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With emerging Network Functions Virtualization (NFV) and Software Defined Networking (SDN) paradigms in

Network Management (NM), new network devices and features can immediately become available. Available

network resources and services can be altered and optimized in real time to gain the maximum benefit. However,
this requires real time analytics information sent to SDN controllers rather than traditional manual offline or

batch analytic outputs which are delivered on hourly or monthly basis in NM Systems. As a result, real time

stream analytics is becoming a critical element for NM. In this paper, we describe a anomaly detection analytic
engine for NM system development. We describe the design principles, innovative algorithm design, architecture

and implementation of the engine in relation to streaming data and mobile NM. Finally, we present use cases and

evaluation results.
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1. INTRODUCTION

With emerging NFV and SDN paradigms in NM, new network devices and features can immedi-
ately become available. Available network resources and services can be altered and optimized in
real time to gain the maximum benefit or network operators. However, this requires real time an-
alytics information sent to SDN controllers rather than traditional manual offline or batch batch
analytic outputs which are delivered on hourly or monthly basis in NM Systems Tongke [2013]
Wang et al. [2012]. Network performance management data is one major data category that is
needed to be analysed, and such data is mainly in the form of time series data given the fact the
data is continuously generated from the monitoring and management related software compo-
nents in network nodes, such as base stations. The focus of our work is time series stream data
to enable real time insights, i.e., use an anomaly detection analytic engine to identify network
abnormal or problematic scenarios in real time for NM use cases. Detected network anomalies
can be used to provide insights/discoveries for the network operation engineers, or provide trig-
gers for SDN based network corrective/optimization actions Miyazawa and Hayashi [2014] Jiang
et al. [2008].

Mobile network nodes periodically generate various Counter information; the time periods
could be, for example, 15 minutes or 5 seconds. These counter values sometimes are used to
calculate Key Performance Indicators (KPIs). Abnormalities of these Counters/KPIs often in-
dicate network problems. For example, Attach Request counter defined in telecom standard is
about counting number of mobile devices that ”register” and ”attach” to the mobile network in a
given time period 3GPP [2011]. Excessive or abnormal amount of Attach Requests from mobile
devices possibly indicate Denial of Service (DoS) attacks Traynor et al. [2009]. Consequently,
many network performance data is closely monitored. However, traditional network performance
monitoring use manually set thresholds that are based on a priori knowledge of network. Such
static thresholds often do not consider and deal with network dynamics, since network are fre-
quency changed and reconfigured. As a consequence, being able to adapt to changes of network
and establish normal behaviour patterns automatically, detecting anomalies of network data in
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real time is very valuable and significant for mobile NM Zhang et al. [2008] Ciocarlie et al. [2013]
Ciocarlie et al. [2014] Wang and Handurukande [2016]. When anomalies are detected, either net-
work engineers can be alerted, or automated network/SDN actions can be triggered immediately.
Still, existing anomaly detection algorithms Chen and Liu [1993] Vallis et al. [2014] are generally
offline and batch based, have other integration limitations in NM scenarios (Section 2) and they
cannot be used for time series data streams for real time analytics. Further related work and
limitations are discussed in Section V.

Our work focuses on a streaming data anomaly detection analytic engine for mobile NM system
development. Contributions of this paper are as follows:

—The design principles, architecture and implementation details of a streaming data anomaly
detection analytic engine that fit to the requirements of mobile telecom NM product develop-
ment.

—The innovative algorithm design which combines a number of statistical functions in a workflow
for time series data stream to produce immediate outputs as data arrives. It is different from
related work which does not focus on anomalies in streaming data. We also use Anomaly score
and Anomaly probability to provide users importance and certainty measurements of detected
anomalies.

—The implementations are evaluated in the context of mobile network use cases to show signifi-
cance of this work in NM. We show the evaluation results using real work network data.

The rest paper is structured as follows. Section 2 describes the engine design principles to
overcome limitations of existing systems and the architecture. Section 3 describes the algorithm
design in detail and Section 4 presents example use case scenarios and evaluation of the anomaly
detection analytic engine. Section 5 compares and contrasts related work and Section 6 presents
concluding remarks.

2. STREAM ANALYTIC ENGINE

2.1 Engine design principles

There are many existing machine learning (ML) and analytic frameworks and libraries, such as
R packages R-project [2017] and MLlib MLlib-project [2017]. However, when taken as they are,
these libraries do not fully fit the requirements of NM system development for streaming data. In
the following we discuss some fundamental requirements we identified with respect to NM system
development. These requirements are driving factors of our design principles and our motivation
to develop a new streaming analytic engine for NM systems.

2.1.0.1 Real-time streaming analytic.
Traditionally, analytics workflows in mobile NM systems normally involve collecting data files,

parsing data according schemas, storing data in databases or file systems on disks, and then
applying OLAP (online analytical processing) to offer analytic reports for subsequent network
troubleshooting or optimizations. However, these offline and batch based analytic approaches
lack real-time analytic capabilities that can help operators’ real time and proactive NM needs.

Unlike traditional batch oriented analytics, real-time streaming analytic is memory based,
which does not store data in disks. It is a continuous process and is predictive and proactive in
nature. Real-time streaming analytic help operators capture and analyse network in real time to
gain continuous insights, it enables better NM decisions without any delay. It is a key component
for enabling real-time automatic closed loops with emerging NFV and SDN.

As a result, our analytic engine is designed to output analytic results immediately and contin-
uously when network data streams are arriving.

2.1.0.2 Data agnostic and self-learning.
There are thousands of performance Counters and KPIs for different layers and types of net-

works, and they have different types of temporal behaviours and data distribution patterns.
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Additionally, network is a dynamic system. A given KPI behaves differently when topology or
other network configuration changes. For example, some KPIs have busy hour patterns following
office hours for network nodes close to Industry Parks. Pre data analysis and diagnostics and
then selecting or designing specific algorithms for each network KPI is impractical due to large
number of KPIs in mobile networks and their dynamic natures.

Existing statistic and ML frameworks, such as R packages contain thousands of algorithms.
However, these toolboxes are mainly targeted for data analysts and scientists. For example, the
stats::arima forecasting function in R has more than ten model configuration and optimization
parameters. It is too difficult and complex for software engineers to understand and use it for NM
system development without some levels of statistic and ML domain knowledge. The analytic
engine should learn and adapt itself to fit input data rather than requiring engineers to manually
configure/optimize it for different data sets.

As a result, our design for analytic engine follows the data agnostic and self-learning approach
that expects to fit any or most network time series data.

2.1.0.3 Lightweight and self-contained.
Many NM systems are large, complex systems and already exist; analytics or anomaly detection

feature could be required for many use cases. As a result, the analytic engine should be able to
integrate into existing systems without complex changes to existing systems or requiring heavy
software/hardware dependencies. In other terms, the analytics engine should be a lightweight
component and easy to integrate to systems for different use case scenarios.

A large network could have thousands of network nodes and each node has hundreds of KPIs.
For example, for a small mobile network, there would be hundreds of Giga Bytes of raw network
data being collected and analysed every day through big data systems. Big data technologies,
such as Spark Apache-spark [2017], being able to handle streaming data will be normally used.
They have some ML capabilities, such as regression and clustering, but do not have in-built
anomaly detection algorithms currently. Hence, multiple engine instances can be executed in
parallel by leveraging on existing big data systems to handle large amount of data for these
cases.

As a result, our analytic engine is designed as a self-contained library or micro service that
can be used as a standalone component, and can also be easily integrated into existing big data
systems to achieve scalability.

2.2 Engine feature and architecture

Network performance data are monitored and collected in real or near real-time and almost all
KPIs are associated with time stamps. As a result, our analytic engine, as input, takes time series
data streams; and anomaly detection is one of the key features of the engine. Anomaly detection
is about identifying KPI values or observations which do not conform to expected patterns or
trends. It could be used in many NM use cases; as examples, a couple of these are discussed in
Section 4.

The analytic engine is designed such that it can be integrated as a component in existing NM
systems, which are mainly written in mainstream programming languages such Java, C++ (as
opposed to languages used in statistic/ML domain such as R). Furthermore, these management
systems use Hadoop big data frameworks that are mainly written in Java. Hence the engine is
designed with a simple black box Java API interface to facilitate easy integration for engineers
with Java competency. As a result, engineers can start using the engine with a few lines of code
without any statistic or ML domain knowledge. As shown in Fig.1, the analytics engine takes
time series data streams (e.g., KPI) as input, also a unique identification key for each KPI (i.e.,
a univariate time series) that allows the engine to handle multiple KPIs in parallel. This also
helps to determine an assigned engine for a particular KPI when multiple engine instances run
in parallel. The engine outputs a numerical array consisting of Anomaly score and Anomaly
probability after input every KPI value. Anomaly score and probability will be detailed in next
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Figure.1: Simple black box engine API example

Figure.2: The analytic engine architecture

section.
As shown in Fig.2, when internal implementations are considered, there are two types of

selectable backend engine versions available providing two versions of algorithm implementations;
these two versions have two different set of properties. One of them, the R version implemented
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a complex forecasting based anomaly detection algorithm utilizes certain R packages; however, it
requires R engine preinstalled in deployed environment and requires a certain level of computing
resources. On the other hand, the Java version implemented a simple heuristic limits based
anomaly detection algorithm design but it requires less computing resources. In addition to
these two backend implementations, other algorithms or libraries (i.e., third party products) can
also be used to extend the engine if needed; this is facilitated by a unified engine Java API
interface for different backend engine types as shown in Fig.2. Users or engineers only need to
configure one parameter to select/switch between different backend engines. This offers users
the flexibility for different requirement scenarios; for example, if R engine is not feasible (or too
heavy) for the computing environment, then Java engine type can be selected.

The analytic engine itself is designed as a data agnostic black box. Hence the engine does
not require any ML algorithm parameter information or network domain information to process
data. However, an optional engine extension can be added to provide more accurate or better
results by adding domain knowledge or other contextual information. For example,

—Using an event (e.g., sporting or social event) calendar and cell location information to filter
out some anomalous network access peaks during the event, (certain anomalous scenarios such
as up/download peaks are expected for cells near sporting venues during sport events).

—On the other hand, for certain KPIs, such as call drop rate anomalous dips do not have any
negative service impacts; in such situations anomalies with negative anomaly scores can be
ignored.

—High dense anomalies, i.e., a large number of anomalies that happen during a time window
possibly indicate ”network incidents” that needs to be addressed by taking corrective actions,
for example by making changes to the network. Anomalies could be further refined only to
keep such high dense anomalies representing ”network incidents”.

3. REAL TIME ANOMALY DETECTION DESIGN AND IMPLEMENTATION

In this section we describe our innovative algorithm and system design for real time anomaly
detection. The algorithm is designed by combining several ML and statistical methods. As
described earlier, we have two algorithm implementations for R and Java backend engines. These
two implementations follow one abstract anomaly detection algorithm design concept as shown
in Fig.3. As a result, two algorithms would take/give same format of input/output with a same
analytic engine interface allowing users to select backend implementations depending on their
requirement without modifying the system code.

Anomaly score and Anomaly probability are outputs of the algorithms. Anomaly score can be
positive or negative, which represents an anomalous peak and dip respectively, in comparison to
normal behaviours. Anomaly probability is a ranged measurement (between 0 to 1) of anomaly.
These measurements allow users to filter out trivial or uncertain anomalies when it is necessary.
In summary, for every detected anomaly

—Anomaly Score give users a significance measurement of the detected anomaly. The larger
anomaly score, then the larger possible impact could be caused by the anomaly.

—Anomaly Probability gives users a certainty measurement of the detected anomaly. If the
detected anomaly has a high probability, then the anomaly probably is real or true positive.

Two algorithm implementations and how we calculate the score and probability will be de-
scribed in the following subsections.

3.1 Forecasting based approach

Forecasting based anomaly detection is an algorithm implemented for R backend engine (Fig.3).
The implementation utilizes a complex time series forecasting algorithm, i.e. ARIMA, imple-
mented in R forecast package.
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Figure.3: Abstract algorithm design and concrete implementations

Forecasting is about making predictions of the future (KPI) values based on past and present
data patterns and trends. In forecasting based approach, a one-step ahead forecasted value is used
to represent an expected behaviour/value of an incoming actual value (Fig.3). If the forecasted
value is ”comparable” with the actual value, then we say the actual value is expected or normal,
otherwise, we say the value is unexpected or an anomaly. In the following, we firstly describe the
ARIMA forecasting algorithm used to get one-step ahead forecasting value for a coming actual
value in real time.

Having data agnostic design in mind, ARIMA Cao and Yu [2012] is used for the forecasting
algorithm. This design choice is based on the fact that the ARIMA models are, in theory, the
most general class of models for forecasting a time series Cao and Yu [2012]. Various time series
models such as random walk, exponential smoothing and damped trend can be modelled with
ARIMA. As a result, we expect more accurate forecasting results when we could have adaptive
ARIMA model based module that learns continuously through on-line learning.

Non-seasonal ARMA model consists of two components, an autoregressive (AR) component
and a moving average (MA) component. The forecasted value at time t (yt) is calculated as
the sum of the regression of recent values (x), plus the average over previous period random
variations or errors (e).

yt = α1xt−1 + · · ·+ αpxt−p + et + β1et−1 + · · ·+ βqet−q

where, α denotes coefficients of the regression model of the p most recent values. β denotes
average factors of random variations over q previous periods. Since ARMA models are suitable
for time series which are not stationary in mean and variance, ARIMA extends ARMA with an
initial differencing procedure (x

′

t = xt−xt−1) to reduce the non-stationary. Significant amount of
network KPIs have strong seasonal patterns, such as daily/weekly patterns. We use STL method
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Cleveland et al. [1990] which is robust to anomalies, to remove seasonal components firstly, then
applying a non-seasonal ARIMA model for forecasting.

Once we have a forecasted value from ARIMA for an incoming actual value, the difference
between the forecasted value and the actual value can be calculated as the anomaly score. It
represents a deviation between the expected normal behaviour and actual behaviour. Hence, any
of forecasting error measurement could be used for anomaly scores, for example, simple error
(actual – forecasted).

s(x) = x− y

However, forecasting errors may not sufficient to determine if there are real anomalies in many
cases, even the forecasting errors are very large. For example, continuous large forecasting errors
could only mean that a forecasting model does not work really well instead of giving continuous
anomalies. As a consequence, a further process step is added to calculate the anomaly probability
in the algorithm design to find those single or isolated anomaly scores to give more accurate
anomaly detection. The anomaly probability is calculated based on applying statistical test
Bedson and Farrant [2009] on anomaly scores. We firstly get a t value of an anomaly score
s of most recent n number of anomaly scores which are assumed as approximately Gaussian
distribution.

t =

√
n(n− 2)|(s−mean)/sd|2

(n− 1)2 − n|(s−mean)/sd|2

where mean and sd are the mean and standard deviation of the recent anomaly scores. Then,
we calculate the final anomaly probability p(s) for an anomaly score s based a defined significant
level sg which could represent the sensitivity of anomaly detection (e.g.sg = 0.05).

p(s) =

{ sg−pt

sg , if p < sg

0, if p ≥ sg

where pt is the p-value for the t-distribution with n − 2 degrees of the t value. As a result, a
single or isolated anomaly score value passed the significant level will indicate a possible anomaly,
e.g., anomaly probability is greater than zero. The more ”extreme” the anomaly score for a data
point, the higher the anomaly probability is for the point.

By having the above fundamental algorithm ready, we are able to wrap the algorithm to handle
streaming data. The idea is to let the engine periodically update the forecasting model and other
parameters by taking most recent stream data into account. Hence, the model is able to adapt
itself when new incoming data pattern is changed. When the engine is started, it will create an
event counter based model updating trigger to check if the learned model needs to be updated
for new incoming data. When the trigger is active, the engine will update a frequency parameter,
which is used to identify seasonal patterns that need to be learned. For example, if only few
days’ data is available, the engine only checks daily patterns; nonetheless weekly patterns will be
checked when more data becomes available. Then the engine will refresh the learned model based
on recent data and resets the model update trigger again for a next update phase. Hence, the
engine will continuously update the forecasting model by taking most recent data into account
to improve forecasting accuracy; improving forecasting accuracy will lead to better anomaly
detection accuracy as a result. The simplified engine process flow is depicted in the following
pseudo code, Alg.1.

Fig.4 is a system real time output snapshot to illustrate the forecasted based approach. The
top plot is the actual KPI time series data with detected anomalous values marked in red. The
second plot is a comparison of actual values with forecasted values. The two lower plots show s
anomaly scores and anomaly probabilities.
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Initialize engine cache: kpiV alues, forecasted,model, anomalyScores;
do

value = engine input: a new KPI value;
// calculate an anomaly score
if forecasted == null then

forecasted = value;
end
anomalyScore = value− forecasted;
anomalyScores = append(anomalyScores, anomalyScore);
// calculate an anomaly probability for the last anomaly score
anomalyProbability = getAnomalyProbabitly(anomalyScores);
// calculate a forecasted value for next coming KPI value;
kpiV alues = append(kpiV alues, value);
if modelUpdateTriger() == true then

frequency = updateFrequency();
model = arimaModel(kpiV alues, frequency);
resetModelUpdateTriger();

end
forecasted = forecast(model, kpiV alues, frequency);
engine output: [anomalyScore, anomalyProbability]

while shutting down the engine;
Algorithm 1: Engine process flow

Figure.4: Forecasting based anomaly detection

International Journal of Next-Generation Computing, Vol. 9, No. 2, July 2018.



88 · MingXue Wang and Sidath Handurukande

3.2 Heuristic limit based approach

Heuristic limit based anomaly detection is an algorithm implemented within the Java backend
engine as shown in Fig.3. As this algorithm is simple and lightweight, we can easily implement
it from scratch in Java without relying on prebuilt statistic libraries, such as R packages to avoid
complex dependencies. Since it is lightweight, it consumes much less computational resources in
comparison with the forecasting based approach.

The heuristic limits of an incoming actual value are calculated based on historical data and it
represents expected normal data boundaries or behaviours. If an actual value is outside of the
limits, then it is categorized as an anomaly.

Given a sequence of values X as a time series, the upper and lower limits for finding anomalous
values can be calculated based on robust statistics, i.e., median and Median Absolute Deviation
(MAD).

limt(X) = median(X)± 3 ∗median(|X −median(X)|)

To handle seasonal patterns, we assume a constant periodicity p existing in the series. The
historical data of current time t, Xt is selected based on the following equation to handle the
seasonality for the range functions.

Xt = xt−f−w, xt−f−w−1, . . . , xt−f , . . . , xt−f+w−1, xt−f+w, wheref = 0, p, 2p, 3p

w defines the window size for current time to take account of neighbours’ data to increase statis-
tical sample size and also relax the periodicity p value. For example, 7 and 9 o’clock data would
be also used for calculating the limits of 8 o’clock time window; a peak normally happening in 7
o’clock occurred in 8 o’clock is still considered as normal. As a result, for example, if there is a
weekly pattern, only related time windows of pervious Mondays’ data will be used to calculate
limits of current Monday’s time points.

However, for network KPI values, the distribution of Xt are fairly skewed or asymmetric in
most cases based on our observations of many real world networks datasets. Calculating both
upper and lower limits using a same formula will lead the limit over estimated for the un-skewed
side. For example, a lower limit (the vertical dot line on the left side) is shown in Fig.5. It could
cause of missing anomalies for un-skewed side. Hence, we divide original data Xt in two subsets
based on the median to find upper and lower limits separately.

upper = limit(X
′

t), whereX
′

t ⊆ Xt, X
′

t >= median(Xt)

lower = limit(X
′

t), whereX
′

t ⊆ Xt, X
′

t <= median(Xt)

The separately calculated upper and lower limits of the distribution are shown in Fig.5 as
vertical solid lines. It does not have over estimation problem on the un-skewed side.

By having the upper and lower limits for an incoming actual value, a data value outside the
limits can be easily detected as anomalies. The distance outside of the limits can be simply
calculated as anomaly score, which is relative to the MAD.

s(x) =


lower−x

median(|x−median(X)|) , if x < lower

0, if x ≥ lower and x ≤ upper
x−upper

median(|x−median(X)|) , if x > upper

For heuristic limit based approach, the anomaly probability p is a normalized anomaly score
based on recent anomaly scores S to bring the s into a standardized range (0, 1). Z-score based
normalization can also be used as an alternative.
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Figure.5: A KPI value distribution example and calculated limits

Figure.6: Heuristic limit based anomaly detection

p(s) =
s−min(S)

max(S)−min(S)

The Fig.6 illustrates the system output snapshot of heuristic limit based approach. The top
plot shows actual KPI time series data with detected anomalies marked in red. The second
plot shows heuristic limits calculated in real time for coming values. The two lower plots show
anomaly scores and normalized scores.

4. USE CASES AND EVALUATION

In this section, we first briefly describe three application scenarios of anomaly detection system
in the context of mobile networks. Then we present some evaluation results using our anomaly
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Figure.7: Cell overlapping coverage

detection analytic engine.

4.1 Use cases in network management

4.1.1 Real-time Network Performance Monitoring. As briefly mentioned earlier, in NM vast
amount of different counters exist in different types of nodes with each node having many coun-
ters/KPIs that represent various performance measurement. These counters or KPIs indicate
”health” of the node/network and need to be monitored continuously to assure proper function-
ing of the network. However, given that a large amount of counters exist in networks, anomaly
detection systems can continuously monitor all the counters to learn ”normal behaviours” for
each counters and raise alarms automatically when anomalous values are detected.

As an example, one important KPI is mobile call drop count in a given cell. Mobile call drop
could happen due to various reasons such as unexpected radio interference, obstacle for radio
signal propagation, frequency spectrum conflicts between neighbouring cells, weather related
issues etc. It is important for network engineers to monitor this KPI for all cells and when it is
going beyond normal limits for each cell take relevant actions. With existing traditional static
threshold based performance monitoring, engineers will only be alerted when the call drop KPI
goes to an unacceptable state or a very high value. With our anomaly detection system applied,
engineers will be notified when there is an abnormal level of call drop. Hence, engineers or
systems can start examine and take actions on network proactively before network going to an
unacceptable state.

4.1.2 Adaptive network resource provisioning. Counters that indicate/measure network load
can be analysed by the anomaly detection system to deploy additional network resources when
network experiences abnormal peaks. At the same time, when the network load back to normal
level, it can trigger shutdown of such additional resources to save energy. These network resources
can be, for example, virtual nodes and links (VNFs) deployed in cloud or the resources can be
physical nodes such as radio cells, which are placed in overlapping coverage areas to handle
additional load in peak periods. One such scenario is shown in Fig.7.

Here cell A is a cell covering a large area and cell B and C are micro cells covering small area
but with dense mobile users (e.g., shopping mall). Cell B and C are redundant cell resources
and will only be active when cell A is possibly congested or problematic. This can be achieved
by first looking at the high density anomalies output that indicates the load at cell A persists
at least for a while (and not just short transient problematic conditions) and then based on the
anomalies the cell B and C can be activated or deactivated. As shown in Fig.8, if high density
anomalies exist, cell B and C will be activated as a backup of cell A or to handle excess load
from the area. If no high density anomalies exist, the cell B and C should be deactivated if in an
”active” state (in such energy saving scenarios there are other complexities and they are outside
the scope of this paper).
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Figure.8: Cell overlapping coverage

Figure.9: Cell outage compensation

4.1.3 Cell outage compensation. Similar approach can also be used in cell outage compensa-
tion scenario for Self-Organising Networks (SON) Amirijoo et al. [2011]. It uses neighbour cells to
mitigate the degradation of coverage, capacity and service quality caused by a cell outage. When
a cell outage is detected, SON function adjusts a variety of control parameters, e.g., electrical
antenna tilt and uplink target received power level of neighbour cells to compensate the outage
cell.

Cell outage or degradation can be indicated by anomalies on KPIs, such as cell loads, radio
link/handover failure statistics from different sources, user terminals, base stations, etc. Once
cell outage is detected for a cell, neighbouring cells will check how much coverage they can
increase without sacrificing their own service quality too much. As a result, neighbour cells can
be optimized or adjusted to compensate the outage cell. For example in the Fig.9, when cell A
is indicating an outage, radio parameters influencing coverage, capacity, etc. of cell B, C and D
will be adjusted to compensate area of the cell A. Radio parameters can be changed back for
these neighbour cells when anomalies of cell A are resolved.

4.1.4 Discussion on use cases. It is clear that there are strong requirements of network man-
agement domain knowledges to build successful real world cases using anomaly detection systems.
In our approach, Anomaly score and Anomaly probability are two metrics of anomalies. The are
specially designed for users or developers to easy understand the impact and certainty of the
anomalies from the aspect of data. Developers can build subsequent management logics based
on their network domains knowledges. For example, some costly network actions only will be
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Figure.10: Results of forecasting based anomaly detection

Figure.11: Results of heuristic limit based anomaly detection

executed for anomalies having very high anomaly probabilities.

4.2 Evaluation and discussion

Our implementation is evaluated intensively in prototype testing environment with real network
datasets which involve thousands of radio cells and months of data from a mobile operator. To
avoid privacy and sensitivity issues of real datasets that are not in the public domain, we show
and describe results using an open source dataset, and then briefly present the summarized results
on large datasets from the operator as well.

A small part of our evaluation is based on an open source network traffic throughput dataset
ISP-traffic [2017]. In this dataset, we assume the network traffic is normal for the entire time
of the fourth week (Dec 13-19) and then manually inject some anomalies into the dataset as
ground truth to evaluate algorithms; this evaluation strategy is similar to other evaluations such
as in Vallis et al. [2014] Chen and Liu [1993]. Fig.10 illustrates results of the forecasting based
approach. Anomalies injected manually are marked in orange vertical lines in the first plot.
The detected anomalies are marked in red dots. The second plot shows a comparison between
forecasted and actual values. Alerts can be sent to other components of NM systems based on
anomalies as discussed in the use case scenario.

Fig.11 illustrates results of the heuristic limit based approach. The second plot shows the
calculated upper and lower limits with regard to actual values. Here there is also a scenario that
high dense anomalies detected on Dec 16 as ‘network incident’ indicator which can be used to
activate redundant micro-cells use case as discussed earlier.
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Table I: Algorithm accuracy evaluation results

Algorithm Precision Recall

Forecasting based 0.53 0.73

Heuristic limit based 0.57 0.73

Figure.12: Four basic types of time series anomalies

The statistical results are summarized in TABLE I, and show the heuristic limit based approach
providing a bit better precision in this case (dataset). From visual inspection of Fig.10, we
could see data points after real anomalies are also detected as anomalies by the forecasting based
approach, because of anomalies having strong effects on immediate forecasting results which leads
to false positive results in many cases. As a result, false anomaly locations of the forecasting
based approach is more close to real anomaly locations in comparison to heuristic limit based
approach.

With a large real network dataset from a mobile operator, we evaluated several critical KPIs in
both 3G and LTE networks that are recommended by radio experts. These KPIs reflect network
accessibility, retainability, mobility, etc. To have more detailed results, our experiments were
done for all basic types of time series anomalies. Time series anomalies can be classified in four
basic types Chen and Liu [1993]. Based on analysing differences on subsequent effects of the
initial anomalies, we can summarize 4 types of anomalies (additive, innovative, transient change
and level shift) in the following. As shown in the Fig.12, the black line represents the original or
actual values. The red line represents the anomalous behaviours.

—Additive Anomaly
—An additive anomaly appears as a surprisingly large or small value occurring for a single

observation. Subsequent observations are unaffected by an additive anomaly.
—No subsequent effect

—Innovative Anomaly
—An innovative anomaly is characterized by an initial impact with effects lingering over sub-

sequent observations
—Initial impact with lingering subsequence effects

—Transient Change Anomaly
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Table II: Evaluation results of mobile network datasets

Anomaly basic type Algorithm Precision Recall F1

score

Additive Forecasting
based

0.69 0.50 0.57

Additive Heuristic
limit based

0.93 0.73 0.78

Innovative Forecasting

based

0.63 0.35 0.45

Innovative Heuristic

limit based

0.76 0.49 0.60

Level shift Forecasting

based

0.08 1.00 0.14

Level shift Heuristic
limit based

0.01 0.67 0.03

Transient Forecasting

based

0.57 0.15 0.24

Transient Heuristic

limit based

0.83 0.41 0.55

—Transient change anomalies are similar to level shift anomalies, but the effect of the anomaly
diminishes exponentially over the subsequent observations

—Subsequent effects diminishes exponentially

—Level Shift Anomaly

—For a level shift, all observations appearing after the anomaly move to a new level.

—Permanent subsequent effects

In our experiments, four basic types of anomalies are injected and labelled in the dataset by
a network experts based on their experiences of network incidents. The final result for all basic
types anomalies are shown in TABLE II.

Both algorithms give good result in most cases except level shift anomalies. Both algorithms
produce low precisions for level shift anomalies. This is because of level shift anomalies have
permanent subsequent effects; the model takes time to ”learn” new ”normal” values that creating
many false positives (low precision) in this intermediate learning phase, e.g. Fig.13. However,
sometimes, it may make sense to alert subsequent effects for a short period after a level shift. For
level shift anomalies, if a short period or a group of points after a level shift location is considered
as a single anomaly, then precision would be much higher in this case.

5. RELATED WORK

In this section, we classify the related work into two categories and discuss them in relation to our
approach. The first category is about generic anomaly detection algorithm implementations or
frameworks, and the second category is about mobile network related anomaly detection systems.
We discuss them separately in the following.

5.1 Generic anomaly detection frameworks

Anomaly detection has been studied extensively. There are a large number of algorithm imple-
mentations and frameworks exist Chandola et al. [2009], however, most of them are not targeted
or suitable for time series data streams. To the best of our knowledge, our approach is the
first analytic engine focused on real-time anomaly detection on time series data streams. In the
following, we discuss a few well-known examples.
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Figure.13: Algorithm behaviour on level shift anomalies

Rainbow Hyndman and Shang [2010] is from authors of the popular time series forecast R
package. It detects anomaly based on functional depth method, which represents data in curves.
Data points are associated with a curve shape and points that do not lie within the range of the
majority of curves, are detected as anomalies. However, it is not designed for time series data that
has strong seasonal behaviours. tsoutliers is a R package focused on time series anomaly detection
based on algorithms described in Chen and Liu [1993]. It designed an iteration algorithm, which
starts at fitting an ARIMA, or stmt model on an original time series, then find anomalies based
on analysis of critical residuals of the fitted model. Then it will fit a new model again on the
time series after anomalies are removed. The algorithm will loop through above steps until all
anomalies are found. AnomalyDetection Vallis et al. [2014] is an R package developed by Twittes
for long-term anomalies owing to a predominant underlying trend component in the time series.
It uses a Piecewise Median technique to estimate a trend from a time series, and then does
statistical test on residuals of the time series after the trend and seasonality are removed Vallis
et al. [2014]. However, both tsoutlier iterative algorithms and Twittes AnomalyDetection for long
term anomalies are not designed for real time data streams as most R packages. They cannot
detect anomalies for streaming data in real time.

MOA Bifet et al. [2010] is a popular open source data stream analytic framework which sup-
ports a wide range of algorithms including various anomaly detection algorithms, such as STORM,
Abstract-C, COD (Continuous Outlier Detection), MCOD (Micro Cluster based Continuous De-
tection). These algorithms Georgiadis et al. [2013] Kontaki et al. [2011] use distance based
measure techniques similar to clustering to detect anomalies. It measures density of each object’s
neighbourhood, objects have no or few neighbours are detected as anomalies. The advantage
of these algorithms is that they can be applied to data of arbitrary dimensionality and also in
general metric spaces. However, for univariate time series data, which has strong seasonal be-
haviours, these algorithms are not best candidates, since periodic patterns are more important
than neighbour values. Apache SAMOA Bifet and Morales [2014] is a distributed streaming
ML framework that contains a programing abstraction for distributed streaming ML algorithms.
Hence, it enables development of new ML algorithms without dealing with the complexity of
underlying distributed streaming frameworks for ease of scalability. A number of algorithms are
developed in SAMOA currently, including AMRules implementation Vu et al. [2014] which con-
tains the anomaly detection feature. AMRules algorithm can learn regression rule sets from data
streams. However, it is a supervised ML algorithm requiring labelled data which is not available
in our use case scenarios.
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5.2 Anomaly detection systems for mobile network KPIs

Anomaly detection related to network KPIs is also not a new concept. However, these works
Zhang et al. [2008] Ciocarlie et al. [2013] Ciocarlie et al. [2014] translate the problem into super-
vised ML problems. They follow a two-steps approach; firstly, generating profiles or models based
on training datasets for nominal behaviours for all KPIs, and then uses the generated profiles
against the testing dataset to determine if there are anomalies. Zhang et al. [2008] is based on
one class support vector machine algorithm. Ciocarlie et al. [2013] and Ciocarlie et al. [2014] use
ensemble-method approach contains multiple algorithms, such as support vector machine. Our
work focuses on real time data streaming and data agonistic, hence, we do not and cannot rely
on availability of training datasets for all KPIs.

6. CONCLUSION

Anomaly detection of streaming data in the context of NM system development has specific
feature requirements. Prebuilt anomaly detection libraries such as the ones that are available
in R, MLlib do not fulfil these necessary requirements. In this paper we have described design
principles based on the requirements and innovative algorithm designs; without such algorithm
design that combines a number of statistical functions in a workflow, anomaly detection of time
series streaming data cannot be achieved particularly in the context of NM scenarios. The two
versions of the algorithms were discussed and we have discussed use-case scenarios showing how
our work applies in real world scenarios. Finally we have shown the evaluation of the system
with real world Telecom dataset with based recommendation of network experts. We plan other
streaming analytic features design and use cases in our future work.
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