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Facial Expression Recognition has become vital considering its numerous applications including Human Computer

Interaction, security, gaming, animation, medical field etc. In order to effectively implement these applications,

the proposed method aims to increase the overall accuracy and robustness of the recognition system. Fusion of two
feature extraction methods, namely Gabor and Local Directional Pattern (LDP) that are complementary in nature

is carried out. Gabor Features focuses on the structural details whereas LDP targets the textural and subtler

details in a robust manner. Fusion is carried out using Canonical Correlation Analysis (CCA) based fusion, as it
effectively utilizes the correlation between the two features for fusion. For the efficient training of the classifiers,

optimal feature vector is obtained by projecting the original feature vector on Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA) subspace. To prove the robustness of the proposed method, it is
tested on benchmark datasets like CK, JAFFE, TFEID and CASIA-VIZ under ideal as well as different conditions

such as noisy environment, low resolution, small sample space, different facial components etc. The system is also

tested on two spontaneous expression datasets called SFEW (standard) and WESFED (in-house). The proposed
method has shown better performance than the state of the art methods.

Keywords: Facial Expressions, Gabor, Local Directional Pattern, Feature Fusion, Canonical Cor-

relation Analysis.

1. INTRODUCTION

Facial Expressions are one of the most well-known types of non-verbal communication (Mehra-
bian [1968]) A single expression can perhaps convey more information than thousands of words
combined as it reflects the emotional state of a person which a human brain can efficiently rec-
ognize and interpret. Automatic Facial Expression Recognition (AFER) intends to transfer a
certain, if not full level of that ability to computers. With the advancements and increasing use
of Human Computer Interaction (HCI) in many applications, the need for effective AFER is all
the more necessary.

Apart from socially sensitive Human- Computer Interaction (Cid et al. [2013]), AFER can be
utilized in many applications such as detection of mental disorders (Gaebel and Wlwer [1992]),
safety against road rage (Nasoz et al. [2004]), security (Butalia et al. [2012]), animations and
video games (Bartlett et al. [2003]), automation applications, etc. It can also be used to include
emotion related information in automatic image captioning systems (Cowie et al. [2001]).

Irrespective of the perspective followed, a basic AFER system comprises of mainly the following
stages as shown in Figure 1 (Sariyanidi et al. [2015]). Pre-processing includes enhancing the
image in order to facilitate the further process and reduce any such possible conditions that
might affect the recognition performance. It also includes Face detection and face tracking which
involves detecting the face region from the frame and tracking it across subsequent frames. Feature
extraction deals with extracting the expression related features from the face followed by reducing
them in order to filter out redundant features and decrease the complexity. Classification step
includes feeding the features to a classifier which then narrows down to one of the expression
classes. The detail survey on facial expression recognition can be found in Pantic and Rothkrantz
[2000], Fasel and Luettin [2003], Goyani and Patel [2017a], Sheth and Goyani [2018].
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Figure 1. General Framework of Facial Expression Recognition System

The rest of the paper is structured as follows. Section 2 summarizes the prominent feature
extraction techniques used by noteworthy approaches. Section 3 presents the proposed method
and in depth discussion of the steps followed. Section 4 discusses the results and analysis of the
experiments performed. Finally, section 5 concludes the overall performance of the system.

2. BACKGROUND AND RELATED WORK

There are two basic methodologies for feature extraction, namely geometric and appearance
based methods. Geometric methods do not focus on face texture or intricate settings, rather
they take feature indications from the geometry, deformation and tracking of fiducial points
(Sariyanidi et al. [2015]). Geometric methods face many shortcomings such as dependency on
face geometry and pose, failure to detect landmarks in case of occlusions, no tolerance against
face representation errors, etc. Owing to the various pitfalls of geometric methods, appearance
based feature extraction methods have gained much popularity in terms of higher accuracy and
lower error conditions. Appearance based features take cue from the intensity levels of the face
image to determine features contributing to facial expression. These features are extracted by
generating a suitable filter which is the convolved around the face.

Ojala et al. [1996] formulated the Local Binary Patterns (LBP) which is an efficient and easy
non-parametric method to describe mild and intricate texture information and summarize local
structure of facial components. Among the pool of various appearance features, the ones with
binarized local texture have shown promising results and effectiveness (Martinez et al. [2014]).
Huang et al. [2011] provides a comprehensive study on various LBP techniques on facial image
analysis along with their variations. LBP is computationally simple (Huang et al. [2011]) and
is robust to monotonic illumination change and misalignment (Martinez et al. [2014]). Local
Directional Pattern (LDP) is the technique proposed by Jabid et al. [2010], to address the nonro-
bustness problem of LBP towards random noise and non-monotonic illumination. It consists of
directional information by comparing edge response values of each pixel in eight directions using
Kirsch masks representing the impact of edge in each direction. The feature shows superior per-
formance and can be represented in low-dimensional feature space with high accuracy for even low
resolution images. However, the LDP codes can be problematic in smooth regions as they focus
more on edge response values and produces inconsistent patterns in uniform regions (Ahmed and
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Kabir [2010]). Goyani and Patel [2017c] proposed Local Mean Binary Pattern (LMBP) variant
of LBP which thresholds the neighbor pixel with respect to mean of 3 × 3 patch. This approach
is robust to noise and non monotonic gray level change compared to simple LBP.

Gabor filter is a linear parametric filter which analyses whether there are any specific frequency
content in the image in specific directions in a localized region around the region of analysis
(Donato et al. [1999]). Lyons and Akamatsu [1998] first used Gabor wavelets to generate facial
expression features. It has proved to be an effective method and has since been used by many
different approaches like in Lyons et al. [2000], Chen and Kotani [2007], Gu et al. [2012], Zhang
et al. [2014], Xing and Luo [2016], for facial expression recognition.

Another line of approach seen in literature is to cascade two or more effective methods one
after the other. In this, one method is applied over the response of the other. One such pat-
tern, LGBP (Local Gabor Binary Pattern) was proposed by Zhang et al. [2005] in which Gabor
features capture orientations and scales while LBP focuses subtler texture details. LGBP is
robust to variations in lighting and expressions. Among others, LGBP was also used by Loob
et al. [2017] where expressions were classified into dominant and complementary emotions like
happily surprised to cover a wider range of emotions instead of basic prototypes. In a recent
approach, Sun and Yu [2017] proposed a novel method in which instead of applying LBP over
the features described by Gabor, both Gabor and LBP features are extracted from the input
image and then those features are fused together using feature fusion to form the final feature
vector. The approach has yielded superior performance since features described using different
perspectives are used together. Similar method was proposed in Luo et al. [2013] where Global
features extracted by PCA are fused with local features extracted from the mouth area using
LBP. PCA is an effective method as it reduces dimensionality while selecting distinct features,
but the features extracted by it are subject to environment changes. This is combatted by fusing
in LBP which focuses on texture details and hence the results show improved robustness. Since
LBP is sensitive to random noise and non-monotonic illumination, this method was improved
by Luo et al. [2016] where instead of LBP, LDP is used to extract local features from the eyes
and mouth region. The method shows improved performance than PCA and LBP combined,
since LDP has good stability against random noise. Rajesh et al. experimented various fusion
of different methods in Kumari et al. [2016] such as fusion of LBP with LGC, HOG with LDP,
and HOG with wavelets. The results showed that fusion of HOG with wavelets outperformed
all others and fusion of LDP with HOG improved LDPs performance. Goyani and Patel [2018]
have proposed local statistical approach which combines Haar and LBP features. The proposed
method has proven robust against illumination, noise and low resolution.

3. PROPOSED SYSTEM

We propose to increase the overall accuracy of the facial expression recognition system by combin-
ing Gabor and LDP appearance features using Canonical Correlation based feature level fusion.
The combined feature vector proposes to provide a more robust and stable feature vector with
more discriminatory information than previous state of the art methods.

3.1 Gabor Features

Local Gabor features are extracted from the original image by applying Gabor filters of varying
scale and orientations. Gabor features are selected as they represent facial shape and appearance
over multiple scales, locations and orientations. Since Gabor is a parametric filter, its parameters
such as size, angles, wavelength etc. can be tuned to suit the corresponding scenarios. Usually 8
orientations and 5 scales are used to generate 40 filters. Another advantage of using Gabor filters
is that it can simultaneously encode localized spatial and frequency information.

However, Gabor Features are not able to detect subtle and mild texture changes that occur
during facial expressions, thus missing out vital discriminatory information. Gabor filters suffer
from identity bias and are not able to efficiently discriminate between expressions related and
face related characteristics. Stability of performance in low resolution images also remains an
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issue. Also, Gabor filters are computationally complex as 40 filters have to be applied at each
neighborhood, which increases both dimensions and processing complexity. Since our method
fuses two features, the dimensions as well as complexity is expected to increase, which is not a
favorable condition. Therefore in our method, instead of filtering each neighborhood with all the
filters, we take the average of the 40 filters and use the average filter obtained to generate feature
vector as shown in Figure 2 below.

Figure 2. Averaged Gabor Filter Derivation

Hence, for one image only one corresponding image is generated as opposed to 40 images, thus
largely reducing the image size and subsequent computation time. The obtained Gabor filtered
image is down sampled by 4 times both length and breadth wise before generating the feature
vector to further reduce the vector size. Therefore for a 150 110 image instead of a feature vector
of size 6, 66, 000 we generate a feature vector of size 1064 thereby decreasing the size to a great
extent. If only Gabor features are used, this practice might reduce the discriminatory information
but since in the proposed approach another feature vector is fused, it not only compensates for
the loss but generates an even more discriminatory feature vector.

3.2 LDP Features

LDP features are extracted by encoding 3 highest edge response values using Kirsch edge masks in
8 directions. Since they are based on gradient values instead of just gray scale pixel information,
the resulting feature vector is more stable and robust than LBP features. Computationally,
the process is more expensive than LBP features generation, but significantly lower than Gabor
feature generation. The strength of LDP lies in the ability to detect subtle texture changes and
local primitives such as curves, corners and junctions. They are efficiently robust to monotone/
non-monotone illumination changes and random noise. Also stability in low resolution and person
independent conditions is higher as compared to Gabor features. However, LDP features are not
able to encode bigger structural information as a result of operating over small neighborhoods. It
also lacks contrast information that can be useful in providing more discriminative information.
Another issue with LDP is that it tends to produce unstable patterns when extracting information
from smooth regions as they focus on edge related information.
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By fusing Gabor and LDP features, we intend to combine features that would address different
challenges by combining both their advantages to form a more stable and discriminating feature
vector. Many requirements of one method are fulfilled by the other, thus suggesting better
recognition rates

3.3 CCA Fusion

We intend to use feature level fusion as its advantage lies in the fact that it can derive the most
discriminatory information from multiple feature sets involved in fusion. It is able to gain the
most effective and least dimensional feature vector sets. This practice makes the subsequent
classification easier and improves the final recognition accuracy.

Canonical Correlation Analysis (CCA) fusion is based on finding the correlation between two
sets of features. Correlation is a measure that indicates the degree to which two or more variables
change together. CCA is a way of determining the linear relationship between two multidimen-
sional variables corresponding to the same observation. It finds two bases, one for each variable,
that are optimal with respect to correlations and, at the same time, it finds the corresponding
correlations. In other words, CCA transforms the multidimensional variables into a subspace
that are correlated to each other. The dimensionality of these new bases is equal to or less than
the smallest dimensionality of the two variables.

Consider two vectors X = [x1, x2, ..., xm] and Y = [y1, y2, ..., yn].Canonical correlation analy-
sis can be defined as the problem of finding two sets of basis vectors, one for X and the other
for Y, such that the correlations between the projections of the variables onto these basis vec-
tors are mutually maximized. Let us look at the case where only one pair of basis vectors are
sought, namely the ones corresponding to the largest canonical correlation: Consider the linear
combinations x = XT Ŵx and y = Y T Ŵy. The function to be maximized is

ρ =
wT

xCxywy√
wT

xCxxwxwT
y Cyywy

(1)

where,

Cxx =

∑
(Xi − µx)(Xj − µx)

min(n− 1)
(2)

Cyy =

∑
(Yi − µy)(Yj − µy)

min(n− 1)
(3)

Cxy =

∑
(Xi − µx)(Yi − µy)

min(n− 1)
(4)

The maximum of ρ with respect to wx and wy is the maximum canonical correlation. The
projections onto wx and wy, i.e. x and y, are called canonical variants. In our methodology, we
first transform the two feature vectors into the correlated subspace and then serially join the two
vectors to form the CCA based fused feature vectors.

3.4 Proposed System

Block diagram of proposed method is depicted in Figure 3. The input image is first normalized
both in terms of size and intensity. All the images are resized to 150 × 110 pixel resolution and
histogram equalization is performed. This step is taken so that all images are uniform in size
and covers the entire range of intensity levels. Since facial expressions occur only on the face
region, the next logical step is to detect the face from the whole image frame. Haar Cascade face
detection methodology is used for this purpose. In this method, rectangular Haar features are
extracted that are then fed to a cascade of AdaBoost learning algorithm, which is then used to
determine the face region. An extra portion is included from the top and bottom of face so that
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the entire forehead and chin areas are included and no vital facial expression related structure is
missed out.

Figure 3. Block Diagram of Proposed System

In the next step, Gabor and LDP features are extracted individually from the original image.
Gabor features are extracted by convolving the average Gabor filter across the image, and the
results are stored in a feature vector of dimensionality 1064. LDP features are computed by
operating on a local neighborhood and encoding edge response value with the help of Kirsch
masks. To capture local spatial information, the generated LDP map is divided into 8 × 7
regions and the feature vector is generated by concatenating the histogram of each region. The
region size is selected through experiments ranging from whole face to 9 × 9 regions, taking both
accuracy and feature ex-traction time in consideration. The generated feature vector is of size
14336.

Both the generated feature vectors dimensions are reduced using PCA technique that captures
the variance in the data and reduces the feature size. The number of Eigenvectors selected are
95 for Gabor features and 95 for LDP features which is determined through experiments. Hence
the new dimension for both Gabor and LDP features is 95.

The reduced Gabor and LDP features are then fused together using CCA based feature fusion.
Both the Gabor and LDP features are transformed to a correlated sub-space and then concate-
nated together. The dimension of each transformed feature vector is the minimum of the two
feature size, i.e. in this case 95.

For further feature selection, LDA is applied for increasing the between class variance and final
dimensionality reduction. The final feature vector of 6 dimensionality is then fed to the classifier.
In the proposed methodology both Template Matching and Machine Learning classifiers are used
and their performances are compared. In template matching, Correlation, Cosine, Chi-Square,
Euclidean distance and k-Nearest Neighbors measures are used, of which Euclidean distance and
Chi-Square are observed to give the overall best performance. In Machine Learning, Support
Vector Machine (SVM), Least Square SVM (LS-SVM), Discriminant Analysis (DA), Random
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Forest Classifier (RFC) and Logistic Regression classifiers are used for classification of vectors
into one of the seven expression classes. LS-SVM and LR are selected as they display high
performance.

4. RESULTS AND DISCUSSION

This section shows the experimental results and analysis on benchmark datasets, namely CK
(Kanade et al. [2000]), JAFFE (Lyons [1999]), TFEID (Chen and Kotani [2007]), CASIA-VIS
(Zhao et al. [2011]), SFEW (Dhall et al. [2011]) and in-house dataset called WESFED. We first
select optimal parameters for the model by conducting experiments on the CK dataset. After the
selection we display the results of tests on all the datasets under normal conditions. Thereafter
the performance of the model is evaluated under varying conditions such as noisy environment,
low resolutions, low sample space etc. by simulating the conditions on CK, JAFFE and TFEID
datasets. Finally the section concludes with comparison of the model with the state of the art
methods

4.1 Experimental Data

CK dataset is one of the standard datasets used by many researches to evaluate their performance.
It consists of image sequences of six basic expressions from 97 subjects under various illumination
conditions, age groups, head positions and ethnic diversities. In our experiments we have used
100 images from each expression class and 100 neutral images. We use equal number of images
from each class so that the dataset is not biased towards a particular expression. JAFFE dataset
is also one of the benchmark dataset used for testing facial expressions. It consists of 213 images
from 10 Japanese fe-males of similar age group with frontal head poses and single illumination
conditions. We have used all the 213 images for 7-class expression recognition. The TFEID
dataset consists of a total of 267 images of 40 Taiwanese male and female subjects performing 7
expressions. The images are direct gaze, front view and of high intensity. We have used all 267
images for our experiments. Sample expressions of the datasets used in experiments are shown
in Figure 4.

CASIA-VIS is a dataset consisting 480 sequences of facial expressions performed by 80 univer-
sity students in classroom settings through camera lens of laptops in visible light. This dataset
is useful for evaluating facial expression based feedback based smart tutoring systems. In our
experiments, we use 3 peak frames from each sequence of expression, which leads to 240 images
from each expression and 240 neutral face images.

Spontaneous Facial Expressions in the Wild (SFEW) is a comprehensive benchmark dataset
consisting of real time expressions with all sorts of challenges such as occlusions, head pose
variations, ethnic diversity, different illuminations etc. We use 729 training images and 366 images
for validation. Web Enabled Spontaneous Facial Expression Dataset (WESFED) is spontaneous
dataset consisting of real time expressions taken from the web, consisting of images from varying
backgrounds, ethnicity, age, gender and face angles. It contains a total of 920 images from six
basic expressions along with neutral images. We use all the images for our experiments.

Sample images from each dataset along with exact number of images used for each expression
are shown in Figure 4.

4.2 Selection of Optimal Parameters

Selection of number of eigenvectors (NOEV) while applying PCA for feature reduction plays an
important role as it determines the amount of information that would be encoded for further
processing. We choose same number of eigenvectors for both Gabor and LDP features as CCA
fusion strategy considers only minimum of the two feature dimensions. We start experimenting
from the value 55 as below this the results are non-significant, and the value ranges up to 105,
as the results start declining thereafter.

Table I and Table II shows the results of our experiments on CK dataset for five Template
Matching and five Machine Learning Classifiers, respectively. The results are obtained by 10 Fold
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Figure 4. Sample Dataset Images JAFFE, CK, TFEID, CASIA-VIS, SFEW, WESFED (Top to Bottom)

Table I: Effect of number of eigenvectors on CK dataset for template matching classifiers

#Eigenvector L2-Norm Correlation Cosine Chi-Square K-NN Average

55 95.43 87.00 95.71 95.43 95.43 93.80

60 95.14 95.57 96.14 95.14 95.57 96.51
65 96.43 92.29 96.57 96.43 95.86 95.51

70 97.71 92.43 97.71 97.71 98.57 96.83

75 97.00 95.43 97.71 97.00 96.86 96.80
80 95.86 97.14 96.29 95.86 96.57 96.34

85 98.14 96.71 97.86 98.14 98.14 98.49

90 98.14 96.43 98.00 98.14 97.71 97.69
95 98.57 97.29 98.29 98.57 98.00 98.14

100 97.57 95.86 96.43 97.57 98.14 97.11

105 99.43 91.71 99.14 99.43 99.43 97.83

cross validation and 90-10 validation, which means that 90 percent of the images in the dataset are
used for training and the rest 10 percent is used for testing, and this process is repeated 10 times
to achieve final average accuracy. Along with NOEV, we also observe the overall performance of
various classifiers.

As it is observed from the Table I and Table II, NOEV 95 provides the best results for all clas-
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Table II: Effect of number of eigenvectors on CK dataset for Machine Learning based classifiers

#Eigenvector L2-Norm Correlation Cosine Chi-Square K-NN Average

55 89.86 96.57 96.00 95.00 96.43 94.77

60 88.57 95.71 95.71 94.29 94.86 93.83
65 94.00 98.00 97.00 96.43 97.14 96.51

70 95.29 98.29 98.29 97.71 98.57 97.63

75 95.29 97.14 97.71 96.14 97.86 96.83
80 95.29 97.29 98.00 97.71 97.86 97.23

85 96.43 99.14 99.29 98.29 99.29 98.49

90 97.29 98.71 98.14 98.14 98.43 98.14
95 97.29 99.14 98.71 98.14 99.29 98.51

100 97.86 98.29 98.57 98.14 98.57 98.29

105 96.43 99.14 99.29 98.29 99.29 98.49

sifiers and hence we have selected NOEV as 95 for both Features. Among the Template Matching
classifiers, L2-norm and Chi-Square gives the best results, while among Machine Learning classi-
fiers, LS-SVM and Logistic Regression gives the best overall performance. Also, the observation
of Template Matching and Machine Learning classifiers clearly suggest that Machine Learning
Classifiers gives better results.

Histogram of LDP map is treated as LDP feature vector. Thus it does not include any spatial
information. Therefore, we divide the LDP map into more than one regions and generate the
histogram for each region to encode spatial information from the LDP map generated. This
practice ensures that local structural information such as minor deformations, wrinkles, furs, etc.
are preserved spatially. We have conducted experiments for regions ranging from 1 × 1 (whole
face) to 9 × 9 parts as shown in Figure 5.

Figure 5. Selection of optimal number of regions

Region sizes beyond 9 × 9 are not used as each region would then encode lesser amount of
information and increase the feature size unnecessarily. The results obtained are from the average
of all the 10 classifiers. Along with the average accuracy, the feature extraction time is also taken
into consideration for selection of optimal number of regions. The selection of final region size is
performed by obtaining the RS values corresponding to the following equation, and selecting the
region size with the maximum value.
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RSV aluei = (α ∗Acci) +
1 − α

Ti
(5)

where, α = 0.7, Acc is average accuracy and T is feature extraction time. The parameter α
controls the trade-off between feature extraction time and accuracy.

Using this methodology, we obtain the best Accuracy/Time trade-off by giving 70 per cent
weightage to accuracy and 30 per cent to feature extraction time. Is clearly observed from the
Figure 5 that region size of 8 × 7 gives the best RS value among all the other region sizes, and
hence 8 × 7 is selected as the optimal number of regions.

4.3 Performance under Ideal Conditions

In this section we evaluate the performance of our method on six datasets namely CK, JAFFE,
TFEID, CASIA-VIS, SFEW and WESFED under normal conditions. The accuracy of the system
is evaluated by 10 Fold Cross Validation Scheme. Table III shows the accuracy obtained by the
four selected classifiers.

Table III: Accuracy (%) under Ideal Conditions for selected classifiers

Datasets

Classifier CK JAFFE TFEID CASIA-VIS SFEW WESFED

L2-norm 98.43 100.0 100.0 91.19 54.37 92.07

Chi-Square 98.57 100.0 100.0 91.73 56.83 92.28

LS-SVM 99.14 100.0 100.0 91.96 72.13 93.70
LR 98.86 100.0 100.0 87.44 74.32 93.26

It is observed that LS-SVM classifier gives the highest accuracy compared to other classifiers.
The confusion matrix for all the datasets for LS-SVM classifier is shown in Table IV.

Table IV: Confusion Matrices for various dataset using LS-SVM Classifier

AN DI FE HA SA SU NE AN DI FE HA SA SU NE

AN 100 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0

DI 1.96 98.04 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0
FE 0.0 0.0 98.90 0.0 0.0 0.0 1.10 0.0 0.0 100 0.0 0.0 0.0 0.0

HA 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0
SA 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0

SU 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0

NE 0.0 0.0 0.0 0.0 2.86 0.0 97.14 0.0 0.0 0.0 0.0 0.0 0.0 100

Average Accuracy (CK) - 99.14 % Average Accuracy (JAFFE) 100.0 %

AN DI FE HA SA SU NE AN DI FE HA SA SU NE

AN 100 0.0 0.0 0.0 0.0 0.0 0.0 87.34 6.33 0.0 0.0 5.91 0.0 0.42

DI 0.0 100 0.0 0.0 0.0 0.0 0.0 7.86 91.70 0.0 0.0 0.44 0.0 0.0
FE 0.0 0.0 100 0.0 0.0 0.0 0.0 1.41 0.0 92.02 0.94 4.69 0.94 0.0

HA 0.0 0.0 0.0 100 0.0 0.0 0.0 1.65 0.0 1.24 96.28 0.83 0.0 0.0

SA 0.0 0.0 0.0 0.0 100 0.0 0.0 11.92 0.77 2.69 0.38 83.85 0.0 0.38
SU 0.0 0.0 0.0 0.0 0.0 100 0.0 0.42 0.0 2.92 0.42 1.67 94.58 0.0

NE 0.0 0.0 0.0 0.0 0.0 0.0 100 0.77 0.0 0.0 0.0 1.16 0.0 98.07

Average Accuracy (TFEID) 100.0 % Average Accuracy (CASIA-VIS) 91.96 %

AN DI FE HA SA SU NE AN DI FE HA SA SU NE

AN 77.61 1.49 1.49 2.99 4.48 1.49 10.45 97.90 1.40 0.0 0.0 0.70 0.0 0.0

DI 15.0 35.00 5.0 5.0 15.0 5.0 20.0 1.75 85.96 3.51 3.51 5.26 0.0 0.0
FE 12.82 0.0 53.85 2.56 7.69 15.38 7.69 1.64 0.0 88.52 0.0 4.92 4.92 0.0

HA 4.84 0.0 1.61 87.10 4.84 0.0 1.61 0.50 1.99 0.0 95.02 1.99 0.50 0.0

SA 7.14 7.14 0.0 3.57 66.07 0.0 16.07 0.82 0.82 0.0 0.82 88.52 0.0 9.02
SU 15.0 2.50 2.50 7.50 7.50 47.50 17.50 0.0 0.0 2.60 0.65 0.0 96.75 0.0

NE 1.22 1.22 0.0 1.22 6.10 0.0 90.24 0.0 0.55 0.0 0.55 4.95 0.0 93.96

Average Accuracy (SFEW) 72.13 % Average Accuracy (WESFED) 93.70 %
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4.4 Performance under Low Resolution Conditions

The previous section evaluated the performance of the system on six datasets under ideal and
unchanged conditions. Datasets such as SFEW and WESFED contain real time images with
various experimental conditions embedded in them. On the contrary CK, JAFFE, TFEID and
CASIA datasets do not contain much variations. Hence to test the model under various condi-
tions, we simulate such conditions on the three datasets and evaluate them. Validation method of
10-90 is used for our experiments to analyze and study maximum variations under lowest sample
space.

It is not always possible to get high resolution images for recognition. In many cases such as
surveillance, smart tutoring systems etc. we have to perform recognition under low resolution
conditions. Therefore we evaluate the performance of our method under low resolution conditions
by simulating different resolutions on CK, JAFFE and TFEID datasets and study the stability
of our model. We choose three different resolutions: 150 × 110, 75 × 55, 48 × 36 and 37 × 27
pixels as shown in Figure 6.

Figure 6. Test image samples for different resolution

Performance of proposed method under low resolution on all three datasets is depicted in
Figure 7.

Figure 7. Performance on different dataset in low resolution

It can be seen from the above plot that performance until 48 × 36 is somewhat similar and
stable but takes a dip for 37 × 27. This is because as the resolution decreases, the amount of
information encoded also decreases and discriminatory information is lost. However, the results
are still acceptable as the outcomes do not fall below 90 per cent for any dataset.
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Table V shows a performance comparison of our model with other state of the art methods for
low resolution conditions on CK dataset, using LS-SVM classifier.

Table V: Comparison with State of the Art methods in Low Resolution

Resolution

Feature VM 150 × 110 75 × 55 48 × 36 37 × 27

Gabor (Shan and Gong [2009]) 90-10 89.1 ± 3.1 89.2 ± 3.0 86.4 ± 3.3 83.0 ± 4.3

Gabor (Xing and Luo [2016]) 70-30 89.8 ± 3.1 89.2 ± 3.0 86.4 ± 3.3 83.0 ± 4.3
LBP (Zhang et al. [2014]) 90-10 92.6 ± 2.9 89.9 ± 3.1 87.3 ± 3.4 84.3 ± 4.1

LDP (Jabid et al. [2010]) 90-10 96.4 ± 0.9 95.5 ± 1.6 93.1 ± 2.2 90.6 ± 2.7

Proposed 90-10 99.1 ± 1.4 98.9 ± 1.1 98.6 ± 1.7 96.7 ± 2.2
Proposed 10-90 97.9 ± 1.9 96.5 ± 1.5 95.8 ± 2.0 93.0 ± 1.9

It is seen that our method outperforms the highest recorded performance with a standard
deviation as low as 2.2. Even in 10-90 validation method the proposed model performs better
than the state of the art methods.

4.5 Performance under Noisy Environment

Images are often corrupted by noise due to numerous conditions such as weather conditions, tem-
perature changes, and noise during transmissions or corrupt sensor etc. Therefore it is important
to test the effect of noise on the proposed method. We test our method on three different types
of noises, namely Gaussian noise, Salt and Pepper and Speckle noise, and for different parametric
values (µ - Mean, v - Variance, d - Density). The corresponding noisy images are as shown in
Figure 8.

Figure 8. Images corrupted with various noise

We have used 10-90 validation method and the 4 selected classifiers to evaluate the performance
on CK, JAFFE and TFEID datasets, the results of which are shown in Tables VI, Table VII and
Table VIII respectively.

It is obvious that performance under noisy conditions will decrease since the pixel values are
corrupted and expression related information might get lost or get confused with noisy pixels. It
is observed that under noisy conditions Machine Leaning classifiers give much better performance.
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Table VI: Accuracy (%) Under Noisy Conditions (CK dataset)

Noise Parameters ED Chi-Square LS-SVM LR

Gaussian

µ = 0.5

v = 0.5
79.14 80.89 86.17 87.37

µ = 1.0

v = 1.0
76.80 77.23 82.69 84.37

Salt & Pepper
d = 0.2 94.43 94.00 95.91 95.89

d = 0.5 80.97 80.77 87.14 86.49

Speckle
v = 0.5 85.26 85.63 89.97 89.97

v = 1.0 84.74 84.74 89.00 88.69

Table VII: Accuracy (%) Under Noisy Conditions (JAFFE dataset)

Noise Parameters ED Chi-Square LS-SVM LR

Gaussian

µ = 0.5

v = 0.5
93.65 93.65 93.48 93.65

µ = 1.0
v = 1.0

96.72 96.72 96.72 96.72

Salt & Pepper
d = 0.2 97.96 97.96 98.65 98.65

d = 0.5 93.64 93.64 93.64 93.64

Speckle
v = 0.5 98.43 98.43 98.38 98.43

v = 1.0 96.88 96.88 96.88 96.88

Table VIII: Accuracy (%) Under Noisy Conditions (TFEID dataset)

Noise Parameters ED Chi-Square LS-SVM LR

Gaussian
µ = 0.5
v = 0.5

97.72 96.64 95.15 97.80

µ = 1.0
v = 1.0

97.97 96.39 95.77 97.84

Salt & Pepper
d = 0.2 98.34 98.34 98.33 98.34
d = 0.5 98.26 97.50 96.76 98.23

Speckle
v = 0.5 98.34 98.34 97.68 98.34

v = 1.0 98.34 98.29 97.30 98.29

4.6 Performance under Small Training Sample Space

It is not always possible that we get enough training samples and the model might have to
predict for more number of testing data. Hence we have used various validation methods to test
the performance for different ratios of training and testing data.

Figure 9 shows the results on all the datasets for various validation methods, using LS-SVM
classifier. It is apparent that accuracy decreases as the number of training data decreases. But
the performance decrease is very low and the model gives higher accuracy for even low number
of training samples.

Performance decrease of CK is greater than JAFFE and TFEID, since the latter two datasets
have very low number of images relative to the former. Also, CK dataset is more complex in
nature, owing to its diverse illumination, gender, age and ethnicity variations, making it difficult
to achieve higher accuracy for small sample space, when compared to other datasets

4.7 Performance on Different Facial Components

We analyze the performance of our model by testing on different facial components. The exper-
iment is performed on CK, JAFFE and TFEID datasets by 10-90 validation method and using
LS-SVM classifier. Upper face includes eyes and lower face consists of mouth region. Figure 10
shows the results of the experiments performed.

The upper face gives the lowest accuracy, since the expression is conveyed only by the eyes
and forehead area. Expressions such as happy, sad and surprise fail to get recognized as vital
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FIgure 9. Accuracy (%) of different validation methods

Figure 10. Accuracy (%) on different facial components

mouth region for information encoding is not present. The lower face gives better results, but
misses out on expressions like anger or fear since eye brow in-formation is lost. The combination
of upper and lower surpasses the previous two, as both eyes and lips are preserved. However,
the results of combined are lower than that of whole face, indicating that the structure of whole
face is necessary for expression recognition, rather than just eyes and lips, especially in case of
expressions such as disgust, where nose region conveys vital information.

4.8 Performance under the Effect of Occlusions

Real time applications might contain images with occluded regions such as eye patches, sun
glasses, scarfs, masks, or any such props that block a part of the face that restricts expression
related information. There is no benchmark dataset available that explicitly exhibits different
types of occlusions. Hence to test the robustness of the pro-posed model against occlusions, we
simulate such conditions manually by adding white masks of different sizes at different positions.
We simulate five different types of occlusions, (i) Eye Patches, (ii) Mouth Patch, (iii) R8 Patch,
(iv) R16 Patch, and (v) R24 Patch, where Rs patch means randomly placed S × S patch on the
face region. A sample set of such occlusions is shown in Figure 11.

We distribute the five types of occlusions equally among each dataset and take the results
on 10-90 validation method using LS-SVM classifier. The results obtained for each dataset are
tabulated in Table IX.

From the Table IX, it can be deduced that the model is sufficiently robust against occlusions,
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Figure 11. Sample Occluded Images

Table IX: Accuracy (%) under Occlusion Conditions

Accuracy (%) CK JAFFE TFEID

Ideal Conditions 97.90 96.87 98.34

Faces with occlusion 95.37 95.05 93.53

since the performance drop is not more than 5 per cent for any dataset.

4.9 Feature Extraction Time

The feature extraction time of the proposed method is calculated for each sub step of the extrac-
tion process, using an image size 150 × 110 and is tabulated in Table 10 below.

Table X: Comparative analysis of proposed model with state-of-the-art methods

Feature Gabor LDP PCA CCA Fusion LDA Total

Time (Sec) 0.0067 0.2859 0.0037 1.44 ×10−4 1.8 ×10−4 0.2967

Since we use average Gabor filter instead of 40 Gabor filters, the Gabor feature ex-traction time
is substantially reduced. LDP feature extraction takes maximum time as it involves generating
local directional pattern of 8 neighbors for each neighborhood. The time taken for Fusion and
Dimensionality reduction is relatively much lower than the generation process.

4.10 Comparison with State of the Art Methods

We now compare our results with the state of the art methods present in literature. Comparisons
on CK, JAFFE, CASIA and SFEW datasets are shown in Table XI, Table XII, Table XIII and
Table XIV, respectively. Results for TFEID and WESFED dataset for any state of the art
methods are not available for comparison.
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Table XI: Performance Comparison with State of the Art Methods (CK database)

Literature Features VM Accuracy (%)

Shan et al. (Shan and Gong [2009]) LBP 90-10 88.9

Zhang et al. (Zhang et al. [2014]) Gabor 90-10 90.8
Jabid et al. (Jabid et al. [2010]) LDP 90-10 93.4

Bashar et al. (Bashar et al. [2013]) MTP 90-10 94.2

Xing et al. (Xing and Luo [2016]) Gabor 70-30 95.1
Proposed Gabor + LDP + CCA 90-10 99.1

Proposed Gabor + LDP +CCA 10-90 97.9

Table XII: Performance Comparison with State of the Art Methods (JAFFE database)

Literature Features VM Accuracy (%)

Zhang et al. (Zhang et al. [2014]) Gabor 90-10 78.4
Shan et al. (Shan and Gong [2009]) LBP 90-10 80.7

Jabid et al (Jabid et al. [2010]) LDP 90-10 84.9

Ryu et al. (Sariyanidi et al. [2017]) LDTP 90-10 94.3
Holder et al. (Holder and Tapamo [2017]) GLTP 90-10 95.2

Siddiki et al (Siddiqi et al. [2015]) SWLDA 90-10 96.4
Yu et al. (Yu and Gu [2017]) ASM 70-30 98.3

Proposed Gabor + LDP + CCA 90-10 100.0

Proposed Gabor + LDP + CCA 10-90 96.9

Table XIII: Performance Comparison with State of the Art Methods (CASIA-VIZ database)

Literature Features VM Accuracy (%)

Klaser et al. (Klaser and Marszalek [2008]) HOG 3D 90-10 70.6

Zhao et al. (Zhao et al. [2011]) AdaLBP 90-10 73.5

Guo et al. (Guo et al. [2012]) Atlases 70-30 75.5
Liu et al. (Liu et al. [2014]) STM-ExpLet 90-10 74.6

Proposed Gabor + LDP + CCA 90-10 92.0

Proposed Gabor + LDP + CCA 10-90 85.8

Table XIV: Performance Comparison with State of the Art Methods (SFEW database)

Literature Features Accuracy (%)

Eleftheriadis et al. (Eleftheriadis et al. [2015]) DSGP 24.7

Goyani et al. (Goyani and Patel [2017b]) LHMBP 52.0

Meng et al. (Meng et al. [2017]) CNN 54.3
Mollahosseini et al. (Mollahosseini et al. [2016]) Deeply Learnt Features 62.1

Proposed Gabor + LDP + CCA 72.1

From the above comparisons, it is clear that the proposed method gives us better performance
than state of the art methods on all datasets in both large and small sample space conditions,
and is robust in nature.

5. CONCLUSION AND FUTURE WORK

Various methods for facial expression recognition are available that address different issues. The
study of these techniques reveal that in order to overcome various is-sues that hinder the per-
formance of recognition system, expression related features that focus on different aspects of
representation need to be fused together to fulfill the short-comings of one method by the other.
We proposed the fusion of Gabor and LDP features since Gabor focuses on bigger structural
details while LDP focuses on subtle edge based texture information and together they provide
a robust, stable and discriminative set of expression features. The features are fused based on
canonical correlation analysis, which has shown better performance as compared to other fusion
techniques.
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The proposed model yields superior performance on benchmark datasets when com-pared to
state of the art methods. A detailed study of various confusion matrices reveals that the expres-
sions happy and surprise give highest recognition rate, whereas expressions anger and disgust
give the lowest recognition rate. Anger is confused mostly with neutral and disgust, whereas
disgust gets confused with fear or sadness. The model shows reasonable robustness in conditions
such as noise and occlusions, and also outperforms the state of the art methods in low resolution
conditions. Superior results are obtained even in small sample space conditions. Experiments
conducted on different facial components revealed that the structure of the whole face is impor-
tant for effective recognition, rather than just eyes or lips. Also, it is observed that Machine
Learning Classifiers give overall better results than Template Matching Classifiers.

In future, we plan to extend the feature extraction phase to GPU, so that the system can extract
the features concurrently from multiple images. This would definitely boosts the execution time
of the system. Other opportunity is to project the features using locality preserving projection,
which might outperform the PCA based projection, which simply tries to maximize the variance
in the projection space.
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