_use_license_price PULg4 g and
full_use_lice-nse_price FULq4 q. My pays one of these four prices to the query-serving MP Mg,
depending upon the type of price associated with its query. Based on our understanding of the
problem and general application scenarios, we envisaged these possible classes of service, but
there could be more classes of service possible based on the application. We have tried to justify
the different levels of services through price distribution related to rare data in M-P2P networks.
We assume that users are versatile in terms of rare data usage, thus each price is in increasing
order of its related data item usage. Furthermore, the licensing mechanism also attracts those
mobile peers, who have little or no interest in rare data item usage, but they may involve in its
distribution process, thereby increasing rare data availability in M-2P networks.

Paying the partial_use_price Py g entitles M7 to obtain some basic or partial information about
its queried data item d, while paying full_use_price Fy ¢ entitles M; to obtain more detailed
information about d. For example, in case of our application scenario concerning a sudden spike
in the demand for gas-masks and associated safety equipment, paying Py o would entitle M only
to information about a few shops selling such equipment and their respective prices at these shops.
However, paying Fg o provides M with more detailed information such as complete catalogues
of more shops selling these items, contact addresses and telephone numbers of these shops, how
to order these items (e.g., by phone) and instructional materials demonstrating how to use these
items. Notably, the payments of P; o or Fy g pertain to M;’s sole use of d i.e., My does not
obtain the right to host d at itself for downloads by other MPs. Thus, M; cannot earn currency
by hosting d.

For obtaining the right to earn currency by hosting d and allowing downloads of d at itself, M
needs to pay either of the two license prices for d. In E-Rare, an MP may purchase two types of
licenses, which we designate as partial use license (PUL) and full use license (FUL) respectively.
When an MP M purchases a single PUL for a data item d from d’s original owner, it obtains
the right to provide d to any one query-issuing MP, which issues a partial_use_price query for d.
Thus, purchasing np PULSs for d enables M; to earn currency from np downloads of d pertaining
to partial_use_price queries. Similarly, purchasing np FULs for d enables M; to earn currency
from np downloads of d pertaining to full_use_price queries.

Observe that being collaborative and trusted, MPs in possession of an item would not exceed
the number of pre-specified downloads. This assumption is indeed valid in practice and can be
realized by using Digital Rights Management (DRM) software at the mobile devices of the peers.
Notably, there are several examples of existing systems, which allow only a pre-specified number
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of downloads. We assume that Software such as DRM can be used to control this. Furthermore,
we assume that each data item is protected through copyright protection and license security
mechanism. Several existing content authoring techniques can be used for license protection and
restricted distribution. They can be encrypted using traditional public-private key encryption
technqiues [Doriguzzi Corin et al. 2014]. Notably, observe that in E-Rare, when an MP pays a
one-time license price to get a given item, it is not allowed to fulfill as many queries as it wants,
although allowing an MP to do so would improve data availability. The rationale behind this is to
protect the original owner’s benefit i.e., to incentivize the original owner to create and maintain
information about rare items.

Observe how the data licensing mechanism of E-Rare provides an economic means of incen-
tivizing data replication because the data owners can earn currency from the license prices. We
assume that the initial number of licenses is fixed by the owner of data items, and that decides
the number of licensees. We also assume that there are enough peers interested to ask for licenses
of a given item from licensor. In general, the number of licensees can be updated by the owner
on the regular feedback received from other peers within the group (in case of ECR+) based on
the query response time, and their availability. Furthermore, if the owner of an item d replicates
d without charging a license price, competition with the MPs hosting replicas of d would be
likely to reduce its earnings from hosting d. The licensing mechanism also improves rare data
availability by guarding against the possibility of unavailability of the rare item owner.

Symbol Significance
d A data item
Ad Rarity score of d
My Query-issuing MP
Mg Query-serving MP
Py.q The partial-use_price of d
Fiq The full_use_price of d
PULgy,q The partial_use_license_price of d
FULqy,q The full_use_license_price of d

Table I: Summary of Notations

For the sake of convenience, Table I summarizes the notations used in this paper. Notably,
each data item d is associated with a score Ay, which quantifies its rarity, and therefore influences
item prices. The remainder of this section discusses the computation of the four price types and
the computation of MP revenues in E-Rare.

Computation of the partial_use_price Py . The partial_use_price Py g of a data item d for a
given query () depends on the rarity score Ay of d and the response time of the query ) w.r.t.
the query deadline. Notably, P; ¢ should increase with increase in A\g because rare items should
command higher prices. Furthermore, for rewarding faster service, Py ¢ should be higher for
queries answered considerably earlier than the query deadline than for queries answered very
close to the deadline. Thus, given that 7g and Rg represent the query deadline and the query
response time respectively, Py g should increase with increase in the ratio (7g / Rg). Paq is
computed as follows:

Prg = {(Ad xere/fe ) if Ro<q @

0 otherwise

When making the purchase, the buyer is provided with a list of pricing options e.g., if 3 minutes
delay, $10; if 7 minutes delay, $2 etc. Thus, the buyer has some expectation about the total price
which he will be paying for the purchase. Observe that for queries answered after the deadline,
P, q is set to zero because the query results may no longer be useful to the query-issuer. Observe
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how P, g decreases with decreasing the rarity score A\y. Furthermore, for the very first query on
d, we assume Rg=7q for bootstrapping purposes. Hence, in this special case, Py g=Aq X e.

Computation of the full_use_price Fy . Intuitively, we can understand that the full_use_price
Fy ¢ of a data item d for a given query @ should always exceed its partial_use_price Py g because
it provides more information to the query-issuer. We compute Fy g as follows:

Fd,Q = Pd,Q x T (3)

In Equation 3, the value of Py ¢ is computed from Equation 2. Here, T always exceeds 1 to
ensure that Fy o always exceeds Py g. The value of T depends on the difference between the
value proposition to the user provided by partial and full access to the information, and hence,
it is application-dependent. In this work, based on the results of our preliminary experiments,
we set T = 1.3.

Computation of license_prices PULy g and FULg4 . The license prices, PULg4 g and FULg g,
for a single PUL and FUL respectively are computed as follows:

PULd,Q = HKPyq + (/’[’Pd,Q + HFq 0 )/:uPd,Q (4)

FULdyQ = MHFyq + (lu’Pd,Q + HFq.q ) / Py q (5>

In Equations 4 and 5, pp, , and pr, , are the average values of Py q and Fy g respectively at
the original owner of d since both P; o and Fy g vary across queries. Thus, the owner of d
computes pip, , and uir, , by averaging the individual values of Py q across all the queries (for d)
that it answered corresponding to the partial_use_price and the full_use_price respectively during
recent time-periods. In case of the owner encountering a failure or getting disconnected from the
network (e.g., due to network partitioning), we assume that there is a reasonable range of prices
for data items, and these are well-known among all the peers in the network. Furthermore, the
owner can connect back to the network eventually and once the owner connects, it can collect
information about the price history, thereby facilitating in the computation of the prices.

Intuitively, PULq4,q should exceed up, , because it enables the query-issuer to earn currency
from hosting item d. In Equation 4, observe that PULgq always exceeds up, , because the
second term is always a positive number that is greater than 1. This is because ur, , > pp, o5
as discussed earlier. Similarly, in Equation 5, FU L4 q always exceeds up, -

(Aa X eTQ/RQ) if Rgo <Tg

Partial Use Paq = )
0 otherwise

(Information) | License | PULa,q = firy o + (HPy o + MF.o )/1Pio

Full Use Fd’Q = Pd’Q x Y

(Information) | License | FULa,q = fir, o + (#Py o + BFio )/1Pio

Table II: Summary of item price types in E-Rare

For the sake of convenience, we have summarized the four price types in E-Rare in Table II.

3.3 Revenue of an MP

Revenue of an MP M is the difference between the amount of virtual currency that it earns and
the amount that it spends. M earns currency from accesses to data items that it hosts and by
relaying messages. M spends currency by accessing items hosted at other MPs, and by paying
commissions to the relay MPs corresponding to its queries. Given that E-Rare has four types of
item prices, the revenue of M is the sum of the net earnings of an MP corresponding to each of
these four price types and the net earnings due to message relay commissions.
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In E-Rare, message relay commission is a constant K, which is a small percentage of the average
partial_use_price pup, , at the owner MP of the given data item. Observe that we intentionally
set the price for relaying messages to be significantly lower than the price of a given data item
for better incentivizing replica hosting in comparison to message relaying. In essence, our intent
here is that replica hosting should be more incentivized than message relaying. Hence, we keep
the relay price K to a low fixed value (fixed at 5% of the average price) so that MPs have
some incentive to relay messages. However, since our key objective here is to incentivize replica
hosting, hence the message relay incentives are secondary to our goals. Hence, we did not perform
any experiments to observe the impact of varying the value of K. Note that the value of Py ¢
varies across queries, however the prices of items in the application can be used as a guideline to
estimate an approximate average value of Py q. In this work, relay MPs have to relay as this is
a part of the protocol i.e., they do not decide whether they want to relay the data.

Suppose M hosts p data items. For queries served by M, let the access counts of the i item cor-
responding to the partial_use_price, full_use_price, partial_use_license_price and full_use_license_price
be nsp,, nsg,, nspyr, and nspyr, respectively. Moreover, let the corresponding prices for these
accesses be P;, F;, PUL; and FUL; respectively. Furthermore, suppose M relays m messages.
Thus, the total earnings Ejp; of M is computed as follows:

Eyv = >0 [(nspy x Pi) + (nsFy x Fi) + (nsPUL; % PUL; ) + (nsFUL; % FUL; )|+ (mx K)
(6)
In the above equation, the first and second terms represent M’s earnings corresponding to par-
tial_use_price and full_use_price respectively, while the third and fourth terms relate to M’s
earnings from licensing. Note that M can earn license prices (corresponding to PUL and FUL)
only for the items that it owns. The fifth term represents M’s earnings from relay commissions.
Let the number of queries issued successfully' by M corresponding to the partial_use_price,
Jull_use_price, partial_use_license_price (PUL) and full_use_license_price (FUL) be ngp, ngr, nqpu1,
and ngpyr, respectively. Moreover, let the it" item’s price paid by M to obtain the query result
corresponding to its desired price type be P;, F;, PUL; and FUL; respectively. Furthermore,
suppose M paid relay commissions for n messages in the course of issuing different queries. Thus,
the total spending Sj; of M is computed as follows:

Sy o= [XHE7 B+ [ XS5 Bl + [2E7 PUL: | + [3527" FULi |+ (nx K)
(7)
In Equation 7, the first and second terms represent M’s spending on the queries that it issued
corresponding to partial_use_price and full use_price respectively. The third and fourth terms
relate to M’s spending due to purchases of licenses (i.e., PUL and FUL). The fifth term represents
M’s spending due to relay commissions.
Hence, using Equations 6 and 7, the revenue w of M is computed below:

w=FEy—5Su (8)

4. ECONOMY-BASED REPLICATION SCHEMES FOR E-RARE

This section discusses two economy-based replication schemes, namely ECR and ECR+, for
improving rare data availability. They are based on the incentive-model discussed in the previous
section.

4.1 ECR: Individual-based replication scheme

In ECR, each MP M autonomously decides the items to host at itself on a periodic basis. These
items could be either the items that M owns or the items for which it sees high demand (as in case
of rare items) based on the messages that it relays. M tries to obtain such high-demand items

LA successful query is one for which M receives the query results before the deadline. For unsuccessful queries,
M does not spend any currency.
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from its neighbors. Thus, this method helps in combating free-riders by attracting them to host
items and earn incentives. Initially, when the system starts, for uniformity, reduced replication-
related overhead and later for performance comparison purposes, we initialize the replication
period, which is the same for all the MPs. Thus, the replication period is independent of data
items.

For determining which data items to host at itself, M autonomously sets a rarity threshold
score THp. (Thus, THg can vary across MPs.) M computes THpg as an average rarity score of
the rare items that it currently hosts. This is because over the course of time, each MP would
like to host data items with higher rarity score values in order to improve its chances of earning
more revenues when such rare items become popular. Alternatively, if an MP decided to set the
value of its T Hg, threshold to the maximum rarity score value (among all the items that it hosts),
it would likely decrease its future opportunities for earning revenues because it would prevent it
from serving the requests of many peers. On the other hand, if an MP decided to set the value
of its THp threshold to the minimum rarity score value (among all the items that it hosts), it
would also likely decrease its future opportunities for earning revenues since it would imply that
over the course of time, the MP would eventually be hosting less rare data items. Hence, we
believe that setting the T'Hp threshold to the average of the rarity scores of the items that it
currently hosts would be reasonable for a given MP for real-world application scenarios.

M proceeds to fill up its available memory space by first sorting its own items in descending
order of their rarity scores and hosting only those items, whose rarity scores exceed T Hg. Then,
if M has available memory space, M creates a list of items, for which it has seen high demand
(based on its intercepted relay messages). M sends a message to its neighbors to enquire whether
they have some of these items and the associated item rarity scores. Upon receiving replies from
its neighbors, M tries to replicate at itself only those items, whose rarity scores exceed T'Hpg, by
paying either of the license price types to the corresponding neighbor(s). M’s remaining memory
space (if any) is then progressively filled up one-by-one with its own items based on descending
order of their rarity scores. Figure 1 depicts the algorithm used by a given MP for determining
which data items to host at itself.

Algorithm ECR_an-MP M

/* MEM is an M’s memory space */

/* TH is a rarity score threshold for M */

/* X\ is a rarity score for data item i */
(1) Receive broadcasted list Br of the data items from M’s neighbours
(2) Merge Br with M’s own list of available data items in Ag
(3) Sort Ag in descending order of data items’ rarity scores

(4) for each item i in A
(5) if MEM ; 0 and \; ; TH and 7 is not already resident

(6) Store ¢ in MEM

(7 MEM = MEM - sizeofli]
(8) Add i to purchased list Pr
9) else

(10) break

(11) for each item i in Pg
(12) Pay partial /full use price of ¢ to its sender-MP

end

Algorithm for an MP M

Discussion on ECR. Note that resource constraints include memory space and energy of the
mobile devices, and ECR uses an incentive-based replication mechanism, where peers earn cur-
rency from items that are downloaded from them. This facilitates efficient allocation of limited
available memory space for replicas among the MPs because the peers are incentivized to host
items (or replicas) that are more likely to maximize their revenues.
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Furthermore, our proposed model requires a query-issuing peer to pay a constant commission
to each relay MP in the successful query path from which it eventually downloads the data,
thereby enticing them to forward queries quickly. Since sending and receiving messages tax the
limited energy resources of the mobile peers, this addresses the energy constraint by ensuring
that the peers preserve their energy by forwarding the important messages that are associated
with a higher possibility of downloads.

As such, we do not handle node mobility explicitly. However, in our simulations, we model
node-mobility in terms of the Random Waypoint (RWP) model, which is appropriate for our
application scenarios such as adventure tourists (or archaeologists) moving randomly.

Note that the deletion of items (or replicas) at a peer is autonomous. A peer does not necessarily
have to delete items, whose access count falls below a certain threshold. For example, if the item
is rare and thus higher-priced, a peer may still decide to continue hosting it in the expectation
of earning high amount of revenues when the rare item gets accessed due to the occurrence of
some rare event. Observe that the hosting of rare items is important to the network as a whole
for maintaining the data availability when a sudden burst of queries comes in for the rare items.

4.2 ECR+: Group-based replication scheme

Now we shall discuss ECR+-, which extends the ECR scheme by incorporating the notion of peer
groups for improving the availability of rare data items in E-Rare.

We define a peer group as a set of MPs working together such as an adventure tour expedition
group. Notably, group members need not necessarily be one-hop neighbors i.e., they may be
scattered across the network due to peer mobility. For the sake of convenience, we shall henceforth
refer to a peer group as a group. As we shall see shortly, MPs provide discounts only to other
MPs within their group to incentivize MP participation in the group. As such, group formation
schemes are outside of the scope of this work. Notably, existing group formation schemes such as
MobilisGroups [Lubke et al. 2011] and Team-Formation [Ambroszkiewicz et al. 1998; Hsu and
Liu 2005] schemes can be used in conjunction with our proposal.

Group members periodically broadcast their list of items to members within their group. In this
work, we use flooding to perform the broadcasting of the information within the group. We assume
that these broadcast messages are received by all the MPs within the group. In particular, we
do not handle message loss explicitly, assuming that the underlying broadcast/multicast message
protocol will take care of this issue. In other words, our focus is on the application side assuming
that networking protocol will take care of lower level issues. Each MP M’s broadcast message
constitutes a list, which contains entries of the form { MP_id, data_id, A\q, price, acc_count}, where
MP_id is the unique identifier of M, data_id is the identifier of the data item d that it hosts, A4
is the rarity score of d, price is the price of d, and acc_count is the average access count of d at
M over the last N time-periods. Notably, as we shall see shortly, MP_id and data_id facilitates
MPs in determining the number of group members that host a given item d. Furthermore, the
rarity score guides the MPs in replicating rare items. Additionally, the price and access count
information for each item facilitates replication by guiding the MPs in evaluating the revenue-
earning potential of each item.

Given that nodes in a group are scattered across the network, messages between group members
will often pass through non-group members too. Thus, when the message packets hop through
the network, the intermediate non-group nodes can also see the data items and the associated
hosts from the packets. This facilitates the discovery of members of the groups (and the rare
items that they host) by peers, which are outside of these groups. However, we do not assume
that each peer has, at any point of time, complete information about all the data items when
they send out queries.

Incidentally, the periodic message exchanges among the MPs to share information about the
items that they host do not matter in the calculation of revenue. These messages are sent
periodically as status messages, as required by our proposed ECR+ scheme for keeping the
peers informed about the information hosted at other peers. Since every peer incurs this cost of
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sending these messages and every peer sends a comparable number of such messages, it basically
neutralizes (i.e., cancels out) and it does not have any relative effect in the calculation of peer
revenues.

Computation of the rarity score A\q in ECR+. For computing the rarity score Ay of a data
item d in ECR+, we extend Equation 1 by additionally considering the number £ of MPs (group
members) that host d. The idea of using the parameter £ is to compute an estimate of the
rarity score of a given data item based on information available within the group and then trying
to extrapolate this score as an average estimate of the item’s rarity score across the network.
However, since it is also possible for members outside the group to host d, £ is essentially an
approximate quantification of how many MPs host d. Note that the parameter £ does not
necessarily imply better approximation of the average number of queries. Thus, our computation
of £ represents an inevitable compromise for defining rarity in the absence of complete information
in decentralized settings.

A given MP is able to compute the value of £ because it knows how many other MPs host d
within its group due to the periodic broadcast messages, in which each MP includes the list of
data items that it hosts?. This is in contrast with the case of ECR, where a given MP cannot
compute the value of £ due to the lack of such broadcast messages. Thus, ECR+ computes Ag
based on more information than ECR. In ECR+, each MP computes the rarity score A\q for each
data item d (that it hosts) as follows:

M= [{(ne—(FZim)) [ (maz (e, & Siym) x §)}+1]/2 9)
where N is the number of time-periods over which A\; is computed. Here, 7. refers to the access
count of data item d for the current period, while 1; represents the access count of d for the i
time-period. Similar to the case of ECR, the value of A\; may differ among the MPs for the same
data item since it is associated with sudden bursts at each MP. Thus, the value of Ay for a given
item may differ across group members in ECR+. Furthermore, as in Equation 1, observe that
the range of Ay in Equation 9 is between 0 and 1.

4.3 lllustrative example of peer groups in E-Rare

Figure 2 depicts an illustrative example of an instance of network topology in ECR+. Now we
shall use Figure 2 to illustrate how groups facilitate the improvement of rare data availability. In
Figure 2, the groups {P1, P4, P8, P10, P11, P15, P18}, {P2, P6, P12, P14}, {P3, P9, P13, P20}
and {P5, P7, P16, P17, P19} are shown in different colors. Observe that group members need
not be one-hop neighbours e.g., P1 and P10 are not one-hop neighbours.

Suppose peer P18 sees high access count for an item d, which it does not own or host. Ad-
ditionally, suppose d is owned and hosted by one of its group members, say P1. For simplicity,
assume that no replica of d exists at any other peer in the M-P2P network®. In this scenario,
queries on d initiated nearby P18 may fail due to exceeding the TTL (in terms of the maximum
number of hops allowed for a query) because of the distance from P1, which hosts the queried
item d. Furthermore, queries may also exceed the query deadline time due to incurring high
query response times. Observe that this is likely to decrease M-P2P data availability.

Now suppose P18 licenses d from P1 and hosts d at itself. (Notably, P18 knows that d is owned
by P1 because group members periodically exchange messages to share information about the
items that they own and/or host.) Thus, subsequent queries on d, which are initiated nearby
P18, can either be locally served by P18 if response time is an issue or served by P1 if price is
an issue. Notably, P1 has an incentive to license d to P18 because it can earn currency from the

2 Recall our assumption that the broadcast messages are received by all the MPs within the group.

3For rare items, relatively few replicas exist in the network.
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license price. Furthermore, P18 has an incentive to license d from P1 because it can earn currency
by serving queries on d, which it obtains at a discounted price. Herein lies the motivation for
licensing among group members.

4.4 Discounts for group members in ECR+

For effective incentivization within a group, ECR+ incorporates the notion of discounts, which
pertains to all the four price types that were previously discussed in Section 3. MPs provide
discounts only to other MPs within their group, hence the notion of discounts acts as an incentive
towards MP participation in a group. A group member that sees relatively high access count for
a data item d, which is not hosted at itself, can obtain licenses for d at a discounted price from
any of its group members owning d. Given that group members may be scattered across the
network, such licensing among group members brings the data closer to the source of the queries,
thereby resulting in faster query response times, improved rare data availability and reduced
query-related communication overhead.

In ECR+, the incentive for MPs to join a group is quantified by the discount §. If the value
of ¢ is too high, MPs hosting rare items would be reluctant to join the group. This is because
their revenue-earning potential would decrease due to reduced earnings because of relatively high
discounts. However, MPs querying for the rare items would be incentivized to join the group
because they can obtain their desired items at lower prices due to discounts. On the other hand,
if the value of ¢ is too low, MPs hosting rare items would have better incentive to join the group
because of increased revenue-earning potential from license prices. However, MPs querying for
the rare items would have lower incentive to join the group due to lower discounts. Observe that
when 0 = 0, the effect of discounts is nullified.

In effect, when the value of § is too high or too low, rare data availability is not maximized due
to reduction in the incentivization effect of groups. Hence, we shall experimentally determine
suitable values of § for maximizing rare data availability in Section 5.

Recall that § applies to all the four item price types. We designate the discounted par-
tial_use_price Py g, full_use_price Fy g, partial_use_lice-nse_price PU Ly g and full_use_license_price
FULgqg as DPy g, DFy g, DPULg4 g and DFU Lg g respectively. Hence, to incorporate the ef-
fect of discounts, we extend Equations 2, 3, 4 and 5 (see Section 3) as follows:

DPd,Q = Pd)Q X (1—5) (10)
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DFd’Q = Fd,Q X (1 — (5) (11)
DPULva = PULd,Q X (1 — 5) (12)
DFULqq = FULgg x (1—0) (13)

where 0 < § < 1.

4.5 Group-based data licensing in ECR+

In ECR+, group-based data licensing can be facilitated in two ways. MPs with adequate resources
(e.g., energy, bandwidth, memory space) can request for rare items from group members so that
they can earn currency by hosting and serving queries on those items. This type of licensing
provides incentives to free-riders towards hosting replicas of rare items. This is because free-
riders need to earn currency, without which they would not be able to issue any requests of their
own.

In contrast, MPs owning rare items can also off-load their items to group members in the
network for licensing purposes. An MP may use this mechanism for licensing when its resources,
such as energy or bandwidth, are not adequate to serve queries on its owned items. Moreover,
an MP may use this when it is about to leave the network. In this manner, an MP can earn
currency from its items by means of licensing even if it becomes offline. This type of licensing
also provides incentives to MPs towards replicating their items.

Interestingly, both these mechanism of licensing facilitate replication of rare data from owners
to free-riders, thereby improving rare data availability. In the absence of a licensing mechanism,
rare items would become inaccessible once their owners run out of energy (or leave the network),
thereby reducing rare data availability.

Algorithm ECR+_Licensor_-MP

/* ¢ is an item’s revenue-earning potential */
(1) Sort all its items in descending order of ¢
(2) Compute the average value ¢q,q of all its items
(3) Select items for which ¢ exceeds ¢qvq into a list Lic

/* Lic is the set of items for licensing */
(4) for each item % in Lic
(5) Decide Ali]pyr, and Ali]pyyr for i

/* Alilpur and A[i]pyr are number of available PUL and FUL licenses of i */

(6) Broadcast the list Lic upto its n-hop neighbours
(7) for each item % in Lic

(8) Wait for replies from potential licensees
9) Receive replies from potential licensees
(10)  for each potential licensee j

(11) Calculate the value of Q for j

(12)  Sort the licensees in descending order of 2 into a list Pr,
(13)  for each licensee j in Pr,

(14) if ( A[i]PUL =0 ) break

(15) if (Als]pur — NljlpurL 20)
(16) Send N[j]pur licenses of i to j
(17) Alilpur = Alilpur — N[jlpuL
(18) else

(19) Send A[i]pyr licenses of i to j
(20) AlilpurL =0

(21)  for each licensee j in P,

(22) if ( A[i]FUL =0 ) break

(23) if (Alilrur — N[jlrur 2 0)
(24) Send N[j]rur licenses of i to j
(25) Alilrur = Alilrur — NljlruL
(26) else

(27) Send A[i|rur licenses of ¢ to j
(28) AlilpurL =0

end

Algorithm for Licensor-MP M in ECR+
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Algorithm ECR+_Licensee_MP

(1) Receive broadcast message from potential licensor M

/* Broadcast message contains the item set Lic for licensing */
(2) Sort all items in Lic in descending order of ¢

/* ¢ is an item’s revenue-earning potential */
(3) for each item % in Lic

/* Spc is the peer’s available memory space */
(4) while Spc > 0
/* size; is the size of ¢ */

(5) if ( size; < Spc)
(6) Add i to a set Acgq
(7) Spc = Spc - size;

(8) for each item 4 in Acq
9) Decide Npyr and Ngyp for i

/* Npyr and Npyp are required number of PUL and FUL licenses of ¢ */
(10) for each item ¢ in Acq
(11) Send bid to M with details of energy, hop-distance, Npyr and Npyr to M
(12) Wait for reply from M
(13) if (bid is successful)

(14) Obtain item ¢ from M (with corresponding licensing rights)
(15) Send payment to M
end

Algorithm for LicenseeMP Mg in ECR+

Figure 3 depicts the algorithm for a licensor MP M. In Lines 1-3, observe how M selects the
items with higher revenue-earning potential ¢ for licensing. This is because such items better
incentivize potential licensees towards item hosting because they can earn higher amount of
revenue by hosting these items. Here, ¢ is computed as the product of item access count and
item price*. Note that rare items will have higher revenue-earning potential because their prices
are higher than that of non-rare items. Moreover, rare items have high access counts during
periods of sudden burst. Recall that we consider a cooperative environment where all the mobile
peers are trusted entities. In such cooperative and trusted environments, peers would be truthful
about revealing their access counts on every data item.

As indicated in Lines 4-5, M autonomously decides the number of PUL and FUL licenses that
are to be made available for each item. This work considers peer autonomy in determining the
values of Apy, and Apyr, hence MPs are allowed to autonomously decide the number of licenses
that they want to make available. In Line 6, the broadcast message also contains the values of
Apyr, Apyp and the (discounted) prices for each item in Lic. This information facilitates
potential licensees in determining whether to obtain license(s) for a given item.

As Lines 10-12 indicate, ECR+ prefers potential licensees with higher value of €. Here, Q
quantifies the quality-of-service potential of licensees (that bid for hosting the items). Thus, MPs
with higher values of Q would be likely to provide better service in terms of improving rare data
availability. 2 is computed as below:

Q = [w X energy| + [wa X npep] (14)

where energy and ny,, are the potential licensee’s energy level and its distance from M (in terms
of hop-counts). As energy increases, ) increases because higher-energy MPs are more likely to
provide better data availability. € also increases with increase in npop because licensing a given
item to an MP, which is located at a farther distance from M, is likely to better spread the
item across the region, thereby improving data availability. Furthermore, M prefers to license
its items to MPs that are farther way to reduce competition. In other words, if M licenses its
items to nearby MPs, the accesses for those items would get divided between M and those MPs,
thereby resulting in reduced revenues for M due to competition. In Equation 14, w; and wo are
weight coeflicients such that wi,ws > 0 and wy; + we = 1. In this work, for simplicity, we set

4Since E-Rare considers four types of item prices, the respective products of access counts and each price type are
summed up to obtain the value of ¢.
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w1 = Wy = 0.5.

As Lines 13-28 indicate, M distributes PUL and FUL licenses for each item to potential
licensees, starting from those with higher values of {2 until its number of available PUL and FUL
licenses becomes zero.

Figure 4 depicts the algorithm for a licensee MP Mpg. In Lines 1-2, upon receiving the broadcast
message from licensor M, Mg sorts the items in the broadcast message in descending order of
their revenue-earning potential ¢. As Lines 2-7 suggest, Mg prefers items with higher revenue-
earning potential ¢ because it can earn more revenue by hosting such items per unit of its memory
space since its memory space is limited. Thus as Lines 3-7 indicate, Mg greedily simulates the
filling up of its memory space by items with higher value of ¢.

As Lines 8-9 suggest, Mg autonomously decides the number of PUL and FUL licenses that it
wants to acquire for each item. This work considers peer autonomy in determining the values of
Npyr and Npyp, hence MPs are allowed to autonomously decide the number of licenses that
they want to acquire. Furthermore, in case Mg does not have adequate currency to make the
payment, it is allowed to make the payment after it has earned currency by hosting these items.
Observe that allowing deferred payments can be justified by the fact that potential licensors and
licensees are members of the same group. Hence, if a licensee fails to make the payment within
a reasonable time-frame, it would risk getting removed from the group. This policy of allowing
deferred payments allows free-riders, which may initially not have enough currency to acquire
licenses for items, to seamlessly integrate into participating in the network.

In Lines 10-15, Mg sends its bid to the corresponding licensor M for each of its desired items
along with details of its energy, distance (hop-counts) from M, Npyr and Npyp to M. For
those items, concerning which Mg’s bid is successful, Mg obtains the items with corresponding
licensing rights from M and pays the (discounted) license prices of these items to M. In case
Mg does not have adequate currency to pay M, it informs M about a deadline time by which it
would make its payment.

4.6 lllustrative example of licensing in ECR+

Figure 5 depicts an illustrative example of licensing in ECR+. From Figure 5a, observe how the
items are sorted in order of revenue-earning potential ¢ and only the items above the average
value of ¢ are selected to be licensed by licensor MP M. Figure 5b depicts the license set Lic

ID - Unique identifier of data item P1,P2,P3 - Mobile Peers Ny — Demanded PUL licenses
9 — Revenue-eaming potential } - Potential of licensee Nyy — Demanded FUL licenses
9,,, — Average value of @ across Ay — Available PUL licenses Spur — Supplied PUL licenses
all items of licensor Ay — Available FUL licenses S¢ur. — Supplied FUL licenses
36 |2000
92 1600
53 |1200{ 9, =953.33
09 | 800 36 | 2000 15 5 36 | 2000 | O 0 15 5 15 5
21 | 40 92 | 1600 | 20 3 92 | 1600 | 15 3 8 2 10 1
84 | 80 53 | 1200 | 25 3 531200 6 0 11 Z 0 0
(a) Licensor’s item set (b) Item set to be licensed (c) Required number of licenses by the licensees
[ List of potential licensees in descending order of 2= { P1, P2, P3}
Pl P2 P3
Seor. Seir Spir Sk Seu. Syun

36 | 2000 - - 15 5 0 0

92 | 1600 | 15 3 5 0 0 0

53 | 1200 | 11 2 6 0

(d) Supplied number of licenses to the licensees
Illustrative example of licensing in E-Rare
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comprising items {36, 92, 53} along with the number of available PUL and FUL licenses for
each item in Lic. Figure 5c¢ indicates the number of PUL and FUL licenses demanded by each
of the MPs corresponding to each item. For simplicity, suppose the list of potential licensees in
descending order of ) is as follows: {P1, P2, P3}.

Figure 5d shows the number of supplied licenses to each MP. Observe that P1 does not demand
any PUL licenses for item 36, hence M iterates to the MP with the next highest value of Q i.e.,
the MP P2. Since P2 demands 15 PUL licenses for item 36 and M has 15 available PUL licenses
for this item, M sends all 15 licenses to P2. Now since M has no more available PUL licenses
for item 36, the MP P3 with the next highest value of ) receives no PUL licenses, although it
demanded 15 PUL licenses.

For item 92, the total number of available PUL licenses is 20, and P1 demands 15 PUL licenses.
Thus, M gives 15 PUL licenses to P1. Now observe that P2’s demand is for 8 PUL licenses, while
the current number of available PUL licenses is now only 5 (because the other 15 licenses have
already been assigned to P1). Hence, P2 acquires only 5 PUL licenses for item 92, although it
originally demanded 8 PUL licenses for this item. Furthermore, since there are now no more
remaining available PUL licenses for item 92, P3 is not able to acquire any licenses for this item.
Notably, although we explained this illustrative example using PUL licenses, the explanation for
FUL licenses is essentially similar.

Notably, our proposed algorithms in ECR+ do not have a notion of optimum selection because
we are basically using heuristics. We have provided possible algorithms for achieving our purpose,
but as such, we do not make any claims concerning optimality.

5. PERFORMANCE EVALUATION

This section reports the performance of our incentive-based replication schemes by means of
simulation using OMNET++ [Pongor 1993]. We assume that MPs move according to the Random
Waypoint Model [Broch et al. 1998] within a region of area 1000 metres x 1000 metres. The
Random Waypoint Model is appropriate for our application scenarios, which generally involve
random movement of users such as adventure tourists looking for information about gas-masks
and associated safety equipment in an unfamiliar forest. Our experiments use a total of 150
MPs. The default communication range of all MPs is a circle of 120 metre radius. Table III
summarizes the parameters used in our performance evaluation. Notably, we have looked into
the literature [Hara and Madria 2005; 2006] to understand the different parameters. Based on
our understanding of our application environment, we have selected these parameters.

Recall that E-Rare considers three classes of items (i.e., rare, medium-rare and non-rare) based
on item rarity score A4, and each item class is associated with a range of rarity scores. For rare
items, 0.7 < \g < 1; for medium-rare items, 0.5 < Ay < 0.7; and for non-rare items, 0 < A\g <
0.5. The number of items in each of these classes is determined using a Zipf distribution with zipf
factor ZFp over three buckets, each bucket corresponding to one of the rarity classes. Notably,
we set the default value of ZFp to 0.7 (i.e., high skew) to ensure that the majority of the items
in the network are rare in that they will be assigned relatively high rarity scores. Thus, for each
item d, we randomly assign its value of A; based on the lower and upper bounds of its item class.

Rare items are assigned to 1-2 MPs, medium-rare items are assigned to 3-4 MPs, and non-rare
items are assigned to 5-6 MPs. Thus, given a data item d, we first examine its class to determine
the number of MPs to which d should be assigned. For example, if an item is medium-rare,
it will get assigned to N MPs (Here, N is either 3 or 4, as determined by a random number
generator.) Now a set of N MPs will be randomly selected from among those MPs that have
adequate memory space for replication, and d will be assigned to these MPs. Observe that since
item sizes vary, the available memory space for replication will vary across MPs over time.

Each query is a request for a single data item. 10 queries per second are issued in the network.
Items to be queried are randomly selected from all the items in the entire network. The query-
issuing MP is selected randomly from among all the MPs in the network, the constraint being
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Parameter Default value Variations
No. of MPs ( Nyp ) 150 30, 60, 90, 120
Zipf factor for distribution of rare data ( 0.7 0.1, 0.3, 0.5, 0.9
ZFp )
Zipf factor for distribution of queries across 0.7 0.1, 0.3, 0.5, 0.9
rarity classes (ZFq)
Zipf factor for distribution of MPs across 0.5 0.1, 0.3, 0.7, 0.9
interest groups ( ZF¢g )
Communication Range ( CR ) 120 m 40 m, 80 m, 160 m, 200 m
Discount (D ) 30% 10%, 20%, 40%, 50%
Access count threshold for determining 0.5 0.1, 0.3, 0.7, 0.9
timing of initiating replication ( fru )
Percentage of MP failures ( Pr ) 20% 10%, 30%, 40%, 50%
Queries/second 10
Bandwidth between MPs 28 Kbps to 100 Kbps
Size of a data item 250 Kb to 1.75 Mb
Memory space of each MP 5 MB to 25 MB
Speed of an MP 1 metre/s to 10 metres/s
Size of message headers 220 bytes

Table III: Performance Study Parameters

that an MP cannot issue a query for an item already hosted at itself. The number of queries
directed to each class of items (i.e., rare, medium-rare and non-rare) is determined by a Zipf
distribution with a zipf factor ZFg. We set the default value of ZFg to 0.7 to ensure that a
relatively high percentage of queries are directed towards rare items. This is consistent with our
application scenarios, which involve sudden bursts in accesses to rare items. Furthermore, recall
that queries in E-Rare are associated with one of the following prices, namely partial_use_price
Py, full use_price Fqq, partial-use_license_price PULgq and full_use_license_price FULqq.
The percentage of queries corresponding to Py, Fu,q, PULqgq and FULg g are 30%, 30%, 20%
and 20% respectively. Thus, each query is randomly associated with one of the price types.

For our proposed peer group-based economic scheme ECR+-, we use 10 groups for our exper-
iments. We determine the number of MPs in each group by using a Zipf distribution with a
zipf factor ZFg over 10 buckets. Thus, the number of MPs vary across groups. Hence, in our
experiments, we have varied the value of ZFg to study the impact of variations in group sizes
on the performance of ECR4. The MPs are randomly assigned to the groups. Furthermore, an
MP is assigned to only one peer group to ensure that all groups are mutually disjoint.

The timing of initiation of replication can have significant impact on the performance of our
proposed approaches. If replication is initiated early based on a relatively small number of
queries for an item, it may result in relatively non-rare items getting replicated. Consequently,
data availability would degrade because the rare items would not have a chance to get replicated
due to memory space constraints at the MPs. On the other hand, if replication is initiated late
after looking at a relatively large number of queries for an item, data availability may suffer
because the delay in initiating replication could make the overall impact of replication much less
pronounced. This is because a significant number of query failures could already have occurred
before replication had been initiated. Hence, we introduce the access count threshold frg, which
quantifies the time when replication is initiated.

We define fry as follows: frg = R,/T,, where R, is the number of issued queries after which
replication had been initiated and T} is the total number of queries. The total number of issued
queries in our experiments is 10,000. If replication had been initiated after the first 1000 queries
had been issued in the system, the value of frg would be (1000/10000) = 0.1.

Our performance metrics are average response time (ART) of a query, query success
rate (SR), hop-count (HC) of a query and communication cost in terms of total number of

messages (MSG) in M-P2P network. ART equals ( (1/Ng) Zi\fl(Tf — T;) ), where T; is the
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query issuing time, T’ is the time of the query result reaching the query issuing MP, and N, is the
total number of queries. ART includes data download time, and is computed only for successful
queries. Notably, unsuccessful queries die after TTL (‘hops-to-live’) of 6 hops. (Preliminary
experiments suggested that TTL = 6 is a reasonable value for our application scenarios.) Since
a relatively high percentage of queries are directed towards rare items (which are hosted at
relatively few MPs), queries can fail due to the TTL criterion. Queries can also fail due to MPs
running out of energy or due to network partitioning.

The query success rate SR equals ( (Ng/Ng) x 100 ), where Ng represents the number of
successful queries. We define the query hop-count HC as the average hop-count incurred by
the query in the successful query path. Thus, HC equals ( (1/Ng) Zf\g HC; ), where HC;
represents the hop-count incurred by the it* query. HC is measured only for successful queries.
MSG equals ( sz\fl MSG; ), where M SG; is the total number of messages during the course of
the experiment.

Incidentally, none of the existing proposals for M-P2P networks address economic incentives to-
wards replication of rare data items. We compared our proposed incentive-based E-Rare schemes
with an existing non-incentive E-DCG+ scheme for MANETS, proposed in [Hara and Madria
2006], to our scenario. E-DCG+ is a non-incentive and non-economic replication scheme, and it
does not provide incentives for replica hosting. E-DCG+ is executed at every replica allocation
period. E-DCG+ is the closest to our scheme since it addresses replication in mobile ad-hoc
networks. Furthermore, we believe that E-DCG+ is among the best approaches for meaningful
performance comparison with our proposed schemes because it is the most recent approach and
it has already been compared to other non-incentive schemes. Moreover, E-DCG+ does not in-
corporate the notion of licensing mechanism to distribute rare data items in mobile environment.

We have implemented E-DCG+ in E-Rare as follows. E-DCG+ performs the periodic broadcast
to perform replication. MP obtains the data items list with their respective rarity scores. Based
on rarity scores of data items and MP’s available memory space, each MP hosts data items in
their decending order of rarity scores till memory space becomes full. Here, MP does not obtain
any incentives to host replicas, hence E-DCG+ provides freedom to MPs, whether they want to
host new data items or to revise hosted data items. For the sake of experiments, we have set the
MP’s decision probability to host the data items to 0.7 with relocation period of 200 seconds.

Notably, in case of ECR4, group members exchange messages periodically every 200 seconds to
inform each other concerning the items that they host. For all the approaches, querying proceeds
by means of broadcast using AODV protocol.

5.1 Performance of E-Rare

Figure 6 depicts the results of our experiments using default values of the parameters in Table
III. For all the approaches, ART and HC increase over time, while SR decreases over time. This
occurs because as more queries are answered, the energy of MPs keeps on decreasing, thereby
resulting in an increasing number of MPs running out of energy. This results in longer query paths
to data items, or data items becoming inaccessible. Furthermore, a relatively high percentage of
queries are directed towards rare items (due to the zipf factor ZFg being set to 0.7), and each of
these rare items are initially hosted only by 1-2 MPs. This causes the MPs hosting the rare items
to become overloaded, thereby resulting in increased query waiting times in their job queues, and
this further contributes to increase in ART.

ECR outperforms E-DCG+ in terms of ART, SR and HC essentially due to its economic
licensing scheme, which incentivizes MP participation in the creation of multiple copies of rare
items. Increased MP participation also implies more opportunities for replication, more memory
space for hosting replicas and multiple paths for locating a data item /replica. In contrast, since E-
DCG+ considers neither any economic scheme nor any licensing mechanism, it does not facilitate
replication. Thus, rare items become inaccessible when their host MPs run out of energy, thereby
explaining the reason for SR being significantly lower for E-DCG+ as compared to that of ECR.
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Performance of E-Rare: Data availability and communication overhead

ECR+ outperforms ECR due to its group-based incentives (such as discounts), which facilitate
collaborative replication among MPs. Such collaborative replication enables better spreading of
the copies of frequently requested rare items throughout the network, thereby improving the
probability of obtaining queried rare items within relatively fewer hops. Interestingly, the results
in Figure 6¢ suggest that although HC follows a pattern similar to ART, some deviations occur.
These deviations occur essentially due to bandwidth differences at MPs.

As the results in Figure 6d indicate, MSG increases over time for all the approaches due to more
queries being answered. (Recall that MSG is the total number of messages during the course of
the experiment.) Observe that after the first 6000 queries have been processed, MSG does not
keep increasing linearly for ECR and ECR+. This is because depletion of the energy of some of
the MPs implies that in effect, queries get forwarded to a reduced number of MPs. Moreover,
ECR+ exhibits higher MSG than ECR due to additional messages for group interactions. E-
DCG+ incurs least MSG due to a large percentage of unsuccessful queries (as suggested by the
results in Figure 6b), which result in decreased amount of data transfer, albeit at the cost of
reduced SR.

5.2 Effect of variations in the number of MPs

To test E-Rare’s scalability, we varied the total number Nj;p of MPs, keeping the number of
queries proportional to Nj;p. Figure 7 depicts the results. As Ny, p increases, ART increases for
all three approaches due to increase in network size. As Nj;p increases, SR increases for both
ECR and ECR+ due to increased number of copies of rare data items because of more replication
opportunities provided by a larger number of MPs. With increasing value of N;p, HC follows
similar pattern as that of ART for all the three approaches essentially due to increase in network
size. The pattern of HC deviates slightly from that of ART due to bandwidth differences at
MPs. For all the three approaches, MSG increases with increasing value of Ny;p because larger
network sizes incur higher number of messages.

SR (%)

(a) ART (b) SR (c) HC (d) MSG

Effect of variations in the number of MPs

ECR+ performs better than ECR, due to the reasons explained for Figure 6. Furthermore,
observe that as Njsp increases, the performance gap between ECR+ and ECR in terms of SR
also increases. This occurs because as Njsp increases, group sizes also increase, thereby making
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the effect of group-based collaborative replication performed by ECR+ more pronounced. The
eventual plateau in SR for ECR+ occurs because SR is upperlimited by the number of copies of
rare data items in a group due to memory space constraints of group members. Observe that
if there was no memory space constraint and no competition among copies of rare data items
for memory space in the mobile peers, the value of SR for ECR+ would eventually have reached
100% as we keep increasing the number of mobile peers assuming that most of the peers are not
disconnected. However, each of the mobile peers in the groups formed under the ECR+ approach
have limited memory space and there is also competition among the copies of rare data items
for memory space within the mobile peers in a given group. Hence, after increasing the number
of mobile peers beyond a certain point, the success rate SR exhibits a plateau because of the
implicit upper limit imposed upon SR since an adequate number of copies of all rare data items
cannot be stored in the mobile peers of the group due to the memory space constraints of these
peers and also due to competition among the rare items for the limited memory space across all
mobile peers in the group.

Observe that for small values of Nj;p, ECR performs better than ECR+ because the lower
number of total MPs implies that the number of MPs in each of the groups in ECR+ is also
low; hence few rare data items can be hosted by any of the groups in ECR+. However, for
values of Ny;p beyond 50, ECR+ outperforms ECR because now the groups in ECR+ have
enough members to host most of the rare data items in the M-P2P network. Hence, rare data
availability is also increased in this case, thereby improving SR for ECR+ as compared to that
of ECR.

5.3 Effect of variations in the data distribution across rare item classes

Figure 8 shows the results of the effect of variations in the data distribution across rare item
classes. Recall that ZFp is a zipf factor for the Zipf distribution of data items in three different
data classes i.e., non-rare, medium-rare and rare. Higher values of ZFp imply that there are more
rare items in the data distribution. ZFp does not affect E-DCG+ since it does not consider rarity
issues. Hence, E-DCG+ exhibits comparable performance across all the results in Figure 8. ART
follows a pattern similar to HC for each of the three approaches.
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Effect of variations in the data distribution across rarity classes

Observe that as Z Fp increases, ART increases for both ECR and ECR+ because of the increase
in the number of rare items. Since rare items are available at relatively lower number of MPs,
queries incur more hops, thereby resulting in increased ART. As the results in Figures 8a and 8c
indicate, ECR+ performs slightly worse than ECR in terms of ART and HC for values of ZFp
that are lower than 0.3. This occurs because lowly skewed data distributions do not necessitate
replication. However, as the value of ZFp increases beyond 0.3, ECR+ exhibits improved ART
and HC as compared to ECR because the effect of ECR+’s group-based replication becomes
more pronounced. Thus, in case of ECR+, more MPs are able to replicate more number of rare
data items. This also results in better SR for ECR+ because it can satisfy more queries. ECR+
exhibits higher MSG than ECR due to the additional messages arising for group interaction as
well as from increased traffic owing to more successful queries.
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5.4 Effect of variations in the query distribution across rare item classes

Recall that ZF( is used to determine how the queries are distributed over the different classes of
data items (in terms of rarity) i.e., rare, medium-rare and non-rare. Higher values of ZFg imply
that more number of queries are directed to rare data items. The results in Figure 9 depict the
effect of variations in ZFy,.
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Effect of variations in the query distribution for rare items

The results in Figure 9 indicate that as ZF(g increases, ART and HC both decrease for ECR
and ECR+ because of the more pronounced effect of rare data replication in response to query
workloads with higher skew. However, beyond ZFg = 0.7, a saturation effect occurs because of
the number of rare item replicas becoming stable beyond this value. This occurs primarily due to
competition among the MPs for limited available memory space for storing replicas. Moreover,
ECR+ exhibits lower ART and HC than that of ECR because of group-based incentives and
discounts. E-DCG+ exhibits comparable performance for different values of ZF( since it does
not consider rarity issues. As ZFy increases, SR increases for both ECR and ECR+ due to more
replication in response to more highly skewed workloads. This results in more rare data item
requests being satisfied. Furthermore, ECR+ outperforms ECR in terms of SR due to group-

based incentives. ECR+ incurs more messages than ECR due to the reasons explained for Figure
6d.

5.5 Effect of variations in group sizes

We consider 10 different groups. The number of MPs may vary across groups. We conducted an
experiment to examine variations in the group sizes (in terms of the number of MPs in different
groups). Recall that ZF is the zipf factor, which determines the number of MPs assigned to
each of the 10 groups. When ZFg = 0.1, each group has a comparable number of MPs. At
higher values of ZF¢, some groups contain a disproportionately large number of MPs, while
other groups contain relatively few MPs. Figure 10 depicts the results of variations in ZFg.
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Effect of variations in the interest group sizes

As ZFg increases, ART, HC and SR improve for ECR+ due to some of the groups becoming
larger, thereby creating more opportunities for replication within the group. However, this per-
formance improvement occurs only upto ZFg = 0.5. At values of ZFg beyond 0.5, the increase
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in group size does not create any additional opportunities for replication. Moreover, at these
higher values of ZF¢, some of the groups become too small in size, thereby hindering replication.
This explains why the performance of ECR+ degrades beyond ZFs = 0.5. Overall, the results
indicate that ECR+ performs best (in terms of ART, SR and HC) when ZFg = 0.5.

MSG is comparable across different of values of ZFg because the increase in the sizes of some
of the groups is offset by the decreased sizes of other groups, thereby implying comparable overall
communication cost. Observe that ZFg has no effect on the performance of ECR and E-DCG+
since these approaches do not consider groups.

5.6 Effect of variations in the communication range

The results in Figure 11 depict the effect of variations in the communication range CR of MPs.
Overall, increase in CR has the effect of bringing the MPs ‘nearer’ to each other. As CR increases,
both ART and HC decrease for all the approaches due to the reduction in the number of hops
between MPs. Interestingly, the results in Figure 11c suggest that although ART roughly follows
a pattern similar to HC, some deviations occur. These deviations occur because at higher values
of CR, an MP needs to process more incoming queries, thereby resulting in higher waiting times
for queries at the job queues of MPs. Consequently, the relay propagation latency also increases
slightly with an increase in CR. Furthermore, deviations occur due to bandwidth differences at
MPs. Beyond CR = 160 metres, ART plateaus for ECR+ because the gains in ART are offset by
the overheads of higher number of incoming queries at MPs that host data items and increased
relay propagation latencies.
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As CR increases, SR increases for all the approaches upto a certain point and then saturates.
The increase in SR occurs essentially due to MPs being ‘nearer’ in effect with increase in CR,
thereby making data items more accessible to query-issuing MPs. A relatively lower number of
queries fail due to the maximum TTL criteria of 6 hops because more MPs come within the
range to answer a given query. However, beyond a certain point (e.g., CR = 120 for ECR+), any
additional increase in CR does not contribute to significant improvement in SR because there is
an upperlimit on the replication of rare items due to memory space constraints of the MPs.

As CR increases, MSG increases for all the approaches because the increased reachability of the
MPs increases communication among them. With increasing value of CR, there are two opposing
effects for MSG. First, increase in CR, implies a lower number of messages to reach a given MP.
Second, increase in CR also implies that more MPs become involved in the processing of a given
query, thereby increasing the communication overhead. These two opposing effects somewhat
offset each other at higher values of CR, thereby explaining the reason why MSG eventually
plateaus.

5.7 Effect of variations in the discount ¢

The results in Figure 12 depict the effect of variations in the discount ¢ in case of ECR+.
Observe that 6 has no effect on the performance of ECR and E-DCG+ since these approaches
do not consider discounts. As ¢ increases, the performance of ECR+ also improves in terms of
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ART, SR and HC. This is because the effect of group-based incentives becomes more pronounced
with increase in discounts. Higher discounts better incentivize MPs querying for the rare items as
they can obtain their desired items at lower prices due to discounts, thereby increasing the level
of participation and collaboration in the group. However, at values of § beyond 30%, ECR+’s
performance starts degrading slightly. This is because MPs hosting rare items become reluctant
to join the group when the value of ¢ is high. Their revenue-earning potential would decrease
due to reduced earnings because of relatively high discounts. In essence, our experimental results
show that ECR+ performs best when the value of ¢ is close to 30%.
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5.8 Effect of variations in the access count threshold frpy

The aim of this experiment is to examine the effect of varying the initiation time of replication
on the performance of ECR and ECR+. We quantify the time when replication is initiated by a
parameter frp, which reflects the access count threshold. Here, we are not trying to estimate an
optimal value for fry. Instead, we are examining the impact on the performance after a certain
number of queries have arrived. Incidentally, replication should be initiated when the average
query response time becomes high or the average rare data availability becomes low w.r.t. the
requirements of the application scenarios. Observe that the optimal time for the initiation of
replication is likely to be difficult to estimate in advance in highly variable scenarios.

The total number of issued queries in our experiments is 10,000. When fry equals 0.1, it
means that replication was initiated after the first 1000 issued queries. Similarly, when frg
equals 0.7, it implies that replication was initiated after the first 7000 issued queries.
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Effect of variations in the access count threshold frpr

The results in Figure 13 indicate that ECR+ and ECR both perform best in terms of ART,
SR and HC at fryg = 0.5. However, as the value of fry keeps deviating away from 0.5 the
performance of ECR and ECR+ both degrade. This is because at low values of fry (e.g., fru =
0.1) relatively non-rare items get replicated early on, thereby not providing the opportunity for
the replication of rare items due to memory space constraints at the MPs. Moreover, at high
values of fryg (e.g., frg = 0.7), the impact of replication on rare data availability becomes much
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less pronounced because a significant number of query failures already occurred before replication
had been initiated.

As frp increases, it implies that replication is initiated at a later point of time, thereby
resulting in a lower number of replication-related messages. Hence, as the results in Figure 13d
indicate, MSG decreases slightly for both ECR and ECR+ with increase in frg.

The key insight that we obtain from the results of this experiment is that a “good” time to
initiate replication would be somewhere in the middle of the query burst, and this need not
necessarily be exact as in f7g=0.5 (i.e., when half the expected number of queries have already
come in) across all kinds of highly variable scenarios. We can obtain a reasonably good approx-
imation about the expected number of queries based on statistical historical information in our
application scenarios. Note that here, we do not make any claims on optimality of the initiation
time for replication because in highly variable scenarios, such optimality is extremely challenging
to derive. Our goal here is to determine a reasonably “good” time to initiate replication such
that the impact of replication on rare data availability is significantly pronounced.

5.9 Effect of MP failures

We conducted an experiment to investigate the effect of MP failures® on the performance of
E-Rare. Figure 14 depicts the results. As the percentage Prp of MP failures increases, the
performance of all the approaches degrade in terms of ART, SR and HC. This is because a higher
percentage of MP failures implies a decrease in overall participation in the network, thereby also
decreasing the opportunities for replication of rare data items. As more MPs fail, query paths
become longer, thereby increasing both ART and HC. Furthermore, SR decreases due to the
failure of MPs that host rare data items.
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Effect of MP failures

From Figures 14a, 14b and 14c, observe that the performance gap between ECR and ECR+
keeps decreasing with increase in Pr. Moreover, beyond Pr = 40%, both ECR and ECR+ exhibit
comparable performance. This occurs due to the effect of groups becoming less pronounced when
there are relatively fewer available MPs in the network. For all the three approaches, MSG
decreases with increase in Pr due to reduced communication overhead arising from the decrease
in the number of available MPs. Moreover, ECR+ exhibits higher MSG than ECR due to the
reasons explained for Figure 6d.

5.10 Effect of sudden bursts on a single data item

We conducted an experiment to demonstrate the effect of sudden bursts for a single data item.
Figure 15 depicts the results.

We quantify the sudden burst for an item d in terms of a parameter, which we designate as
Psp. The value of Pgp for an item d is defined as ((Q4/Q+otar) % 100), where Q4 is the number of
queries directed to d and Qiotq is the total number of queries during a given time-period. Thus,
when Psp = 15% for item d, it means that 15% of the total number of queries during a given

5MPs can fail due to reasons such as depletion of their limited energy resources.
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time-period is being directed at d. For this experiment, we consider five equal time-periods, the
value of Qio1q; being 2000 for each of these time-periods. For example, when Psg = 15% and
Qtotar = 2000, Qg = 300. We set the values of Psp for d these five time-periods as {15%, 45%,
45%, 45%, 45%} respectively. Thus, the number of queries for d during the five time-periods
were {300, 900, 900, 900, 900}.
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Effect of sudden bursts on a single data item

In Figure 15, TP indicates the time-points. Time-period 1 occurs between TP = 0 and TP
= 1. Time-period 2 occurs between TP = 1 and TP = 2, and so on. The results in Figure 15
show that for both ECR and ECR+, performance degraded during the second time-period (i.e.,
between TP = 1 and TP = 2) in terms of ART, SR and HC. This is because at the end of
the first time-period, replicas had been allocated corresponding to the 300 queries (for d), which
had been issued during time-period 1. However, during time-period 2, the sudden burst of 900
queries (i.e., a threefold increase in the number of queries) overwhelmed this initial allocation of
replicas. However, at the end of time-period 2, both ECR and ECR+ allocate more replicas to
deal effectively with the sudden burst in accesses to d. Hence, beyond time-period 2, the effect of
replication by both ECR and ECR+ becomes more prominent, due to which performance keeps
gradually improving for both these schemes.

Notably, the results also indicate that the performance of both ECR and ECR+ exhibits a
saturation effect during time-periods 4 and 5. This occurs primarily due to competition among
replicas for the limited available memory space. For E-DCG+, the performance severely degrades
during the second time-period due to the absence of replication when the sudden burst of queries
come in for d. Beyond TP = 2, ART and HC both exhibit a saturation effect for E-DCG+
primarily because many queries get dropped, due to which SR decreases for E-DCG+.

MSG increases over time for all the approaches because it is cumulative. For ECR and ECR+,
MSG increases over time also due to increased communication for licensing and replication of
rare data items in response to the sudden burst. Moreover, ECR+ exhibits higher MSG than
ECR due to the reasons explained for Figure 6d. Observe that MSG is lower for E-DCG+ than
for ECR and ECR+ primarily because E-DCG+ does not perform replication and many queries
get dropped (i.e., query failures occur) in case of E-DCG+.

6. CONCLUSION

In M-P2P networks, data availability is typically low due to rampant free-riding, frequent net-
work partitioning and mobile resource constraints. We have proposed E-Rare, a novel economic
incentive model for improving the availability of rare data by means of licensing-based replica-
tion in M-P2P networks. E-Rare comprises two replication schemes, namely ECR and ECR+,
both of which use its incentive model for improving rare data availability. In ECR, the MPs act
individually towards replication, while for ECR+, the MPs perform replication in groups. Our
performance evaluation demonstrates that the peer-group-based strategy of ECR+ outperforms
the individual-based strategy used by ECR in terms of query response times and availability of
rare data items in M-P2P networks. Observe that in this work, we have used a greedy strategy
for licensing based on heuristics. In the near future, we plan to refine this greedy strategy by
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using classical optimization and game-theoretic techniques, which are aimed at maximizing the
global revenues, for rare data item pricing. We also plan to compare the performance of E-Rare
for different economic models.
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