
An Application of MDL Principle for Indian
Resource Poor Language

Miral Patel

Charotar University of Science and Technology, Gujarat, India

and

Apurva Shah

Sayajirao Gayakwad University, Gujarat, India

Stemmer is very important and required module for any morphological system. Stemming process is language

dependent, which separates stem and suffix from a given word. Even after notable growth, specifically work at
morphological level for Indian resource poor languages like Sanskrit, Assamese, Bengali, Bishnupriya, Manipuri,

Bodo etc. are less attended. Standard resources (corpus, data set) for experiment are very scarce for such

languages. Many famous unsupervised approaches are tested for European languages only. It is the requirement
to see how well famous approach works for other inflective and resource poor languages. In this study, Minimum

Description Length principle (MDL) is applied to Sanskrit (resource poor and inflective) language. Initially, all

corpus lexicon are split in to substring, which is followed by calculating frequency and length of each sub string.
A higher probability split is considered as best split for stem and suffix. Next, multiple iteration is taken until

result improved. With 72 % result MDL works well for Indian language. MDL principle is extended to improve

performance of Sanskrit stemmer by adding rule based approach. MDL based hybrid approach improves result by
17 %. As no direct Sanskrit stemmer or evaluation is available to compare, therefore, we compare our work with

Lovin, Porter and Paice stemmers. Word stemmed factor is highest compared which to all three stemmer. Our

results are also comparable to Gujarati and Punjabi language stemmer. Stemmer strength is more as it reduces
under stemming errors.

Keywords: Stemming resource poor languages, application of MDL, suffix striping, suffix removal,

unsupervised stemming and statistical approach for stemming..

1. INTRODUCTION

Normalization of different morphological variants of the word is very significant and vital prepro-
cessing technique in NLP. Which is very important initial preprocessing task in morphological
analysis. Various applications like transliteration, information retrieval (IR), machine translation
(MT), spell Checker, question answering system (QAS), information extraction (IE) and language
modeling have a requirement to get the root word. Stemming requires getting correct root from
variant forms of the word. Contemporaneous stemming algorithms belong to rule based, sta-
tistical and hybrid (see section 2). The majority of work is done in European languages for all
approaches, gradually work started for other languages. A large pool of languages, almost 7000
languages are available worldwide is provided in Hammarström and Borin [2011] . Number of
inflective natural languages are available e.g. Indo-European, Uralic and Semitic etc Inflective
languages are having tendency to map different morphological forHms to same topic given in
Smirnov [2008]. Yet, many highly inflective languages are unconsidered for stemming. It is to
be discovered, whether the present rule based approaches and other statistical approaches are
applicable to highly inflective and resource poor languages or not.

Sanskrit is an ancient classical Indian language and considered as the mother of all Indo-
European languages. It is also one of the official languages out of 22 declared languages in
India. Old Sanskrit defined by PANINI is known as Vedic Sanskrit. Later, it took a form of
classical Sanskrit. The nature of language is very inflective with rich morphology and hence, has

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



An Application of MDL Principle for Indian Resource Poor Language · 187

more suffix and prefix in the language system. Sanskrit consists of many linguistic challenges,
where it requires special care for morphological processing. There are orthographic, prosodic and
inflectional complexities in Sanskrit, which is not encountered in western European languages.
Sanskrit is prosperous by the way of having inflectional and derivational morphology. Which
permits association that is exposed in European languages where understanding of morphology
is required. Being a word order free language, to fix the meaning of the word by its position in
sentence is not always true for Sanskrit. Sanskrit is very flawless and ample than the Greek and
Latin structure.

In this research paper, the problem of stemming is considered for resource poor language (In
particular Sanskrit). Resource poor language having less or no standard recorded data set, cor-
pus, and document repository available for research work. Also, lack of tools or any benchmarked
system on which base experiment can be implemented. Initially, our aim was unsupervised ap-
proach. Based on successive application of different heuristic, requirement of the system has
become clear. System needed kind of good reference from earlier result/signature, which can
help in stem and suffix identification process. Such a reference can be provided by adding rule
based approach (hand crafted suffix list for 1K words was prepared). Which makes developed
system a hybrid stemmer.

Motivation to work for resource poor language was very high after completing literature survey
and requirement to see applicability of existing approach was also need of time. Moreover, in
modern world of digitization it is indeed constraint to make available all Sanskrit resource from
old useful literature to public. Later, it can also be transferred to different languages and its
morphological system. Our contribution of developed stemmer can be used in any morphological
system. Morphological system requires different phases like (1) Tokenization, (2) Stop word
removal (3) Stemming (4) Phrase recognition (5) Term weighing. Stemming and stop word
removal is language dependent module which is the requirement to develop such module for any
morphological system.

2. BACKGROUND AND RELATED WORK

Rule based approach requires language expertise for forming the set of rules which is very time
consuming process. Statistical approach does not need language knowledge as it employs a
statistical information from a large corpus with different methods like HMM, MEM, N-gram,
Co-occurrence, YASS, GRASS and MDL. However, these approaches require a large corpus col-
lection that covers most of morphological variants; otherwise, accuracy is highly compromised.
Statistical stemmer cannot handle many exceptional cases; (mouse: mice, put-put, and foot: feet
etc). So, in this case rule based stemmer outperforms statistical approach.

Lovins [1968], First ever developed rule based stemmer is very easy, fast and employs iterating
and longest string matching approach for English Language. Porter [1980] is the best stemming
algorithm in its time, comprised of a set of rules employed in English language. Snowball Porter
[2001] is a language for stemming algorithms which allows development of stemmer methods for
different languages. Paice [2006] has compared algorithm with Porters stemmer and found that
his approach has a tendency to over-stem (being a heavy algorithm is his terminology).

Number of unsupervised approaches are adopted for stemming, but in this paper, only fa-
mous and benchmarking techniques are considered. Mayfield and McNamee [2003] technique
suffers from performance penalty, N gram statistical approach demonstrates a language neutral
approach. Next, in series authors report improved runtime penalty with significant performance
improvement for N gram. Proposed method is working well with a language where no morpho-
logical tool kit is available in McNamee and Mayfield [2007].

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



188 · Miral Patel and Apurva Shah

In Majumder et al. [2008], implemented (YASS) a suffix striper for Bengali, French and Ger-
man languages . For classification, agglomerative clustering algorithm was used which improves
stemming with compare to Porters and Lovins algorithm. In addition, improves stemming of
French and Bengali compared to no stemming approach. Paik et al. [2011] Known as GRASS,
a graph based stemmer which has specific focus on the collections of distinct lexicon. An Ex-
periment was carried out for seven languages. GRASS outperforms YASS in a manner more
number of languages are considered and results are also more accurate. ?] shows Co-occurrence
of words in documents and graph based statistical stemmer famous work reported in literature .
Authors evaluate stemmer on European (Czech, Hungarian, Bulgarian, and English) and Asian
languages (Marathi, Bengali).This stemmer outperforms YASS and window based stemmer, it
has also reported comparable performance to other stemmer. A novel corpus based method

In Bhamidipati and Pal [2007] models the given words, as generated from a multinomial dis-
tribution over the topics available in the corpus. This procedure includes sequential hypothesis
testing, which enables grouping together distributional similar words. Superiority is measured
with respect to four existing stemmer.Caumanns [1999] reports stemmers for morphological com-
plex languages like German and Dutch . This algorithm deals with character and character
sequence in its first part, which takes linguistic rules and statistical heuristics into consideration.
While second step works for application of context free suffix-stripping algorithm, which is scal-
able with more rule set and updated heuristic.

In Goldsmith [2001] a standard technique of frequency and length based algorithm Minimum
Description Length is developed. MDL is applied to European languages and able to handle
5K to 500K word set. List of iterative heuristic is applied, which generates the morphological
grammar. Next, MDL principle is applied to check updated heuristic works according to intu-
ition. Results are very much progressive for this method. In Hammarström and Borin [2011]
very critical and exhaustive study of stemming methods is provided in survey article . Author
explores very refined and outstanding information of developed stemmers so far. Detailed study
is carried out for various level and approaches for existing stemmer implementation. Authors
have also provided future direction for work and have recorded fact that, scarce and resource
poor languages are not attended which is requirement to justify applicability of any technique on
one particular language. Saharia et al. [2013] implemented HMM based stemmer for Assamese;
resource poor and highly inflective language. Author Saharia also supports the conclusion of
Hammarstrm; about very little work is reported for Indic resource poor language.

We provide brief introduction in section 1. Section 2 provides glimpse of Sanskrit morphology.
With section 3 we move ahead with an algorithm steps description and implementation of the
proposed method. Section 4 offers detailed performance evaluation and Section 5 is dedicated for
conclusion. Section 6 presents future work.

2.1 Sanskrit and Morphology

The entire literature survey reveals that contribution for Sanskrit language is very rare. In Brigs
[1985] presented a very comprehensive report on how Sanskrit can take place for most suitable
language for machine translation and how it may work for unambiguous knowledge represen-
tation for NLP. PANINI; the author of (Form of Sanskrit grammar) formulated 3,949rules for
Sanskrit.Sanskrit grammar consists 7 cases and 3 numbers; therefore in Sanskrit each word has
at least 21 forms of the word. Including vocative case, 24 forms per word is created where each
word form has a different meaning. Sanskrit does not have word order as an issue like English, as
it is word order free language. Verb in Sanskrit is considered as dhaaturuupa. Each verb consists
of 10 tenses and 3 person. Noteworthy and quantifiable material about Sanskrit is presented like
inflectional morphology, unique features of grammar and challenges of Sanskrit grammar.

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



An Application of MDL Principle for Indian Resource Poor Language · 189

In Goyal et al. [2012] concluded by emphasizing that, statistical approach is required for San-
skrit computation. Insufficiency of contemporary computational methods is gaudily apparent
in the analysis of Sanskrit. However, Sanskrit morphological analyzer is available in Jha et al.
[2009]. Sanskrit Analysis System (SAS) is presented in Bhadra et al. [2009] . Formal structure of
Sanskrit text is very nicely presented in Huet [2009]. Author had also proposed interesting future
work for Sanskrit processing system and concluded that, optimization problem can be solved with
statistical approach. Although, we did not find clear mentioning of result or covered data set
used in implementation. We have been motivated from the Minimum Description Length (MDL)
principle available in Goldsmith [2001]. Basically MDL principle works best for compression of
data by learning the regularity in available data set. Later, we have extended the algorithm by
providing hand crafted suffix to improve accuracy.

3. ALGORITHM

Basic terminology: W= word, w =weight, S= stem, Su= Suffix, i= Length of stem, L= Length
of word, (L-i) = Length of Suffix, f= Frequency, D = Database, Sig= Signature

Algorithm 1 Frequency and length based computation

Input: Corpus which contains list of Sanskrit lexicons
Output: Stem of lexicon

1. For each Word W do
2 Split W for all possible segmentation according to maximum word length;
3.. For each segmentation of W do
4. Find f(S), f(Su),
5. F(i)=i ∗ log(freq_of_stem)+(L-i)*log(freq_of_suffix)) (1)
6. Until segmentation ends for W
7. Find optimal split
8. Update S and Su list
9. Verify spurious signature based on handcrafted suffix list
10. Remove false signature
11. Update Sig list in D
12. Until entire corpus covered

3.1 Experiment Detaill

For experimental setup, Resource for Sanskrit documents received from Jawaharlal Nehru Uni-
versity (Delhi). Almost 1500 Sanskrit words were extracted randomly, few preprocessing steps
are applied to make corpus suitable for experimental setup. Transliteration system is used to
present corpus in Devanagari script. Duplicate words are removed therefore, only distinct words
are available in corpus. Corpus is used to learn statistical knowledge. Developed system can take
input for Sanskrit word and generates stem and suffix as output of word.

MDL Principle: As a resource poor and inflective language, Sanskrit requires to be attended
by research community. MDL (see section 2) principle works on three main elements in the sys-
tem, these are stem, suffix and signature. It also provides benefits of unsupervised technique and
saves memory by storing stem and suffixes in signature form; which is very useful in inflective
languages. Frequency and length is calculated for each segmentation. Initial heuristic is taken as
All split and later successively iterates over different heuristic based on result.

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



190 · Miral Patel and Apurva Shah

Signature: Signature is the list of stem and suffix where mapping of one stem to different
suffix is retrieved. Such different signature sets can be formed based on number of experiments,
which is really advantageous to get the reference for unknown word provided to the system for
stemming. In point of fact, this approach saves memory and computational time both. Goldsmith
[2001] provides very detailed description about Minimum Description Length Principle (MDL) .

As mentioned earlier, Sanskrit is inflective and morphologically complex language. Therefore,
it is not possible to cover entire length of the word. Therefore, majority case of the language,
which is 6 character is considered. However, to see the performance of other length of word,
we have taken few runs and analyzed result in later section.For experiment, we split word in
to all possible segmentation by taking heuristic all split. Next, length and frequency of all
segmentations is calculated. Eq. 1 as given in algorithm a is used to find the probability of the
stem and suffix. To able to understand how to find, S, Su and F (i), Table I represents one of the
examples of word modeling. Generated stems and suffixes are stored in database for signature
generation and further reference for future runs. Next, optimal spilt is determined based on
probability calculated as shown in figure 1, which shows graph for two sample words.

ID Suffixlen Stem FreS Suffixlen Suffix FreSuffix Value

1 1 b 4 5 Alako 1 0.60205999

1 2 bA 4 4 lako 1 1.20411998

1 3 bAl 4 3 ako 1 1.88617997

1 4 bAla 4 2 k 1 2.40823997

1 5 bAlak 4 1 o 2 3.31132995

1 6 bAlako 4 0 - 1 0.00000000

Table I: Example of word modeled using frequency and length based approach

ID Stem Suffix Function value Observatrion

14 lawA yAH 4.74269372 AyAH is actual suffix

22 muKA Ya 2.89431606 Correct suffix

38 lawA su 2.40823997 Correct suffix

62 siwA yAH 5.13033377 Correct suffix

68 kan yA 2.98766626 A is actual suffix

73 niSA ByaH 4.31672498 Correct suffix

81 ka lamAw 2.15836249 Correct suffix

82 aXyAoikA yAH 7.15093368 Correct suffix

Table II: Example of some resultant stem-suffix pair after implementation

Figure 1: Selection of optimal split

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



An Application of MDL Principle for Indian Resource Poor Language · 191

Word length on X axis and probability retrieved using Eq. 1 is taken on Y Axis. Observation
of graph indicates, value of words for different slices is increasing. Eventually after reaching top
it falls down, which is considered as an optimal split. For example, ”bAlakO”(boys) =¿ ”bAlak”
(Stem)+ ”O”(Suffix) and for word ”janake”(father) =¿”janak”(stem) + ”e”(suffix) respectively.
Obtained stems and suffixes are accurate hence, optimal split correct. Split largely depends on
frequency distribution of the stems and suffixes of the word, language and corpus. For each such
word in corpus we get stem and suffix based on optimal split and update frequency of stem(S)
and suffix (Su).

To update stem and suffix, first we consider reference from system, if it is repeated duplicate
entry is not allowed but, if new stem or suffix is found then it is stored with new ID in data
base. So, each stem and suffix have its own ID. After each spilt, if heuristic value is 0 that
particular stem and suffix is not considered for a member to generate signature, for accuracy
reason. After, successive iteration Signature set is retrieved. For e.g. in signature ”Sanskriti”
(Heritage), ”Smuriti” (Memory),”Prakruti” (Nature), ”mati” (Intellectual) word maps it to suf-
fix ”ti”. Signature provides common suffix for different word or for second case, different suffixes
for common stem. Signature element provides the benefit of compact representation of corpus
and hence gives advantage of less memory required for storage and processing of an algorithm.
Table III displays some resultant signature set derived from implementation. Different suffixes
associated with stem ID 2 are Suffix ID 11, 14, 19, 5, 22.

No linguistic knowledge was considered as experiment was carried for unsupervised approach.
By observing signature in database, some unwanted signatures have been formed during compu-
tation (Discussed in section 4). Signatures with one stem and one suffix are removed because
value of logarithm is always 0. Only polished signatures are stored for further computation. Add
on contribution is, to provide handcrafted suffix to test and improve the performance of stemmer.
Once signature is generated, verification is done with handcrafted suffix list. For invalid suffix,
more iterative heuristic is applied for next possible suffix with other value of function. Sanskrit
word takes one letter prefix while noun represented in past form. Added second step also deals
with such words to remove its prefix with suffix. Observation and conclusions for experiments
are reported in next section.

Signature ID Stem ID Suffix ID

1 1 10

2

2 11

2 14

2 19
2 5

2 22

2

3 7

3 21
3 18
3 15

3 19
3 10

4

4 15

4 3

4 21

Table III: Example of signature generated

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



192 · Miral Patel and Apurva Shah

4. PERFORMANCE EVALUATION

By analyzing corpus and generated signature set, incorrect stem and suffix pairs are generated.
Hence, it has formed erroneous signature. Few such results are recorded in Table III. Based on
wrong signature set, any further experiment would lead to propagation of error for future runs.
Although AyAH is correct suffix for word lawAyAH (see TABLE II) but, implementation as-
signs higher value 4.7 to yAH as suffix which is not correct. Another inspection recorded is, word
kanyA where correct suffix is A but, Resultant suffix is yA highest value 2.8. Imparted rule based
approach with handcrafted suffix was aim to remove such kind of errors. Provided handcrafted
suffix helps to provide reference from suffix list and hence wrong suffix and stem possibility was
reduced. After applying rule based approach more 17 % accuracy was gained. This is mark able
for resource poor languages like Sanskrit, where no prior unsupervised or hybrid stemmer was
reported. Although hybrid approach provided mark able gain in accuracy, our system reported
over stemming error more compared to under stemming. So, that way strength of stemmer is
aggressive.

Asymptotic complexity for the algorithm to run t (n) is O (n). Execution time for initial run
was reasonable. While word segmentation increases computational time is also increasing. Very
first run of experiment was pure unsupervised approach where reported accuracy of 72 %. Out of
1500 words, correctly stemmed words are 1090. Table V contributes towards performance eval-
uation and analysis based on different criteria. Strength of stemmer can be measured by index
compression factor (ICF). Stemmer strength is more for pure unsupervised approach while hybrid
approach gives less aggressive. Therefore, improves accuracy by reducing some over stemming
errors. Superiority of hybrid approach is confirmed by higher word stemmed factor (WSF) and
correct stemmed word (CSW).Correctly stemmed word factor is higher for unsupervised tech-
nique but difference with hybrid approach is extremely comparable. Average word conflaction
factor (AWCF) does not vary much while WSF and CSWF results are notable. Over all accuracy
is higher for hybrid approach with WSF 96.66%. Though, CSWF value is higher for unsupervised
approach; because it has stemmed some of the root word; detailed parameter is listed in Table
IV. Table V represents comaprison of developed sanskrit stemmers with other popular stemmer.

System was also tested for different length of word more than six character. As shown in
Figure. 2, graph for word length vs. accuracy. Words of length 12 and 15 are presenting good
result due to very less number of words are available for such length in corpus and hence it
increases result. Otherwise, results are very poor for greater length of word.

System Configuration: Language: JAVA 1.6 and My SQL database. Platform: 32 bit
Windows 7 Professional, Processor: Intel core I3 CPU, Memory: 4GB.

Figure2: Performance of varying length of word

Terminology for strength and accuracy parameter:

a) Index Compression Factor: ICF = n-s/s; Where n = no of words and s is number of stems
in corpus. As ICF value is increasing stemmer strength is also increased.

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



An Application of MDL Principle for Indian Resource Poor Language · 193

Parameter Unsupervised Hybrid

Total number of word 1500 1500

Number of distinct word before stemming (N) 1500 1500

Index Compression Factor (ICF) 37.61% 15.74 %

Number of words Stemmed(WS) 1180 1450

Words Stemmed Factor (WSF) 78.66% 96.66%

Correctly Stemmed words (CSW) 1090 1296

Incorrectly stemmed words (ISW) 410 204

Correctly Stemmed words Factor (CSWF) 92.37% 89.37 %

Correct Words not stemmed (CW) 98 81

Average words conflaction factor AWCF -5.50% -5.63%

Table IV: Evaluation of developed Sanskrit stemmer

Parameter Unsupervised Hybrid Lovin Porter1 Porter2 Paice

Number of Words 1500 1500 1858 1858 1858 1858

ICF 37.61 15.74 48.29 42.4 42.4 48.83

AWCF -5.50 -5.63 -24.81 -8.52 8.6 19.26

WSF 78.66 96.66 73.35 67.17 66.58 70.99

CSWF 92.37 89.37 27.80 31.97 34.76 28.73

Table V: Evaluation of developed Sanskrit stemmer

Author Language Dataset Technique Accuracy

Saharia et al. [2013] Assamese 50.000 Hybrid 92%

Saharia [2010] Assamese - Unsupervised 85%

Nehar et al. [2012] Arabic - Unsupervised -

Sheth and Patel [2012] Gujarati - Rule based -

Ameta et al. [2011] Gujarati 3000 Rulebased 91.5%

Suba et al. [2011] Gujarati EMILLE Hybrid 90%, 67.7%

Dolamic and Savoy [2009] Czech 78 MB Unsupervised -

Kumar and Rana [2010] Punjabi 52,000 Unsupervised 81.27%

Ramanathan and Rao [2003] Hindi 35997 Rulebased 88%

Amaresh Kumar Pandey [2008] Hindi 35997 Unsupervised 90%

Table VI: Some of the reported stemmer for inflective languages with accuracy

b) Average Word Conflation Factor: AWCF represents accuracy of stemmer. Higher the
percentage of AWCF, will lead higher accuracy of stemmer. It shows the out of multiple
variants of word how many variants are actually stemmed to root.

c) Word Stemmed Factor: WSF represents total words stemmed (correct or incorrect) out
of provided words in corpus. If value of WSF is higher, stemmer strength is considered to be
more.

d) Correctly Stemmed Word Factor: CSWF indicates percentage of words stemmed cor-
rectly out of stemmed words. Higher the value of CSWF accuracy is also higher. More detailed
explanation available in ¡]Sirsat2013 , ¡]Frakes2003.

In literature survey, for Sanskrit language, no specific stemmer for unsupervised or hybrid ap-
proach is reported. Therefore, it is not possible to compare results with same language. Compar-
ison of some well-known rule based stemmer with Unsupervised (U) and Hybrid (U+R) stemmer
is provided in Table V. It clearly shows that, hybrid stemmer with WSF 96.6% is leading in
all reported stemmer. Lovin and Husk stemmer is highly aggressive with 48%, but unsuper-
vised approach is less aggressive so. Hybrid approach reduced ICF with 15.54%, which shows
added rule based approach gives light stemmer with reducing over stemming errors. Unsupervised

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



194 · Miral Patel and Apurva Shah

Figure4: Few stemming errors

approach gives highest WSF among all stemmer in Table V. AWCF is lowest for both approaches.

Furthermore, Table VI provides over all comparison with other resource poor and inflective
language. Higher accuracy is gained compared to Gujarati language on unsupervised approach.
All over accuracy is higher compared to Punjabi and comparable to Assamese language.

5. CONCLUSION

Primary goal to develop preliminary unsupervised stemmer for resource poor and inflective lan-
guage Sanskrit is achieved with accuracy of 72%. Based on experiment results and analysis,
intuition gain was; with some support of suffix reference wrong suffix generation can be con-
trolled up to major extent and that made us to extend the scope of work by adding hand crafted
suffix. Here, stemmer becomes hybrid by adding rule based approach to unsupervised approach.
Result proved that analysis was done on proper direction as stemmer has increased accuracy
to 86.4% after adding the hand crafted suffix. Unsupervised stemmer removes only suffix but,
Hybrid stemmer also removes prefix. Strength of stemmer for pure unsupervised stemmer is
recorded high and hence, it is aggressive compared to hybrid stemmer. However, hybrid stemmer
has reported high WSF compared to all stemmers (Word stemmed factor reflects how accurately
words stemmed) and unsupervised stemmer scores second highest value of WSF, which is supe-
rior compared to all other stemmer listed in Table V. Stemmer is also leading than Gujarati and
Punjabi inflective languages. Sanskrit hybrid stemmer is also comparable to Assamese stemmer.
User interface for developed system is shown in figure 3. Developed stemmer can be used as a
one of the module of morphological analysis system.

6. FUTURE WORK

As developed system works best for stem size more than two letter words, Majority of two
letter words are over stemmed and those words are actually root word. Because of lacking of
resource and unavailability of handcrafted suffix list, exhaustive hand crafted suffix list was not
supplied. As a result, resource preparation for Sanskrit handcrafted suffix list will be necessary
for hybrid stemmer enhancement. Still, it is requirement to experiment with huge corpus to see
the behavior of stemmer. Strength and accuracy was measured for direct assessment method,
indirect assessment method is required to test, which may change accuracy for stemmer. Perhaps
stemmer requires to be tuned based on its performance. Execution time needs to be checked for
huge database. Word length is major concern as Sanskrit is highly inflective and numerous forms
are possible by joining word. Figure.4 shows such few examples where more than two partition
of word is required.

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



An Application of MDL Principle for Indian Resource Poor Language · 195

Figure 3: Graphical User Interface of System

References

Amaresh Kumar Pandey, T. J. S. 2008. No Title. In Proceeding AND ’08 Proceedings of the
second workshop on Analytics for noisy unstructured text data. 99–105.

Ameta, J., Joshi, N., and Mathur, I. 2011. A Lightweight Stemmer for Gujarati. In In
Proceedings of 46th Annual National Convention of Computer Society of India.

Bhadra, M., Singh, S. K., Kumar, S., Subash, Agrawal, M., Chandrasekhar, R.,
Mishra, S. K., and Jha, G. N. 2009. Sanskrit Analysis System (SAS). In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 1–20.

Bhamidipati, N. L. and Pal, S. K. 2007. Stemming via distribution-based word segregation
for classification and retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics 37, 2, 350–360.

Brigs, R. 1985. Knowledge Representation in Sanskrit and Artificial Intelligence. THE AI
Megazine 6, 1, 32–39.

Caumanns, J. 1999. A Fast and Simple Stemming Algorithm for German Words. Technial
Reports B 99/16, 10.

Dolamic, L. and Savoy, J. 2009. Indexing and stemming approaches for the Czech language.
Information Processing & Management 45, 6 (nov), 714–720.

Goldsmith, J. 2001. Unsupervised Learning of the Morphology of a Natural Language. Com-
putational Linguistics 27, 2 (jun), 153–198.

Goyal, P., Huet, G., Kulkarni, A., Scharf, P., and Bunker, R. 2012. A Distributed
Platform for Sanskrit Processing. In Proceedings of COLLING 2012: Techncial papers.
mumbai, 1011–1028.

Hammarström, H. and Borin, L. 2011. Unsupervised Learning of Morphology. Computational
Linguistics 37, 2 (jun), 309–350.

Huet, G. 2009. Formal structure of sanskrit text: Requirements analysis for a mechanical
sanskrit processor. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Jha, G. N., Agrawal, M., Subash, Mishra, S. K., Mani, D., Mishra, D., Bhadra, M.,
and Singh, S. K. 2009. Inflectional morphology analyzer for sanskrit. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics).

Kumar, D. and Rana, P. 2010. Design and Development of a Stemmer for Punjabi. Interna-

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



196 · Miral Patel and Apurva Shah

tional Journal of Computer Applications 11, 12, 18–23.
Lovins, J. B. 1968. Development of a stemming algorithm. Mechanical Translation and Com-

putational Linguistics 11, 22–31.
Majumder, P., Mitra, M., and Pal, D. 2008. Bulgarian, Hungarian and Czech Stemming

Using YASS. In Advances in Multilingual and Multimodal Information Retrieval. Vol. 5152.
Springer Berlin Heidelberg, Berlin, Heidelberg, 49–56.

Mayfield, J. and McNamee, P. 2003. Single n-gram stemming. In Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in informaion
retrieval - SIGIR ’03. Vol. 1. ACM Press, New York, New York, USA, 415–416.

McNamee, P. and Mayfield, J. 2007. N-Gram Morphemes for Retrieval. Working Notes for
the CLEF 2007 Workshop, 19-21 September, Budapest, Hungary .

Nehar, A., Ziadi, D., Cherroun, H., and Guellouma, Y. 2012. An efficient stemming for
Arabic Text Classification. In 2012 International Conference on Innovations in Information
Technology, IIT 2012. Abu Dhabi, 328–332.

Paice, C. 2006. Stemming. In Encyclopedia of Language & Linguistics, K. Brown, Ed. Elsevier,
149–150.

Paik, J. H., Mitra, M., Parui, S. K., and Järvelin, K. 2011. Gras. ACM Transactions on
Information Systems 29, 4 (nov), 1–24.

Porter, M. 2001. Snowball: A language for stemming algorithms.
Porter, M. F. 1980. The Porter Stemmer Algorithm. 14, 3, 130–137.
Ramanathan, A. and Rao, D. D. 2003. A Lightweight Stemmer for Hindi. In In Proceed-

ings of the 10th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), on Computatinal Linguistics for South Asian Languages. BU.

Saharia, N. 2010. A Suffix-based Noun and Verb Classifier for an Inflectional Language. 19–22.
Saharia, N., Konwar, K. M., Sharma, U., and Kalita, J. K. 2013. An Improved Stemming

Approach Using HMM for a Highly Inflectional Language.
Sheth, J. R. and Patel, B. C. 2012. Stemming Techniques and Näıve Approach for Gujarati

Stemmer. In nternational Conference in Recent Trends in Information Technology and
Computer Science (ICRTITCS - 2012) Proceedings published in International Journal of
Computer Applications. IJCA, chennai, 975–8887.

Smirnov, I. 2008. Overview of stemming algorithms. Mechanical Translation, 1–8.
Suba, K., Jiandani, D., and Bhattacharyya, P. 2011. Hybrid Inflectional Stemmer and

Rule-based Derivational Stemmer for Gujarati. In Proceedings of the 2nd Workshop on
South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP. Chiang
Mai, 1–8.

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.



An Application of MDL Principle for Indian Resource Poor Language · 197

Prof. Miral Patel Completed her Bachelor of Computer Engineering from Birla Vish-
wakarma Mahavidyalaya, Sardar Patel University, Gujarat, India and Master of Infor-
mation Technology from G H.Patel College of Engineering, Gujarat Technological Uni-
versity. Currently working toward the Ph.D. Degree Changa University, Gujarat, India.
More than more than 9 Years of Experience in Induary and academic insititues. She has
visited USA Gate government Project, Chicago, IL. Her Area of interest includes Natural
language processing, Software Engineering, Project management, Artificial intelligence.

Dr. Apurva Shah is working as Associate Professor at Dept. of Computer Science and
Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, India. He is also
servings as Director, Computer Center, The Maharaja Sayajirao University of Baroda.
Prof. Shah did his PhD from Sardar Patel University, India. He is having over 15 years
experience of teaching undergraduate and post-graduate students of Computer Engineer-
ing and Information Technology. He has published more than 19 International Journal
and Conference papers. He visited several countries like USA, Canada, Hong Kong and
Singapore for academic and research purpose. He has worked as Chair, Technical Program
Committee, and IEEE ISSP 2013. He has also worked as Editor in Chief, Proceedings of
the multi-Conference 2011- ICSSA 2011 & ICISD 2011, Brown Walker Press, 2011. He
has served as reviewer of reputed journals and conferences. His research interests include
Real-Time Systems, Distributed Systems and Artificial Intelligence.

International Journal of Next-Generation Computing, Vol. 8, No. 3, November 2017.


