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Buildings represent one of the most significant sources of energy consumption in the United States and other
countries in the world. One of the most significant factors affecting buildings’ energy performance is the behavior
and actions of their occupants. Monitoring, understanding, and decoding occupant’s activities are fundamental
to identify energy waste and for proposing strategies to reduce excessive energy consumption in buildings. In
this paper, we present an approach for automatic detection and proactive monitoring of energy waste caused
by occupants’ behaviors. We first introduce a mathematical formalism to model states and trajectories arising
in buildings in the context of energy consumption by occupants. Then, we present a set of easy to implement
algorithms that used sensing information to detect wasteful states and trajectories. We also describe and implement
a prototype of a non-invasive, sensor network consisting of inexpensive temperature, light, and distance sensors,
as well as electricity consumption plug monitors that capture data related to occupancy behaviors in energy
consumption. By combining occupancy counts, sensing information, and energy expenditures in different regions
of a building, we can estimate how occupancy behavior is affecting energy use in a non-invasive way. Our ideas
are tested experimentally in a study case in a residential building.
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1. INTRODUCTION

More than 70% of the electricity load in the United Statesis consumed by buildings ((USGBC),
2015). Though several factors such as weather and building design parameters affect its energy
consumption, a primary factor is their occupants’ behaviors. The energy performance of a build-
ing can be explained in great part by the interaction of occupants with the building sections
and appliances. Therefore, a better understanding of occupant behaviors is essential to discover
energy-saving opportunities for in buildings (Gunay, O’Brien, and Beausoleil-Morrison, 2013;
Hong, 2014; Yu, Fung, Haghighat, Yoshino, and Morofsky, 2011). However, understanding oc-
cupant behaviors at the interface of human-building-appliance interactions is a hard task. Data
related to occupancy behaviors as they moved in a building and interact with appliances can be
captured in two ways: indirectly or directly. The indirect measurement of occupants’ behavior
is usually done through occupant surveys. However, such self-report surveys are prone to errors
such as inaccurate activities recall and social desirability bias. On the other hand, direct measure-
ments of occupants’ behavior can be hard to obtain due to privacy issues. Several studies (Garg
and Bansal, 2000; Erickson, Lin, Kamthe, Brahme, Surana, Cerpa, Sohn, and Narayanan, 2009;
Nguyen and Aiello, 2013)) have used different sensor modalities for detecting occupants’ behav-
ior and estimating and building energy parameters (e.g lighting and temperature). Despite the
growing literature and importance of this area, we believe that a formalized methodology for
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understanding emergent behaviors affecting the energy performance and pro-actively detecting
energy waste in the building is still missing in the literature.

Our work contributes to three critical directions of research concerning the analysis of occupant
behaviors in building energy assessment: (1) monitoring and tracking occupancy movements for
smart building systems; (2) detecting automatically energy waste caused by occupant behaviors;
and 3) design of plans (policies) for avoiding energy wasting behavior.

Our ideas are related to research on Heating, Ventilation, and Air conditioning (HVAC) con-
trol (Åström, Hägglund, and Wallenborg, 1993; Afram and Janabi-Sharifi, 2014; Underwood,
2002) building automation systems (BAS) (Kastner, Neugschwandtner, Soucek, and Newmann,
2005; Zhou, Li, Chan, Cao, Kuang, Liu, and Wang, 2016), and Smart Buildings (Snoonian, 2003;
Rutishauser, Joller, and Douglas, 2005). We also aim for a formalized approach for automated
detection of energy waste at the interface of human-building-appliance interactions. Our ideas
are different from existing work in different crucial aspects. First, we want to tackle the general
problem of modeling energy performance at the interface of human-building-appliance interac-
tions; these emergent behaviors can be captured by state spaces based modelings. Second, We
are interested in finding minimalist solutions that are easy to deploy, inexpensive, and respect
privacy for automated detection of energy waste in buildings. Finally, we include in our problem
formulations and experiments small residential units which are usually out of the scope of HVAC,
BAS, and Smart Building analysis.

Also connected to our efforts are approaches that attempt to count and track occupants in
buildings using occupancy sensors such as (Agarwal, Balaji, Gupta, Lyles, Wei, and Weng, 2010;
Zappi, Farella, and Benini, 2010; Singh, Madhow, Kumar, Suri, and Cagley, 2007; Kim, Mechi-
tov, Choi, and Ham, 2005; Shrivastava, Madhow, and Suri, 2006; Aslam, Butler, Constantin,
Crespi, Cybenko, and Rus, 2003) and (Blonchek, Sinha, Simhal, and Dandeka, 2013). Tracking
and counting occupants in different regions of buildings is an essential component key to the
development of smart building solutions. Our work borrows from ideas that try to monitor in
a non-invasive manner, the behavior of one (Tovar, Cohen, Bobadilla, Czarnowski, and Lavalle,
2014) or multiple agents (Bobadilla, Sanchez, Czarnowski, and LaValle, 2011; Erickson, Yu,
Huang, and LaValle, 2013) using detection beams.

Our paper has several contributions. First, we create a mathematical framework to describe
the physical state space of buildings and concretely formulated six problems of energy waste
in buildings that include temperature, lighting, plug load consumption, and occupant behavior.
Second, we present easy to implement algorithms to detect wasteful states and trajectories and
attempt to modify occupant behaviors in buildings. Third, we show a non-invasive, economical,
hardware architecture to implement our ideas. Finally, we test our approach in a small residential
setting.

This paper is an improved and extended version of the conference paper presented in (Carmenate,
Rahman, Leante, Bobadilla, and Mostafavi, 2015). Compared to the conference submission, this
version of the paper: 1) improves and generalizes the formulation to include not only residential
buildings but potentially commercial and industrial settings; 2) extends the problem formulation
and solutions by adding three new problems; 3) expands the literature review; 4) broadens the
discussion to cover the practical relevance of the approach and details the ideas for future work.

Our work on understanding the occupant’s movement patters and energy consumption be-
havior can serve as an accurate way to obtain parameters for agent-based simulation models
to understand the dynamic behavior of occupants in a building at the interface of human-
building-appliance interactions (Carmenate, Inyim, Pachekar, Chauhan, Bobadilla, Batouli, and
Mostafavi, 2016; Abdallah, Basurra, and Gaber, 2018, 2019). Additionally, the results of our
methods can be fed into smartphone applications to suggest energy behavior to users (Inyim,
Batouli, Reyes, Carmenate, Bobadilla, and Mostafavi, 2018).

The rest of the paper is organized as follows. In Section 2, we present a mathematical framework
and formulate six problems related to energy waste. Section 3 presents the algorithm methodology
as well as the hardware used to solve the questions proposed in section 2. Section 4 presents a
complete case study in a small residential setting to illustrate the practical applications of our
methods. Finally, in section 5, we present conclusions and potential directions for future work.
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2. PROBLEM FORMULATION

2.1 Physical State Space

In this section, we will formalize the problems of detecting wasteful energy states, analyzing
energy trajectories, and proposing policies to save energy. Our notation is heavily influenced
by Motion Planning terminology (LaValle, 2006; Latombe, 1991; Choset, Lynch, Hutchinson,
Kantor, Burgard, Kavraki, and Thrun, 2005), physical state space modeling approaches (LaValle,
2006, 2012) in Robotics and autonomous systems.

We will model an indoor building environment (or workspace) as a collection of floors in a
building and each of these floors is modeled as a planar 2-dimensional workspace denoted by
W = R2. In this paper, we will do a complete analysis and formulation of energy problems
concerning a single floor; however, our approach can be extended easily to buildings with multiple
levels with minimal modification. The floor W will have a set of obstacles, O, that represent
areas that are not accessible by humans. To extend our approach to multiple floors to account
for commercial and business settings, instead of having one level, W, a collection of 2D floors
{W1,W1, . . . ,Wp} where p is the number of floors in the building. In this case, each floor Wi

will have its own set of obstacles Oi.
A set of n building occupants will move in the free space on a floor which is defined as the

environment, E =W\O. Let Ci represent the configuration space or set of all possible positions
and orientations of the ith building occupant. More concretely, Ci = E × [0, 2π), where E is
set of all positions of an occupant in the 2D free space and [0, 2π) is the set of all possible
orientations of an occupant. Together, the configuration space for all n occupants is defined as
C = C1 × C2 × . . .× Cn.

One crucial physical variable in building energy consumption analysis is lighting. A particular
lighting configuration will be model as a scalar field l : E → R>0, which assigns to a given point
in the environment a positive light intensity. Then, we define L as the set of all the possible
lighting assignments such that l ∈ L.

Another variable of interest in the building’s energy performance is the indoor building tem-
perature. Similar to lighting definition above, we model temperature as a mapping, k : E → R,
which assigns a temperature to every point in the environment. K represents the set of all possible
temperatures mapping such that k ∈ K.

Also, we will include in the physical state space of a building the plug load (electrical con-
sumption). We assume that there are m plug outlets placed in the environment. We will denote
the configuration of each plug outlet in the building as P j = E × R>0 where 1 ≤ j ≤ m and E
represents the location for each of m sockets, and R>0 represents the plug load (a nonnegative
scalar) used by the outlet. Then, P = P 1 × P 2 × . . .× Pm represents the joint configuration of
all the plug loads in a building.

Assembling together lighting, temperature and plug load, we define the building’s physical
state-space as X = C ×L×K×P . A state x ∈ X will be represented by the tuple x = (q, l, k, p)
where q ∈ C, l ∈ L, k ∈ K,and p ∈ P .

The building’s physical state space will be modeled as a series of static snapshots denoted as
x. The building’s state will change over time as occupants move inside the building and interact
with the building’s appliances. The time interval for energy analysis is denoted as T = [0,∞)
which will help model changes over time. A state trajectory is expressed as x̃ : T → X. The value
x̃(t) represents the building’s state at time t and x̃(0) is the state of the building at the start of
the analysis (t = 0).

2.2 Wasteful Energy States and Trajectories

In this paper, we are interested in detecting wasteful energy states in the physical state space
that arise due to the occupant’s behavior. Some examples of such states are a) high level of plug
load consumption in a room with no or few occupants, b) An room with high light levels but
is empty, and c) a measured discrepancy between the indoor temperature and the comfort level
of the occupants. We will denote the set of wasteful states as Xw ⊂ X. These examples and
definitions lead to our first problem of interest.

Problem 1: Characterization and Classification of Wasteful States
Create a representation for the set of wasteful states, Xw, and detect if a particular state x
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belongs this set of wasteful states.
Furthermore, in building’s energy analysis, another aspect of interest is finding out whether a

particular trajectory is wasteful in its energy consumption. The problem of trajectory evaluation
differs from Problem 1 as defined above since it takes into account the sequence of events. To
illustrate this subtle difference, consider the plug load of an appliance that has been active and
consuming energy for a while. In this case, no individual state x in the trajectory x̃(t) belongs
to Xw, but the prolonged duration of this activity may be a cause for concern regarding energy
consumption. This difference leads to our next problem of interest.

Problem 2: Wasteful Trajectory Classification
Given a physical space trajectory, x̃, determine whether it is energy wasteful.

2.3 Action Spaces, State Transition Functions, and Policies

The action space, denoted as U , represents the actuation components of the system. Buildings
have several actuated elements. For example, in the context of HVAC systems, action spaces
for temperature control have been widely studied in the control literature (Afram and Janabi-
Sharifi, 2014; Åström et al., 1993) where the goal is to control the building’s temperature through
thermostats. In our modeling, a concrete actuation example is lights that can be turned off and
on automatically. In this case the actuation space is Ul = {on, off}. Another example is LED
lighting (Pimputkar, Speck, DenBaars, and Nakamura, 2009) which enables a fine-grained control
of lighting intensity. In this example, the action space can be modeled as Uled = {0, lmax}, where
0 means the state where the light off and lmax is the maximum light intensity possible. Similarly,
we can also model the situation where appliances can be remotely controlled.

Action spaces involving occupants’ behavior in buildings are harder to obtain since it is difficult
to tightly control the occupants and force them to change their state since their behavior is
autonomous. Nevertheless, there has been work in the Robotics literature that attempts to
moving bodies by subtly altering their environment (Bobadilla, Sanchez, Czarnowski, Gossman,
and LaValle, 2011; Bobadilla, Martinez, Gobst, Gossman, and LaValle, 2012). These action
spaces for occupants are useful in evacuation and emergency scenarios (Helbing, Farkas, and
Vicsek, 2000; Gonzalez, Hidalgo, and Barabasi, 2008).

We model changes in building’s states when actions are applied using an appropriate action
space U and a transition function f : X × U → X. One of the purposes of this paper is working
toward a proactive approach to reducing energy waste in buildings. To move towards this goal, we
will search for policies that indicate what actions to take in a particular state. An example in the
literature of plans for building energy performance are policies for controlling HVAC systems.
Our approach differs from HVAC control systems since we try to: 1) characterize and detect
wasteful energy states, and 2) proactively prevent them.

As occupants move inside the building visiting different parts of it and interacting with appli-
ances, a trajectory in the state space x̃ is generated. A trajectory is considered wasteful, if, for
example, the occupant forgets to turn off appliances when moving to a different region. Some
trajectories could be slightly less wasteful if appliances were active for only a part of the occu-
pant’s trajectory. Since some trajectories are more wasteful than others, we are interested in the
following problem:

Problem 3: Trajectory Comparison
Given two trajectories x̃ and x̃′ and their energy waste information, determine which of the two

is the most wasteful
For the next problem, suppose that a building energy expert has given a model trajectory ỹ

that outlines an ideal occupant’s behavior in terms of energy consumption. Therefore, we want to
extend the problem 3 to rank a group of trajectories when compared against a model trajectory.

Problem 4: Trajectories Ranking
Given a set of trajectories x̃1, . . . , x̃p and their wasteful energy information, calculate how they

rank compared to a model trajectory ỹ.
Related to the problem above, suppose that we are interested in grouping or clustering different

trajectories according to their energy behavior. Solving this problem can find applications in
scenarios where we have a set of apartments in a building, and we want to identify similar
activities and perhaps detect outliers, which indicates unusual patterns. This motivation leads
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us to the formulation of our next problem of interest:
Problem 5: Trajectory Clustering

Given a set of p trajectories x̃i with i ∈ {1 . . . p} group them accordingly to their similarity.
We are also interested in obtaining energy saving policies (also known as plans in the Robotics

literature) as a mapping from the physical space states to actions, π : X → U , that will enable us
to model problems of interest regarding energy consumption in buildings. A sample of a policy is
to turn off the lights inside a room when it is empty. This example motivates our next problem
of interest:

Problem 6: Finding Energy Saving Policies
Find suitable policies, π, that attempt to avoid or steer the system away from energy-wasting

configurations.
In the following sections, we will propose initial solutions for the six problems formulated above.

3. METHODS

3.1 Decomposition of the Environment

To solve the problems formulated above, we will first decompose the environment or workspace
into a set of regions that can be easily monitored. The workspace, W, is divided into a finite
set of m regions R = {R1, R2, . . . , Rm}. The set of regions R is a partition of the environment
E =

⋃
iRi. For each regionRi ∈ R we define an occupancy count that denoted by o : R → N∪{0}.

We will also include in each region information about lighting, temperature, and plug load as
defined in the problem formulation.

3.2 Sensing

We will monitor the quantities of interest (occupancy, lighting, temperature, and plug load) using
the region decomposition R. More concretely, we will gather this information through a sensor
network described below. Since the state space formulated in section 2 may be hard to monitor,
we will instead simplify our state space to a smaller, more manageable information space.

Although in our problem formulation, we have initially defined the output of the light sensor,
l, as a positive real number, it may difficult to measure precisely this value through sensors.
Therefore, as an alternative, we define the function, hl : L → Yl with Yl = {on, off}. This sensor
mapping associates a value that is either 0 (light is off) or 1 (light is on) to the set of all possible
light values (L) This mapping can be estimated through inexpensive lighting sensors.

The sensor network will also include sensors used to measure temperature. The sensors have
a range from 0 to a max temperature, kmax and their observation space is modeled as Yk =
{0,4k, 24k, . . . , kmax} where 4 is the resolution of the sensor. The sensor mapping hk : K → Yk
approximates the continuous-valued output of K to the discrete range Yk that can be measured
by inexpensive sensors.

Similarly, for modeling plug load, the observation space is Yp = {0,4p, 24p, . . . , pmax} where
4 represents and the sensor mapping is defined as hp : P → Yp.

Finally, the occupant count is modeled as a function ho : E → N∪{0} where N∪{0} represents
the number of occupants in a region. Counting information can be obtained through several
modalities such as fixed cameras (Kettnaker and Zabih, 1999) and Wi-Fi signal strength (Depatla,
Muralidharan, and Mostofi, 2015). However, sensor modalities, especially cameras, can invade
the privacy of the occupants making this sensor unsuitable for use in residential setups. Instead,
in our work, we will use non-invasive means to track occupancy in regions (Bobadilla et al., 2011;
Tovar et al., 2014) by using two infrared distance sensors placed side by side at the boundary of
two regions. If the initial count is known, the crossing events can keep an updated count in the
regions (Bobadilla et al., 2011; Erickson et al., 2013).

Combining all the observation spaces defined above, the joint observation is Y = Yl × Yk ×
Yp × Yo. Let T = [0, t] represent a finite time interval with t the final time of the interval. We
define an observation sequence as ỹ : [0, t]→ Y .

3.3 Hardware

Our proposed sensing solution consists of a low-cost Infrared (IR) sensors, a light sensor, a
temperature sensor, and a wireless communication component which are all placed inside an
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Left: The sensors inside a node (connections removed for clarity). The components of the node are (from left-
hand side moving clockwise): an XBee communications module, a TEMT6000 light sensor, two Sharp 2Y0A02
distance sensors, an Arduino microcontroller, and a TMP102 temperature sensor. Right: Kill A Watt energy
consumption monitor.

enclosure. From this point onward, we will refer to these integrated sensors as ”nodes”. The
inside view of a node is presented in Figure 1. Physically separated from the nodes, but also
incorporated in the system, we use Kill A Watt energy usage monitors (see Figure 1). These
usage monitors will collect plug-load information of appliances and electronic devices connected
into them.

To track the region an occupant is crossing into, we place parallel beams implemented using
paired IR emitter-sensors. Depending on which beam is occluded first, we can detect the crossing
direction. Each node contains an 8-bit Arduino Uno microcontroller which processes the data
collected from the temperature, distance, light, and occupancy sensors. Results are sent through
a Zigbee, XBee wireless Radio-Frequency (RF) module (Han and Lim, 2010; Gezer and Buratti,
2011). Each of these modules cost under 30 US dollars. We connected the XBee modules using
the DigiMesh networking protocol, which supports peer-to-peer topology without a lot of protocol
overhead and optimizes power consumption for longer deployment times. Other features of the
protocol that are useful for our system is that the network is self-healing and automatically
expandable, allowing for quick and straightforward deployment.

Each node sends its data through the XBee module to a single receiver connected to a central
computer. This computer has a script that aggregates and stores the sensor data. Each sensor
reading has an associated a time stamp.

For the light sensor, we used a SparkFun TEMT6000 Ambient Light Sensor Breakout board.
This sensor transmits to the Arduino a voltage reading proportional to the intensity of light in
the room. We placed the sensor outside of the node enclosure and oriented to face the region’s
primary light source as illustrated in 2. We calibrate the sensor based on the intensity of light in
the area to account for factors such as artificial light strength and window light in the room.

For temperature measuring, we use the Texas Instruments TMP102 Digital Temperature Sensor
Breakout board. This sensor is located outside of the box enclosure to detect the ambient
temperature accurately.

Our hardware design is intended for easy deployment in residential, commercial, or business
settings. The nodes can operate using a battery or connected into a plug. The wireless network
protocols require little configuration. The components chosen have a small form, are low-cost
and easy to use compared to expensive sensing and camera systems (Agarwal et al., 2010). We
estimate that the cost for a single node is around $115 US, this includes the cost of batteries,
cables, and the breadboard. This price will decrease if the components are bought in bulk for
large-scale deployments.

3.4 Classification of Wasteful States

In this section, we will collect data from the hardware setup to identify the wasteful or energy
inefficient states over some time. These wasteful states are those periods when, for instance,
energy is consumed by certain appliances and lights are turned on, but there are no occupants in
a region. Our hardware setup will help identify these states by capturing light usage, temperature,
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Placement of a node at a crossing of two regions. The light sensor is placed outside, pointing towards the light
source of the region.

power consumption, and occupancy information.
We will model the space composed of these four attributes (occupancy, light, temperature,

power consumption) as a 4-dimensional hyperrectangle denoted asH. Subsets ofH are considered
wasteful states as defined by energy consumption experts. As an illustration, consider a wasteful
state that can be detected if the parameters of the hyperrectangle exceed some threshold set by
an expert.

Let λthk , λthl λthp ,λtho be the defined thresholds for temperature, lighting, plug-load and occupant

count, respectively. The region Hl = {(k, l, p, o) ∈ H|l > λthl } is defined as the wasteful space
for lighting. Similarly Hk = {(k, l, p, o) ∈ H|k > λthk }, Hp = {(k, l, p, o) ∈ H|p > λthp }, Ho =

{(k, l, p, o) ∈ H|o < λtho } are the wasteful spaces for temperature, plug load and occupant count,
respectively. A wasteful region in the hyper-rectangle is the intersection, Hw = Hl∩Hk∩Hp∩Ho.
Let a function fo : C ×R → N ∪ {0} give the occupant count in a region Ri ∈ R based on the
configuration of the occupants in the building q ∈ C. Then, the wasteful state space for a region
Ri is defined as:

Xi
w = {(q, l, k, p) ∈ X|(l, k, p, fo(q,Ri)) ∈ Hw}. (1)

Using the nodes 3.3, we can obtain this information by placing the sensor node at the boundary
between regions. The nodes will detect people going in and out of a region and how many people
are currently inside. The nodes also have a light sensor that detects and record when turned
on or off as well as the time of this event. Finally, the Kill A Watt Meter will record energy
consumption in a particular region (in kilowatts per hour (kWh)).

We will store the information and analyze it to help identify wasteful states. For instance, if
node 2 and node 3 are placed at the entrance and exit of the region 2, respectively, they can
determine the region’s number of occupants at any given point in time. If from a period starting
in time, t1 and ending until time t2, there are no occupants in the region, the is light on, and
energy is being used (determined by the energy consumption device) then this period will be
classified as a wasteful state.

3.5 Wasteful Trajectory Classification

In our second problem of interest, as formulated in section 2.2, is the identification of wasteful
trajectories. These trajectories occur, for instance, when occupants move between regions pro-
ducing wasteful states. As an illustration, suppose that there is some occupant in the region
R3, and then continues to another region, R4, but he leaves the light or some appliances on R3

and then moves to R3 and also lefts a light turned on. This occupant has produced a wasteful
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trajectory that should be identified by our methodology.
We define a region trajectory a sequence of visited regions. We we define a region trajectory as

a sequence of regions r̃ = 〈Ri : i ∈ R〉. We also associate a score, s(r̃), to each trajectory, r̃ as
follows:

s(r̃) =
∑
Ri∈x̃

[hl · l(Ri) + hk · k(Ri) + hp · p(Ri)]. (2)

We consider a trajectory wasteful if the score is greater than a defined threshold. To solve the
problem of classifying wasteful trajectories, we collect information using the hardware system
described before. First, we define a period of interest to analyze wasteful trajectories, which
starts at time t1 and ends at t2. After this, we obtain the occupancy count for the regions from
the sensor data. We identify any changes of occupancy from any two given regions Ri to Rj and
determine if Ri empty. If Ri is empty; we check if any lights or appliances were left turned on.
If they were, we would classify this trajectory that spans from t1 to t2 as a wasteful trajectory.

3.6 Trajectory Comparison

In the next problem of interest, we want to compare a given trajectory against an ideal trajectory
in terms of energy consumption. We define an observation trajectory ỹ = yR1

, yR1
, . . . , yRf

that
is generated by visiting regions x̃ = R1, R2, . . . , Rf . Here, we are assuming that that we we are
given a trajectory as ỹ′ = yR1 , yR1 , . . . , yRf

over the same regions which has close to ideal energy
usage. In our notation yR1 represents the sensor readings at region R1. This ideal trajectory ỹ′

can be proposed, for example, by consulting building energy consumption domain experts. We
use the absolute differences in the sensor values distance between the trajectory, ỹ, and the ideal
trajectory, ỹ′. This is written as d(ỹ, ỹ′) =

∑
Ri∈x̃ |yRi

− y′Ri
|. This distance score allow us to

quantitatively measure the difference between two trajectories by comparing a given trajectory’s
sensor readings against the desired behavior and report back how big is this difference.

3.7 Trajectories Ranking

In this subsection, we extend the previous problem from a comparison between two trajectories
to comparing a set of trajectories. More concretely, we want to rank (order) trajectories based
on their energy efficiency. We use a machine learning based ranking method proposed in (Zhou,
Weston, Gretton, Bousquet, and Schölkopf, 2004) based on kernel methods. To do this rank-
ing, we need a set of training trajectories with known the ranks. We compute weight-matrix
based on pairwise distances using the distance d defined previously. These source trajectories
induce a ranking on the unknown trajectory ỹ and are included in the known set of trajecto-
ries (Karatzoglou, Smola, Hornik, and Zeileis, 2004b). This process converges when the ranking
is computed for a large number of trajectories. After this training stage, the new trajectories will
receive an accurate ranking score.

3.8 Trajectory Clustering

In the next problem of interest, we have a set of p sensing trajectories x̃i with i ∈ {1 . . . p},
and we want to group them according to their similarity. This problem can have applications,
for example, when comparing similar units in an apartment complex to understand patterns of
related behavior.

To obtain this grouping of trajectories, we will use kernel based clustering (Shawe-Taylor,
Cristianini, et al., 2004). By using the kernel method in clustering, we could operate in an
implicit feature space without the need of computing explicitly the coordinates of our data (in
our case sensing trajectories). This process is done by calculating inner products for all the
pairs of data in the feature space (Shawe-Taylor et al., 2004). This approach has been applied
successfully to several domains by creating different kernel functions for images, strings, trees,
and text.

In particular, we just need to define a suitable kernel function that computes the similarity
between two trajectories k(x̃, x̃′). This kernel function k(, ) will be created as a linear combination
of kernels that compare the components in lighting kl(, ), temperature kt(, ), energy consumption
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ke(, ), and occupancy ko(, ). Therefore, the kernel function to compare the trajectories will be
calculated as k(, ) = 0.25 ∗ kl(, ) + 0.25 ∗ kt(, ) + 0.25 ∗ ke(, ) + 0.25 ∗ ko(, ).

Each of the kernels will be calculated as follows. kl(, ) is the Euclidean distance between two
Rm vectors (one for each trajectory) where each of the components corresponds to the energy
consumption throughout the trajectory for each of the m regions. The kernels for the other com-
ponents of the trajectories are similarly computed as Euclidean distances from vectors containing
information for each of the regions. Once we defined the customized kernel for comparing a pair
of trajectories, we can apply the kernel k-means algorithm to group them (Dhillon, Guan, and
Kulis, 2004).

3.9 Finding Energy Saving Policies

We want to propose approaches to eliminate energy-wasting behaviors, as defined in Section 2.
Proposed policies could be enforced through our system to attempt to remove automatically
waste. Ideally, we want to suggest policies to help prevent energy waste provided that we have
actuation control on some of the elements of the building, such as plug load consumption, light,
and temperature.

Policies are defined as a mapping between the state space and the action set π : X → U . For
instance, a light can be turned off automatically if a region has no occupants at the time. A
similar principle has been used in systems that use passive infrared systems to conserve lighting.
Another example of a policy would change HVAC values in buildings based on occupancy.

If not actuated components are available, another way to prevent energy waste is to apply
the methodology presented and then show the results visually to the occupants. This procedure
would be a subtle way to suggest building occupants save energy.

4. RESULTS

In this section, we present the results of our deployment of nodes in a single-story residential
home. We will also show results of computations for the problems defined in section 2.

4.1 Experimental Setup

The designed hardware nodes (shown in Figure 1), were placed in a single-story residential home.
A pair of IR beams in the nodes allowed us to detect the crossing direction of an occupant moving
from one region to another. Our hardware setup differs from previous research that has used
single beams which cannot detect the crossing direction such as (Zappi et al., 2010).

Figure 3 shows the placement of the nodes throughout the home. Each blue box represents a
node placed at a crossing between different rooms. We divided the house into 5 regions (R1-R5)
with 6 nodes used to partition the space in regions. The front part of the house was monitored
by node 1, and crossing this node leads into R1 (living room). Connecting R1 to R2 is node 2
connects. Region R2 contains a bathroom, bedroom, and a small corridor. The small corridor
of R2 leads to R3, which is a home office. Across R1, node 4 is placed to connect with R4

(kitchen/dining room). Region R4 is limited by node 5 that connects to R5, a multipurpose
room in the back of the house. The last node, 6, monitors the connection that leads to the back
entrance/exit of the house.

Residential location where the experiment was conducted. Node locations are shown in blue and the corresponding
partitioned regions in red. The red dashed lines represent a partition that is created by the IR sensor beams.
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A crossing event by a resident in front of one of the nodes is shown in Figure 4. The nodes
are programmed to determine to which region the occupant is moving. A script at the central
computer calculates how many occupants are in the region. In figure 4 an occupant is leaving R2

and entering R3, this crossing is detected by node 3. The distance sensor a will be activated first
(as it is the closest to R2, the region the occupant is leaving), followed by activation of distance
sensor b (closest sensor to R3, the region the occupant is entering). Therefore, this occupant
crossing for the occupant direction is stored as a → b on the hardware node. The occupancy
count of R3 will increase by 1 the occupancy of R2 will decrease by 1.

The other components of the node are the light sensors and the kWh plug load monitors. The
light sensors were located outside the enclosures pointing towards the ceiling lights as shown in
Figure 2. We use five light sensors used in this experiment. The first wan was located on node
2 to monitor hallway light in R2, other was situated on node 3 to sense lighting in R3, another
was placed on node 4 to monitor lighting in R1, another on node 5 for recording lighting in R4

and finally one was located on node 6 to detect light in R5.
The conducted experiment lasted around twenty hours, collecting occupant data using our

hardware setup. In the experiment, we contrasted the found energy consumption data with
consumption data from the local electrical company, Florida Power and Light (FPL), to perform a
comparison of our results with actual energy expenditure. The collected data addresses problems
1 and 2 from section 2. KWh consumption information was only collected for region 3 due to
hardware availability. For analysis simplification, we will analyze data from regions R3, R4 and
R5 since they had the most reliable sensor readings during the deployment.

4.2 Classification of Wasteful States

As shown in Figure 6, noon (12 PM) was a peak for energy consumption( with 3.15 kWh), at that
time the outdoor temperature was around 23◦ C. This time in highlighted in the data presented
in Figure 5. From 12 PM to 1 PM region three (R3), had 2 occupants and the temperature
was 20◦ C. During the same period, both R4 and R5 were empty with a temperature of 22◦C
and 23◦C respectively. The dots on Figure 5 show whether lights are turned on at that given
time. In the figure, it is shown that see that lights were on in R4 and R5 for most of the period
under consideration; however, these regions were empty. This results show that the regions are
classified as a wasteful state as formulated in problem 1 above.

We have identified another wasteful state around 7 PM. During this time, the three regions
monitored are empty for most of the time; however, the lights are on during this period. These
states are classified as wasteful since they were empty and had lights on. The data from FPL
in the same period (Figure 6) also shows that there were some appliances used causing excessive
energy consumption at this time, confirming an overall wasteful state in the household.

An experiment where a resident is crossing in front of a node is shown. Drawn red lines represent the beams
emitted by the IR distance sensors. The placement of the node is indicated with a green circle.
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4.3 Wasteful Trajectory Classification

Beyond classifying wasteful energy states, we have also identified wasteful trajectories, as formu-
lated in section 2.2 using the data collected from our experiments. For instance, during period
from 5 AM to 8 AM, as shown in the Figure 5, R4 is empty. A detailed view of the activity
during this time indicates that an occupant was moving throughout the house and turning on
lights. The occupant entered R4 coming from R1, turned the light on, then entered region R5

and turned on a light. Therefore, this occupant created a wasteful trajectory for this period while
traveling from regions R1 → R4 → R5.

The results of these studies in this particular residence can also be used towards the solution
of problem 5, where we can suggest policies that help save energy.

4.4 Trajectory Comparison and Ranking

To test our approach for trajectory ranking, we computed a set of rankings for some sample
temperature data trajectories by using the R Programming language and obtained the results
presented in Table I. Notice that the rankings presented are for temperature only. The same
approach will work with other the other variables (e.e lighting and energy consumption). In our
computed experiment, the rankings compare temperature trajectories against an ideal tempera-
ture trajectory. In our results, the fourth trajectory is the highest ranked trajectory since it is
the most similar to the suggested trajectory.

Crossing data from 3 regions, dots on the temperature line shows whether a light is on/off in a region. Notice also
that any time ”skipped” in the x-axis indicates that no changes in that period of time.
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Data obtained from the electric company along with outdoor temperature. Yellow line is represents the average
kWh consumed by the home office.

Trajectories of Occupants using Temperature Data Distance Rank
Ra Rb Rc Rd Re

1 30◦ 30◦ 30◦ 30◦ 30◦ ideal
2 27◦ 26◦ 24◦ 26◦ 27◦ 1.19587 3
3 28◦ 28◦ 25◦ 22◦ 21◦ 1.393739 4
4 30◦ 30◦ 30◦ 30◦ 31◦ 1.001249 1
5 30◦ 30◦ 30◦ 30◦ 32◦ 1.042977 2

Table I: Ranking 4 temperature trajectories against a suggested trajectory. Occupancy movement is captured in
the 5 regions (Ra −Re) and the corresponding temperature values are recorded (in C◦). The ideal trajectory, 1,
is shown in blue and the highest ranked trajectory, 4, is shown in red font.

4.5 Trajectory Clustering

The clustering ideas were also tested with the data collected from our deployment. We tested our
methodology only with temperature sensor data due to their availability, but the same procedure
can be tested with all the data simultaneously.

We took a temperature time trajectory of size t = 20 for each of the 5 regions monitored, as
illustrated in Figure 7. Since we had only 5 areas in our physical experiment and we wanted to
test if our approach can be tested with more trajectories, we added 25 simulated trajectories for

Temperature data from regions 1 to 5, a set of to indexed observations are presented.

International Journal of Next-Generation Computing, Vol. 10, No. 2, July 2019.



134 · Triana Carmenate, Md Mahbubur Rahman, Diana Leante, Leonardo Bobadilla and Ali Mostafavi

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
9 6 6 7 2

Table II: Cluster sizes.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
15.796422 9.895883 13.828617 33.007514 5.966250

Table III: Within-cluster sum of squares.

a total of 30 trajectories to be clustered. We used the R package kernlab (Karatzoglou, Smola,
Hornik, and Zeileis, 2004a) to test the clustering idea. In particular, we use their implementation
of kernel k-means (Dhillon et al., 2004). The kernel k-mean algorithm is similar to the k-means
algorithm but includes kernel weighting. This algorithm uses the kernel trick to help capture
clustering relationships that are not linearly separable. We run the clustering procedure with
the 30 trajectories and propose an initial number of 5 clusters. The results of the clustering
procedure are shown in Tables II and III. Table II shows the number of elements assigned to
each cluster and Tables II presents the sum of squares within each cluster.

4.6 Finding Energy Saving Policies

To find policies for energy saving, suppose that we can control the lighting components in each
of the regions. In this, case, the action space would be U = U1 × U2 × . . . × Um where each of
the components Ui of the joint action space represent a particular light.

We can, for example, propose a simple reactive policy (LaValle, 2006) that will react immedi-
ately to changes detected through sensors. These policies have the form π : Y → U where Y is
an observation space. As an illustration of a reactive policy, we can model a situation where the
lights turn off based on occupancy. In this case, the action space can be the lighting components
of the region of interest U1 = {off, on}, that can turn off lights in the region 1 for example. The
observation space that this policy can use is the occupancy counting Yo, which tells the number
of occupants in a region. The policy will have the following form:

π =

{
off if Yo = 0

on otherwise
(3)

Another type of policies supported by our formulation is time feedback policies (LaValle, 2006)
that will execute actions at specific times independent of sensing or building’s state. As an
illustration, consider a policy that will ensure that all lights on a room are turned off past
midnight. This type of policies can model a scenario where occupants forget to turn the lights in
a room, and the policy will ensure that the lights are off at a reasonable time. More concretely, let
T = [0, tf ] the time interval of the building execution monitoring, where tf is the final monitoring
time. This value can be preset or can be set to tf = inf if we are modeling a continuous monitoring
time interval. Let, as in the example before, U1 = {off, on} the action that can turn off lights
in the region 1. The policy will have the form π : T → U1 and can be defined as follows:

π =

{
off if 0 : 0 6 T 6 5 : 00

on otherwise
(4)

where 0 : 0 6 T 6 5 : 00 is the time interval from midnight to 5 AM, where lights should be
off.

5. CONCLUSIONS AND FUTURE WORK

This paper formulated several problems related to detecting and preventing occupant behaviors
leading to energy wastage. The problems were defined after formally defining a physical state
space that represents a building and its features, which include lighting, temperature, plug load
consumption, and occupant counting. Using these features, we were also able to define a series
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of physical state spaces of a building that evolve to produce a state trajectory. The first problem
presented was to characterize wasteful energy states in the physical state space of the building,
and the second problem was to describe associated wasteful trajectories. Action spaces were
also presented to explain occupant behaviors, such as turning lights on and off. The next two
problems were related to understanding this information and rank it. Our formulation led us to
our final problem, the creation of energy savings plans to be able to suggest occupants for energy
savings.

We defined a state space can realistically capture occupant and energy usage information from
a building. This reduced space was presented to implement a case study utilizing our hardware
nodes consisting of several inexpensive sensors. Using our sensor node system, we were able
to identify several wasteful states and a wasteful trajectory that occurred during the execution
of the experiment. We presented a simple implementation that is easy to duplicate in future
investigations for various settings. Besides its low cost, it is also non-invasive as it does not rely
on cameras or identification of building occupants.

We believe that the approach presented in this paper can contribute to efforts toward automated
building operation and smart buildings. Although the majority of existing studies in these areas
center on automating the operation of building systems (such as HVAC), our research has a
different objective and is geared towards modeling, capturing, and analyzing occupant behaviors
for the proactive monitoring of buildings’ energy waste. Our results could lead toward more
adaptive and dynamic approaches for automated building energy control.

Our near term work on this topic will focus on improving the accuracy of sensed data. We
believe that there will be a trade-off between the quality of the obtained data and the price of our
nodes. We will further study these trade-offs and try to test the accuracy of our measurements
against more precise instrumentation. We will also study simple filtering algorithms that can
detect outliers and false alarms and help to obtain better estimates from the sensor data. Another
potential direction for future work is incorporating uncertainty in our models. In our hardware
setup, although sensing output on lighting, temperature, and energy consumption may present
temporary deviations, this may not alter the performance of our system dramatically. On the
other hand, occupancy count errors may have a more significant impact. In our approach, we
have calibrated and tested the directional detection sensors that are used for occupancy tracking;
however, an improvement would be including error models to have reliable estimates.

Network protocols will take a more prominent role as we move our ideas from small residential
buildings to commercial ones. Although our network setup was enough for the case study and we
were able to relay information to a central location, if the area of energy monitoring is large, then
different network topologies need to be proposed to accommodate this requirement. Additionally,
the information that we are sending between the nodes is simple (temperature readings, lighting,
crossings) and will likely not generate excessive traffic overhead.

Another compelling direction is finding the right locations for node placement. In our experi-
ment, we placed our nodes based on their availability and the need to partition the environment
into the regions of interest. However, in residential and commercial buildings, different placement
of nodes will be necessary to cover the area of interest for energy monitoring. Related to this
problem, we may need better spatial resolution, if certain behaviors need to be monitored with
more details instead of at the region resolution.
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