
A novel approach for services management and
selection in intercloud system

Lohit Kapoor

Sreenidhi Institute of Science and Technology, India, Email: lohitkapoor@sreenidhi.edu.in,

Seema Bawa

Thapar University, Patiala, India, Email: seema@thapar.edu,

and

Ankur Gupta

Model Institute of Engineering and Technology, Jammu, India, Email: ankurgupta@mietjammu.in

Service deployment, orchestration, provisioning and SLA-compliance present a challenge in intercloud environ-
ments. A comprehensive and unified service management framework is required so that service providers and

consumers can leverage the intrinsic benefits of services deployed across different cloud service providers exploit-

ing latency and cost advantages while ensuring scalability, load-balancing and high-availability. This research
paper presents architecture for unified services management in the intercloud environment allowing users seamless

access to services through an optimal service selection mechanism providing on-demand ranking on several quality

parameters. Experimental results establish the effectiveness of the proposed scheme.

Keywords: Intercloud, Services Management in Intercloud, Customized Service Ranking and Se-

lection

1. INTRODUCTION

Services management in an intercloud environment encompasses the deployment, configuration,
provisioning, operation and portability of cloud resources across different Cloud Service Providers
(CSPs). The intercloud provides a strong motivation for the deployment of large-scale services
which need to cater to diverse geographical locations of their users besides optimizing latency
and cost while ensuring quality-of-service and complying with service-level agreements. Thus,
a mechanism which allows users customized and seamless access to services in an intercloud
scenario is required. A major concern for any inter-cloud services management framework is the
orchestration of services across CSPs and allowing end-users fine-grained control over how they
select and consume services without knowing the deployment and location details [Petcu et al.
[2013]].

The intercloud has emerged as a logical evolution of the cloud computing paradigm allowing
for the creation of a community of CSPs to offer greater value-add to the end consumer while
facilitating enhanced elasticity, ensuring QoS even at peak loads, service/data portability and
migration and collaborative services for mutual benefits. For small and medium CSPs this model
is fairly intuitive from a resource sharing perspective [Gupta et al. [2011]]. For Large CSPs the
intercloud offers them the possibility of offering services in the geographical proximity of their
customers and improving responsiveness. The intercloud also alleviates the issue of data/vendor
lock-in. In any case end-users want flexibility to shift from one cloud to another or from one
service to another, due to various reasons like performance degradation, high cost, legal issues
etc. Service portability or redeployment can solve these issues [Petcu et al. [2013]][Krintz [2013]],
but a large numbers of CSPs makes it difficult for service providers and end users to decide which
CSP will be a best-fit for their requirements.

Cloud brokers have emerged as intermediaries between service providers, users and the CSPs
[CCB]-[Lucas-Simarro et al. [2013]]. However, current cloud brokers do not provide advanced

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 229

service management capabilities across CSPs to allow end users to select the service instances
that best meet their requirements [Lucas-Simarro et al. [2013]]. To enable such a selection
mechanism, detailed service monitoring on various performance parameters over sustained periods
shall be necessitated. Traditional performance management techniques mainly focus on vm-level
monitoring within a CSP, but in the intercloud scenario we need to have a complete performance
view of services across CSPs. Clearly a more comprehensive service-level monitoring mechanism
is required to take informed decisions on service selection which meet user-defined criteria.

Consider a Service Consumer (end user) who requires access to a data-intensive service with
constraints over latency and/or data transfer costs. Therefore it is logical to choose the CSP
whose data-center (where the service resides) is located closest to the consumer of that service.
Similarly, for compute-intensive services a user would like to choose a service instance which
offers the lowest cost while delivering acceptable performance. Thus, the nature of services and
the service deployment models play an important part in service selection. However, the service
selection process in an intercloud environment can be expected to throw up some counter-intuitive
results. This is because network and service performance can vary significantly over time-zones
and periods of peak-usage [Lucas-Simarro et al. [2013]][Wu and Madhyastha [2013]]. There is a
need to focus on how a service is performing over a period of time and at specific times. Moreover
a performance comparison between different service instances would also provide greater insights
for service selection facilitating delivery of the best possible cost to performance proposition to the
end user. At the other end of the spectrum are the Service Providers who need insights into the
consumption pattern of their services to facilitate dynamic deployment and scaling to maximize
revenues while meeting customer requirements. Facilitating optimal service provisioning and
consumption is therefore non-trivial and a major challenge in intercloud environments.

This research paper proposes a comprehensive Unified Services Management Framework for the
intercloud environment - the “Services Cloud (SC)” , a distributed trusted third party framework
which encompasses brokering services, service performance management and a service ranking and
selection mechanism for end-users. The SC receives users request, provides a customized ranking
of various available services (across CSPs) and allocates the service based on user selection.
Further, in the case the user finds the services not meeting their expectations, it can select a
different service instance on the intercloud. Moreover, a service provider can also initiate a
migration of a service instance to some other CSP to better meet its SLAs with the end users.
The aim of the proposed framework is to enable the users to consume customized services as per
their choice in the intercloud ecosystem and present them a variety of services options which best
meet their requirements.

The main contributions of this paper are:

—Proposes a Services Cloud for managing services in an intercloud environment.

—Presents a service ranking mechanism in an intercloud based on detailed performance moni-
toring and historical analysis.

—Presents a fine-grained control mechanism to the end users for optimal service selection based
on different parameters.

—Presents model of automated service scaling and deployment for service providers in an inter-
cloud based on dynamic service consumption patterns.

The rest of the paper is organized as follows: section 2 presents the background and related
work while section 3 illustrates the use-cases for service deployment and consumption in the
intercloud. The System Model of the proposed Services Cloud is described in section 4 with
details of operation, modeling of services and performance metrics considered. Section 5 contains
the experimental setup and presents the simulation results for different experiments conducted.
Finally section 6 concludes the paper and presents some directions for future work.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

230 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

2. BACKGROUND AND RELATED WORK

Intercloud service management is challenging yet essential in deploying the next-generation of
large-scale global services which span multiple Cloud Service Providers (CSPs). Many of current
vendors provide solutions to manage services across multiple clouds. TM forum (TMF) [ICS]
presents a unified service delivery management model which focuses on deployment of federated
services. It builds standards for services in intercloud environment known as Inter-cloud Services
(ICS) which converges towards a singular approach to service orchestration of networks and
data-centers of multiple providers. According to ICS, “Service providers require an integrated,
flexible, automated, service-focused intercloud management system” . As per Forrester Researchs,
Cisco commissioned research on Global Managed Services Opportunity (2009) the demand for
managed “on-demand” services is identified as a key shift in user preferences [MSP]. Therefore the
necessary intercloud infrastructure and middleware required to support service orchestration
across CSPs needs to be in place to realize this market requirement.

Research in intercloud services management is in nascent stage. Existing literature in the
field addresses some challenges of deploying and managing services in an intercloud environment,
but the big picture seems missing. Authors in [Lucas-Simarro et al. [2013]] propose a broking
mechanism in a multi cloud environment which looks at various aspects of pricing schemes,
automatic decisions for service elasticity, optimization and finding the perfect cloud for new
service deployment. However this work does not take into account latency between the service
provider and the consumer which may result in sub-optimal service selection. The work presented
in [Wu and Madhyastha [2013]] figures out the latency benefits for optimal service deployment
and minimizes the service response time to user. The experimental results in this work are based
on only one real-world cloud. Hence, the comparison between implementation of service instances
in different CSPs is not made.

Several brokers exist in literature which can operate across CSPs and focus on specific is-
sues such as interoperability, performance monitoring of virtual machines, data migration and
orchestration. RightScale [RHP] is a real world cloud broker around a middleware which is
adaptable and automated. It analyzes past events for better cloud control, administration, and
life-cycle management of applications across multiple clouds. It relies on monitoring the perfor-
mance parameters of instances of different clouds (in terms of virtual machine performance) but
is service agnostic. Service performance can vary significantly in different production environ-
ments, but RightScale does not provide any mechanism to monitor the performance of different
services across CSPs. Thus, optimal service selection remains a challenge. Zimory [ZHP] cloud
management platform enables cloud brokers to create a cloud eco-system including non-cloud
providers to provide intercloud services. However, it does not provide any scheduling mecha-
nisms or any decision making technique to manage services or aid the end user in selection of
service instances which best meet their requirement. Aeolus [Garg et al. [2013]] is an open source,
Ruby-based cloud management software which allows users to choose between private, public or
hybrid clouds, using DeltaCloud [DC] cross-cloud abstraction library. But it is not aware of
monitoring, scheduling and pricing schemes of different clouds, making it tough for the users to
decide on the most economical service for their workload. Rackspace [CM] cloud monitoring
brokering service lets users monitor its websites whether located in Rackspaces own data centers
or any other cloud and use graphs to analyze trends, outliners and patterns of their allotted servers
but scheduling across CSPs is not handled. Cohesiveft [CHP] provides enterprise-grade
virtualization and cloud migration services. Its main contribution is the transfer of applications
comprising application template, operating system images, libraries and system components,
across private, public or hybrid clouds in an automated manner but service-level monitoring and
fine-grained control over service selection to the user is not considered.

Authors in [Calheiros et al. [2012]] propose a “cloud coordinator” between multiple clouds which
allows customers to dynamically scale their services for optimal performance. The introduction
of middleware cloud coordinator allows a service to improve its performance, reliability and

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 231

scalability. However this model does not consider the dynamic change in market price of resources.
Also, the view is service-centric and not user-centric. Authors in [Itani et al. [2014]] present a
routing technique for managing service collaboration among different cloud providers. It works
for the stability and efficiency of overall routing processes. This protocol deals with the changing
configuration and traffic overheads in real cloud but fails to take decision based on internal
performance of the service. Authors in [Garg et al. [2013]] present a ranking mechanism of
different services in order to provide a comparative view to users to chose a particular service
over another under different use-cases. In this work authors proposes SMICloud Broker which
performs service discovery and ranking on different Key Performance Indicators (KPIs). However
this mechanism does not provide any autonomic technique to redirect the users request in the
case of flash-crowd scenario, fault incidence etc. to ensure minimal SLA violations and revenue
loss to the service provider.

Thus, most of the current cloud brokering mechanisms provide scheduling or routing of service
requests based on monitoring the virtual machines on which the services are deployed. In most of
the cases customers can select, monitor and migrate these virtual instances across CSPs without
having a comprehensive service-view of the intercloud. The service-view of the intercloud is
important to a) optimize service deployment and management for the service provider (auto-
scaling, replication, migration) b) optimize service selection for the end-user (cost, response-
time, QoS-compliance). This research paper provides details of the framework to meet the above
requirements and proposes a Services Cloud (SC) with a services broker which manages service
orchestration and consumption across different CSPs in a seamless manner.

3. USE-CASES: SERVICE DEPLOYMENT AND CONSUMPTION

To better understand the requirements for a Services Cloud for the intercloud the perspectives
of all the entities need to be considered. We identify the following use-cases for the two main
entities in an intercloud; the Service Consumer and the Service Provider:

(1) Service Consumer
Use Case 1: Service Selection
Consider the case where a user wants to execute a job. In the intercloud a large number
of similar services which meet the user requirements may be available. Different services
deployed across different CSPs will have different performance levels and might entail different
costs. Therefore, to select the service which best meets the stated requirements of the end
user is not trivial. The SC should facilitate optimal service selection for the end-user.
Use Case 2: Changing Service Provider
Consider a case where the Service Consumer is not satisfied with the services offered by
the current Service Provider and wants to shift to other Service Provider. The SC should
facilitate seamless service consumption across Service Providers without data lock-in.
Use Case 3: Fine-grained Control
An end-user might want greater control in how it consumes the services. For instance the
end-user might impose cost constraints, time constraints, latency constraints, geographical
constraints or other requirements on service characteristics which the SC should be in a
position to satisfy. The SC should also provide detailed service-related information to allow
the end-user complete control over the mechanism of service selection and consumption.
Use Case 4: Seamless Interaction
An end-user should not be concerned about the location of the CSP which hosts the service
being consumed nor should it be aware of how its service requests are routed and serviced
across the intercloud. The SC should therefore abstract the underlying details of the CSPs
and service deployment from the end-user, which should focus on just selecting and consuming
services through a standardized and seamless interface.

(2) Service Provider
Use Case 5: QoS Compliance

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

232 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

The intercloud is a highly dynamic environment which needs to cater to flash-crowd scenarios
and volatile resource requirements. From a Service Provider perspective it is imperative that
the SC ensures that deployed service instances are continuously monitored and dynamic
load-balancing, fault-tolerance and elasticity be provided to ensure that the Service Provider
agreed QoS thresholds with the end-user are not violated.

Use Case 6: Exploiting SC Locality

Responsiveness of a service is an important performance parameter for any SP. Thus, a SP
needs to be aware of the geographical distribution of its end-users and dynamically deploy ser-
vice instances across the intercloud to improve service responsiveness. A SC should facilitate
such dynamic deployment in response to the geographical location of the end-users.

Use Case 7: Maximize SP RoI

A Service Provider needs specific insights into how its service is being consumed (average and
peak load, user location, average cost) and its performance (response time, reliability, SLA
violations etc.) besides the various service hosting costs across the intercloud to maximize
its RoI. The SC should allow a Service Provider enough control to allow it to optimize its
service deployment strategy.

Use Case 8: Geographical Aware Auto-Scaling

Geographical Location is very important when dealing with varied users requests. Further
Service Provider have the option to deploy services such that they are near to users location.
A Service Provider may need to dynamically scale-up or scale-down service instances in
different geographic regions depending upon the number of users requests form a particular
region. Therefore the SC should provide this facility.

4. SYSTEM MODEL

In this section the detailed system model of the proposed Services Cloud (SC) is discussed. A
Cloud Service Provider (CSP) can have multiple data-centers at different geographical locations.
Data-Centers belonging to a CSP are managed by a central broker which distributes the resource
requests within the CSP. Each CSP participates in a federation of CSPs i.e. the intercloud. The
schematic of the proposed Services Cloud (SC) is shown in Fig 1 and has its own broker for
scheduling services across CSPs. Thus the SC broker talks to individual CSP brokers for de-
ploying/scheduling services across the intercloud. Each service may consist of multiple instances
which can be deployed at any CSP in the intercloud.

Each Service Provider which is desirous of hosting services in the intercloud needs to register
its services with the SC by specifying the service characteristics (name, type, category, cost
etc.), resource requirements, constraints and the deployment policy (fixed or geographically-
aware auto-scaling). There are several standardized service description formats available such as
[SPF][WSD][TF]. Based on the inputs provided by the SP, the SC broker proceeds to deploy the
service to a specific CSP or across multiple CSPs. The SC is also responsible for monitoring all the
active deployed service instances in terms of their performance (load, resource usage, response
times, latency, reliability, availability etc.) over sustained periods of time. There exists several
standard service performance monitoring frameworks in practice [ICS]. This is needed to build a
historical performance profile of each service and its usage patterns. These insights are used both
by the SP in fine-tuning its deployment and provisioning strategies and by the end-user in selecting
the services which best meet its requirements. Thus, the SC is responsible for orchestrating services
across CSPs. Service orchestration can be achieved by using commonly used APIs of different
CSPs. For example Appscale [Krintz [2013]] is a private PaaS which supports and maintains the
commonly used APIs from Google App Engine stack [GCA]. Therefore any app/service which
works on Google App Engine will run on Appscale as well.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 233

Figure 1: Conceptual Model of Services Cloud (SC).

The proposed Services Cloud (SC) architecture for the intercloud environment is depicted in
Fig 2. At a broad level the architecture consists of four entities: a) Services Cloud b) Cloud
Service Providers c) Service Providers and d) Service Consumers. The SC is not monolithic, but
composed of several sub-components. Prominent among these are the user-management module,
services performance monitoring module, services deployment and management module and the
broker module (for routing end-user requests to appropriate/selected service) through the CSPs
broker.

4.1 Major Operations

A) Service Registration
Service Providers (SPs) need to register their service offerings with the Services Cloud (SC)

through a well-defined interface. A service registration request contains complete service de-
scription including generic information, service components, related files and dependencies which
facilitate automated service deployment. Upon successful registration services are reflected in
the central service directory maintained by the SC.
B) Service Deployment

The process of service deployment is based on the resource requirements and constraints of a
particular service. For instance a specific platform may be a dependency for service deployment.
Also, the physical resources (number and desired configuration of virtual machines), their location
and cost ($ per hour per virtual machine) can be important constraints for the SP. In that case
the SC deploys the service at the CSP which best meets the requirements of the SP. The SP
can also enable the dynamic provisioning functionality in the SC, which allows for auto-scaling
(service duplication or provision of additional physical resources) to meet volatile service requests.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

234 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

C) Service Monitoring
Once a service is deployed by the SC, the Service Monitor (a Real-time monitoring Tool)

monitors each service. It obtains the service handle from the service directory and keeps sending
heartbeat messages to the deployed service instance after a pre-defined interval for checking
uptime, availability and response times. It also obtains detailed performance information from
the local service monitor deployed at the CSPs servers which monitor the resource usage of each
deployed service instance. Service monitor also entails keeping track of individual service queues
maintained by the SC. This gives indication of the service load and allows the correlation between
load and service performance to be established. Thus, trend analysis and performance profiling
of each service instance is performed. Thus, a strong basis for service ranking and selection and
further optimization is created by the service monitor.
D) User Registration

User registration involves account creation and generation of authentication credentials. The
user management module maintains a profile for each user with services consumed, feedback/rating
and billing information included.

Figure 2: Schematic of intercloud service management system.

E) Service Ranking and Selection (SRS)
Since detailed performance profiles of each service instance are created by the service perfor-

mance monitoring module it is straightforward for the SC to rank comparable services (belonging
to the same category). The service performance monitoring module is also responsible for pro-
viding feedbacks to Service Analytics for evaluating different services. This is done through a
weighted formula based on different parameters such as latency, reliability, availability and user

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 235

rating while remaining within the overall cost constraints specified by the consumer. Hence Rank-
ing Algorithm ranks the services in ascending order keeping the parameters into consideration.
Although the SC maintains these internal rankings based on the weighted formula, the end-users
are free to specify their own weighted formula allowing customized rankings to be computed
on demand for individual end-users. This is a major contribution of the proposed framework.
Subsequently, the user selects the appropriate service and negotiates the SLAs with the selected
service. The details of SRS are presented in Section 4.3.
F) Service Consumption and Management

All the preceding operations contribute to major real-time optimizations during service con-
sumption phase. If the SC detects that the service request queue has reached its threshold (can be
determined by observing past correlation between service queue length and response time) then
the SC can perform auto-scaling including duplication of service instance. Similarly if service
requests from a particular geographic region are pervasive and the SLA agreement contains a
latency threshold then an additional service instance can be deployed at a CSP in that geograph-
ical region. Similarly, if the resource costs at the CSP hosting the deployed service goes beyond
the cost constraint specified by the SP, the SC can migrate the service to a CSP which offers
resource cost within the specified cost constraint of the SP. Similar optimizations are possible at
the user level as well allowing users to switch between service instances or even competing ser-
vice providers depending upon which better meets their requirements. Thus, SC allows multiple
optimizations to be performed dynamically both in the context of the SP and the end-user giving
all stakeholders flexibility in meeting their objectives.
G) Accounting

Finally, after the services have been consumed, requests processed and violations noted, the
accounting process is applied to compute the dues of the end-users. Similarly, the dues of the
SP towards the CSP are also computed and the settlements processed. However this process is
beyond the scope of this paper.

4.2 Service and Performance Modeling

An Intercloud (Ic) environment consists of federation of N CSPs given by
Ic = { CSP1, CSP2, , CSPN}
Each CSP consists of multiple data-centers located in M different geographical locations across
globe i.e.
CSP = { DC1, DC2,, DCM}
Let S be the set of t total services offered by an Ic, such that ,
S = { S1, S2, . . . , St}
Let x be the total number of services components for each service S deployed in CSPN, such that
St= { Sc1, Sc2,..., Sx}
A service S can be deployed in multiple CSPs with individual components distributed in a way
such that
{ St(Sc1ε CSP1), (Sc2 ε CSP2), ..,(Sc(x-1) ε CSPN-1), (Scx ε CSPN)} ,
or single monolithic service is deployed/replicated at multiple CSPs, such that y multiple service
instances exist at several CSPs, such that
{ StSt1 ε CSP1, St2 ε CSP2,. . . , Sty ε CN} ,
or a single service component is replicated at multiple CSPs
{ StSc1 ε CSP1, Sc1 ε CSP2, . . . , Sc1 ε CSPN} ,
And finally where a monolithic service or all components of a service are deployed at the same
CSP and maybe even at the same data center within the CSP.
Thus, multiple deployment scenarios are supported. Services are ranked as per their performance
which constitutes of various performance parameters.
In the proposed model users can communicate their service preferences through: a) Cost (c), and

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

236 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

b) Service Quality (p),

0 ⩽ p ⩽ 1.

The cost parameter c is the amount that a user is willing to pay for consuming a service. Service
Quality p is a cumulative parameter which allows users to customize their requirements.

4.3 Performance Metrics

Service Measurement Index (SMI) [AS] is a set of business-relevant Key Performance Indicators
(KPI’s) that provide a standardized method for measuring and comparing a business service
regardless of whether that service is internally provided or sourced from an outside company.
SMI enables individual preferences to be the basis for what defines a good service. We have
identified five parameters as shown in Table 1 from SMI as a basis for defining service quality (p)
for the proposed framework.

Table 1. Identified Parameters
Service Quality Parameters Standard Weightage
Network Latency (φ 1) 0.20 (wt1)
Processing Time (φ 2) 0.20 (wt2)
Reliability (φ 3) 0.20 (wt3)
Reputation (φ 4) 0.20 (wt4)
Availability(φ 5) 0.20 (wt5)

Network Latency: We measure the round trip delay between sending a service request and
receiving the response. Latency varies based on geographical location; therefore we continuously
measure latency for each time slot n as:
φ 1 = (n∑ t=0 (α /τ)) /n
Where α = minimum latency observed during ideal time
τ = real latency observed at that time,
n = total number of requests.
Processing Time: It is the measure of time a service takes to process a job request. This
depends on several factors including the service architecture, speed of CPU and available cores,
load on the sever hosting the vm which hosts the service and service load etc. Therefore, we
calculated processing time as
φ 2 = (M∑ j=1 (β /λ)) /M
Where β = minimum processing time observed during ideal time
λ = real processing time observed at any time,
M = total number of requests in a time period.
Reliability: Reliability is an important factor in computing service quality. In this case we mon-
itored service instances during peak and lean hours and observed the service responses received
and calculated the Mean Time Between Failures (MTBF). Once MTBF is calculated we can find
out the reliability of a service by using following equation [McClusky and Mitra [2004]]:
φ 3 = exp(-t/MTBF) ⩽ 1
Where e = exponential function,
t = minimum expected processing time for node to deal for any tasks execution,
MTBF = the failure rate of the node at the give time.
Reputation: Reputation of a service is a multi-faceted concept. Reputation is calculated based
on the feedback provided by the user community about their previous experiences which is ranked
between 0 and 1. On completion of every service usage cycle, users rate the service as 0 (not
recommended), 0.25 (poor) 0.5 (acceptable), 0.75 (good) and 1 (excellent). Our Ranking algo-
rithm calculates the reputation score similar to proposed by [Wishart et al. [2005]] which includes
service ID, consumer ID, timestamp (used to determine the aging factor of a particular service
rating).

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 237

Therefore, φ 4 = N∑ i=1 Si λ
di ⩽ 1

Where N = number of ratings for a service,
Si = ith service ratings
λ = inclusion factor i.e. 0⩽ λ ⩽ 1
di = age of the ith service ratings in days.
The inclusion factor λ used to signify the recent ratings of the service. For example smaller
value of λ means more recent ratings which have more impact on reputation and larger λ means
more of the reputation influences the reputation scores.
Availability: This parameter is simply obtained by observing the total time duration for which
the service remains down relative to the total time the service is offered. Therefore,
φ 5 = 1- (tdown / tup+tdown) ⩽ 1
tup = time for which service remains up during a partuclar period of time
tdown = time for which a service remains down during a particular period of time
Based on their contribution under SRS, a weight age is given to all the Service Quality factors
and as a final point aggregated to compute ranking score (R) of a service is given by:
R = n∑ i=1 wtn φ n ⩽ 1
The Service Monitor at each vm where the service is deployed sends performance information to
the Service Performance Monitoring module in the Services Cloud every five minutes. Service
Analytics uses this information to compute the Ranking Scores (R) for each service instance.
By default equal weights for the five service quality parameters are used in the computation of
ranks, although individual service consumers can define their own weights to derive customized
service rankings as per requirement. After computing the rank, a service list is presented to
the user and final negotiation process is initiated. Service ranks can potentially be recomputed
every five minutes when new data comes in from the service monitor. The Service Consumer is
notified if the service ranks changes or a service quality parameter changes significantly since the
last ranking cycle for taking suitable action including possible selection of a new service. Fig 3
presents an indicative snapshot of sample data and computed ranks for different service instances
deployed at different CSPs/locations.

Fig 3: Indicative sample snap shot of hourly score on the basis of various parameters for service instances across
CSPs.

5. EXPERIMENTAL SETUP AND RESULTS

We collected real-world data pertaining to a sample deployed service across three popular CSPs -
Amazon EC2 [AHP], Windows Azure [WS], and GoGrid [GG2]. The experimental data served as a
basis for designing our simulator built on top of Cloudsim [R. Buyya]. The real-world test
environment had a total of 3 CSPs, 6 data centers at 6 different physical locations

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

238 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

and 10 service instances deployed at various CSPs locations. We evaluated a Photo Storage
service, which is implemented on each CSPs datacenter location. We further consider only one
type of virtual machine instance in different CSPs since in [Lucas-Simarro et al. [2013]] authors
have concluded that both medium and large vm instances gets overloaded with the similar level
of concurrent requests. Therefore in order to save experimental cost without compromising on
service performance measurements we use instances shown in Table 1 for service deployment. We
replace actual CSP names with “CSP1, CSP2 and CSP3” and replace actual data-center locations
with generic locations “L1, L2, L3, L4, L5 and L6” .

We used HTTP HEAD Requests using curl for latency measurements instead of ICMP ping
command because MS Azure has barred incoming/outgoing ping requests [OPA]. We take
measurements for every 5 minute interval and compute averages for each parameter every 1 hour.
Intuitively network latency is dependent on the geographical locations of the user with respect to
the data center, but routing inefficiencies, time zone differences and usage of multiple data centers
in an intercloud environment can lead to counter-intuitive results. The results obtained in the
test setup are shown in Fig 4 which concurs with those obtained in [Wu and Madhyastha [2013]].
It can be seen that the average percentage variation for one location is up to 18% i.e. latency
varies significantly over 24 hours for the same location which implies that any QoS-complaint
service deployment scheme requires factor these latency variations to effectively meet defined
SLAs

Fig 4: Observed latency for different service instances over a 24 hour period.

Further we use Manage Engines Application Manager [ME] to measure service performance in a
virtualized environment. We also used httperf [HPL] as our benchmark to generate the workload
for service instances deployed in different locations. Since our service is web-based, therefore
detailed information on the number of connections, rate of connections, request size,

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 239

request rate, reply time/size and rate etc. is required. We perform our benchmark tests on each
deployed service instance in our test environment.

We measure the variations in the number of requests processed per minute and results are
depicted in Fig 5. The number of requests processed per minute is dependent on the latency
between the user and location of the service and the variations of up to 60% are observed. Here
the location of the user remains the same. In the real world varied users locations can result in
greater variations in service instances performance. We use the photo-storage service to look-up
and download a 5KB file in all these tests.

Figure 5: Observed Number of Requests processed/minute by service instances deployed in different locations

This test setup served the following purpose:

—Benchmarking service behavior with varying workloads in a real world scenario.

—Provide strong basis for the simulation of service behavior in the proposed Services Cloud
framework

5.1 Simulation Results

To validate the proposed framework we used cloudsim [R. Buyya] works on real-world data
obtained in Section 5 as its base input. We have built the service ranking logic on top of base
classes and use the results obtained from service ranking as an input to route service requests
to cloudlets in different datacenters. We conducted experiments to assess the impact of our
scheme on both the Service Providers and Service Consumers We consider three CSPs with
two data centers each for a total of 6 data centers. Each datacenter is located in a different
geographic location. A total of 25 service instances with varied deployment strategies and 100
service consumers are considered for simulation purposes. The service consumers are located in
”20” different geographical locations including the six locations of the data centers with different
latencies. Each CSP follows different pricing policies for resource usage. Further, we assume that
each vm can host one service instance with different processing time, reliability and availability
and the vm cost per hour varies from 0.10$ -0.50$.

5.1.1 Evaluating geographical implications for service usage. The aim of this experiment is to
assess the impact of service location on the response time. We measured the average response
time for six instances of the same service deployed in each of the 6 data centers. In Figure 6 we
can observe that the average response time obtained by different instances of the same service

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

240 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

to download a 5KB image file for increasing number of user requests. We can see that the same
service is responding differently if deployed in different locations and variations of up to 600%
are observed in the response times. The major component in this variation is the actual latency
between the service consumer and the service location, while variations due to differences in the
processing capabilities of vm’s belonging to different CSPs is only upto 10% . This experiment
results agree with the conclusion mentioned in [Wu and Madhyastha [2013]] which highlighted
the latency factor for effective service response.

Fig 6: Variations in average file download time from 6 different geographical locations (same photo storage service).

5.1.2 Evaluating Deployment Scenarios. In this experiment we evaluated different deployment
scenarios as discussed below and measure the impact on the observed average response times,
requests drops and profits for increasing number of requests.

—Single Instance Single Location (SISL): It represents a service which is deployed in only
one location and has got only single service instance to serve users requests.

—Multiple Instances Single Location (MISL): Same service and associated components
replicated at single CSP and same data center (physical location). In this scheme all the
requests comes to a single instance and when this instance get overloaded another instance is
created on the same physical location to handle users requests.

—Multiple Instances Multiple Locations (MIML): Multiple instances of service compo-
nents (distributed replicated services) deployed at different data centers (physical locations) of
1 or more CSPs. In this scheme the requests are distributed across different instances in inter-
cloud environment. Different strategies of load balancing can be applied to serve users requests
due to huge availability of service instances. For example consider a scheme in which load bal-
ancing is done to exploit geographical proximity. However, initially this type of deployment
scenario is costly as compared to SISL.

Here we use the same configuration service instance, but deploy them in different strategies
(SISL, MISL and MIML). In the cases of MISL and MIML three service instances are used to
cater to users request. In Figure 7 shows the cumulative distribution function (CDF) of Average
Response Time over the file size 5 KB that were generated during the experiment as results. It
has been observed that in the case of MISL and MIML the response time has been decreased by
62% and 78.75% respectively as compared to SISL. This is obviously due to SIML and MIML
having more service instances and MIML is exploiting geographically proximity.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 241

Fig 7: CDF for average response time obtained for different service deployment strategies

The processing time for a service request is dependent upon VM’s operating system/hypervisor,
hardware configuration of server, scheduling logic, web-server performance, service queue length
etc., but shows a maximum variation of 10% between CSPs. In terms of latency since SISL
and MISL are located at same location they offer almost same latency for each service instance
but in case of MIML deployment the average observed latency is reduced significantly as service
instances are deployed at different geographical locations to serve scattered user requests more
efficiently. Therefore the main reason behind the performance degradation of MISL as compared
to MIML is its static service location. This results in 37% lower average response time for a large
number of geographically dispersed user requests.

We assume the maximum waiting time for the response is 100 seconds before the request is
considered dropped, Therefore the request drops for increasing number of user requests were
measured for each of the service deployment scenarios. Results are displayed in Figure 8. As
expected, SISL suffers from high request drop due to its single instance getting overwhelmed
sooner followed by MISL and MIML. MIML due to its lower overall response time and latency
is able to service approximately 22% more requests compared to MISL without requests getting
dropped.

Fig 8: Number of request drops per minute for a single service under different deployment scenarios

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

242 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

It is noticeable that for up to 200 requests per minute, SISL, MISL and MIML have negligible
request drops but beyond it SISL drops nearly 90% of received requests due to increasingly
longer wait time. Further MISL with its 3 service instances starts dropping requests at close to
600 requests/minute but MIML remains stable till 700 requests per minute.

Moreover, the service deployment scenarios have a direct impact on the overall revenue gen-
erated for the SP. For up to 200 requests/minute, SISL is the most cost-effective deployment
strategy, but when request/minute goes beyond 200 requests/minute SISL starts dropping re-
quests. The impact on overall profit under various scenarios is depicted in Table 2. The potential
revenue loss for a SP comprises of a) SLA violations and b) request drops since both these cases
result in a penalty [Lee and Snavely [2006]][Emeakaroha et al. [2012]].

Table 2 shows that SISL is cost effective as compared to MISL and MIML when the frequency
of request is small (in our case up to 200 requests/minute) but when the frequency of requests
increase MIML and MISL are naturally more effective as they provide more service instances
and scale better. Therefore more the number of service instances lesser the response time since
more instances are available to handle the requests. Further, with increase in the number of
service instances in intercloud environment the profitability can be increased by a) exploiting
lower latencies through geographical proximity b) selecting the most cost-effective CSPs. We can
also notice that with more number of service instances, SLA violations decreases significantly.
Further, auto-scaling by the Services Cloud provides a practical mechanism to increase service
instances to handle peak-load and reduce service instances proportionately as requests drop while
adhering to SLA agreements. Thus, optimal deployment from the SP perspective is ensured.
Therefore the shifting from SISL to MISL or MIML is dynamic and depends upon the frequency
and geographical origin of requests.

It was observed that MIML performance is up to 40% better when requests are from geographi-
cally diverse origins and request loads are high. MIML can thus exploit time-zone differences and
benefit from heavily discounted non-peak hour prices for compute resources at different CSPs.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 243

5.1.3 Evaluation of Scheduling Schemes. In this experiment we compare the SRS scheme with
a hybrid service selection (HSS) scheme which attempts to minimize response time while reducing
service consumption costs. It is similar to the scheme proposed in [Lucas-Simarro et al. [2013]]
in which broker focused on performance optimization with a cost constraint. This policy takes
care of both cost and workload of a service. It uses cost as an upper bound and finds out the
least loaded service. We have compared the performance of the HSS policy with our SRS policy
on several parameters and evaluated the benefits of SRS in optimizing end-user service selection.
Further we use MIML deployment strategy for both the SRS and HSS and observe the overall
response time and SLA violations. For this we deploy six service instances across different CSPs
with varying cost and workload characteristics. The service instances are also assigned values
for availability, reputation and reliability. SRS is clearly the more advanced selection policy
since it takes into account the availability, reliability and reputation of a service instance while
trying to optimize communication and resource usage costs. In our tests HSS selected services
with low availability for 7% of the requests, services with low reliability for 6% of the requests
and services with low reputation for 10% of the cases. This result in significantly higher SLA
violations compared to SRS selection policy.

We observe in the Fig 9 that poor selection choices by the HSS result in the higher response
times compared to SRS to the tune of 17% on average. SRS makes more credible choices based
on availability, reliability and reputation of service instances.

Further, service selection schemes can also be based on:

(1) Cost based service selection (CSS): In this type of selection policy scheduler looks out for the
cheapest service offer (in case of similar competing services). It selects the least cost service
and allocates it to the user. This kind of service selection is best fit for the users who are
not performance oriented and want to pay less. Here the probability of response-time based
SLA- violations is very high.

(2) Work load based service selection (WSS): It monitors the work load on each service deployed
in datacenter and find out the least loaded service with less service requests pending. This
type of policy is optimal when performance is paramount but very prone to cost based- SLA
violations.

Fig 9: CDF for average response time for HSS and SRS service selection policies.

Therefore in Table 3(a) and Table 3(b) we compare HSS and SRS on cost optimization achieved
and SLA violations observed with CSS and WSS selection policies as the base. SRS outperforms
HSS due to: a) qualitatively better service selection and b) geographically-aware auto-scaling

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

244 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

5.1.4 Service Instance Transition Behavior of SRS. In this experiment we tracked service
instance transitions (Service S1 deployed at locations L1 through L6) for varying number of user
requests/hour as shown in Table 4. SRS selects the appropriate service instance combinations
while optimizing the service hosting cost for the Service providers. We begin with one service
instance at each location. At hour 1, S1.L6 is sufficient to handle up to 6200 request/hour with
the associated hosting cost of 0.20 $ /hour. Between hours 2 to 4 due to flash crowd scenario (peak
load) SRS performs service replication at L6 and L2 choosing a combination of service instances
that lowers the hosting cost for the service provider in each case. The replicated services are also
automatically decommissioned when not required.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 245

5.1.5 Computation Time for SRS. In this experiment computation time for SRS strategy
is evaluated. The SRS strategy involves on-demand ranking of services based on customized
weights provided by the end users which facilitates fine-grained control over service selection and
consumption. This approach therefore involves computing service ranks in the context of the
user-defined weights and incurs additional computational overheads compared to schemes which
use a static weighted formula for determining service ranks. This is because the service ranks
need to be recomputed for each user. Fig 10 provides the average processing time for computing
service ranks for up to 500 service instances for a single user. The results show that with the
increase in requests the computation time is growing linearly. This computation however needs
to be performed only once before the service consumption phase for each user session.

Fig 10: Average processing time for on-demand ranking of services instances

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

246 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

6. CONCLUSION AND FUTURE WORK

This paper proposes a Services Cloud which is a step towards a Unified Services Management
Framework for an intercloud environment which facilitates a) optimal service deployment and
geographically-aware auto-scaling and b) optimal service selection and consumption by the end-
user in a seamless manner. We evaluated the effectiveness of the proposed framework using a cus-
tom simulator based on real world service performance measurements across different CSPs. The
results indicate that from a service provider perspective achieving high performance at reasonable
cost is dependent on the service deployment scheme. It was further observed that mere load-based
auto-scaling is not effective to deal with flash crowd scenario but instead geographically-aware
auto-scaling to exploit latency benefits in an intercloud environment is more efficient for global
services. Further, a customized ranking mechanism for service consumers allows greater opti-
mization at an individual level rather than with a one-size-fits-all approach.

We believe that the realization of a Unified Services Management Framework for an intercloud
environment will result in enhanced capability to deliver services to end users in a customized
manner while maximizing service provider revenue at the same time. This contributes to a more
efficient management of cloud services and also reduces cost for users as well as service providers
through comprehensive measurement of services performance and their ranking. Hence, the
present work has potentially far-reaching consequences on the evolution of intercloud services.

Future work shall involve more real-world testing for different service types and categories,
service deployment scenarios and varying user requirements over sustained periods to create
formal benchmarks for intercloud services. Integrating the SC logic with some real-world cross-
cloud brokers is also on the anvil. We believe that in the times to come planetary-scale services
catering to geographically dispersed users and deployed in an intercloud environment shall become
the norm and more research efforts shall be required to overcome the inherent complexities
involved in a collaborative global system such as the proposed Services Cloud.

References

(ahp)amazon ec2 home page. http://aws.amazon.com/ec2.
(as)about smi. http://www.cloudcommons.com/about-smi.
(ccb)cloud computing brokers: a resource guide. http://www.datacenterknowledge.com/

archives/2010/01/22/cloudcomputingbrokers-a-resource-guide.
(chp)cohesiveft home page. http://www.cohesiveft.com.
(cm)cloud monitoring. http://www.rackspace.com/cloud/monitoring.
(dc)deltacloud. http://deltacloud.apache.org/index.html.
(gca)google cloud app engine. https://cloud.google.com/products/app-engine.
(gg)gogrid. http://www.gogrid.com.
(hpl)hpl-hp http://www.hpl.hp.com/research/linux/httperf.
(ics)inter cloud service. https://www.tmforum.org/InterCloudService/8480/home.html.
(me)manage engine http://www.manageengine.com/products/applications_manager.
(msp)managed services paradigm. http://www.sbtpartners.com/ etc/managed services

paradigm.pdf.
(opa)outbound ping on azure vm. http://social.msdn.microsoft.com/Forums/

windowsazure/en-US/e9e53e84-a978-46f5-a657-f31da7e4bbe1/icmp-outbound-ping

-on-azure-vm?forum=WAVirtualMachinesforWindows. Virtual Machines for Windows.
(rhp)rightscale home page. http://www.rightscale.com.
(spf)services protocols formats. https://marinemetadata.org/conventions/services

-protocols-formats.
(tf)tosca-faq. https://www.oasis-open.org/committees/tosca/faq.php.
Wsdl. http://www.w3.org/TR/wsdl.
(ws)windowsazure. http://www.windowsazure.com/en-us.
(zhp)imory home page. http://www.zimory.com.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

A novel approach for services management and selection in intercloud system ⋅ 247

Calheiros, R. N., Toosi, A. N., Vecchiola, C., and Buyya, R. 2012. A coordinator
for scaling elastic applications across multiple clouds. Future Generation Computer Sys-
tems 28, 8 (oct), 1350–1362.

Emeakaroha, V. C., Ferreto, T. C., Netto, M. A., Brandic, I., and De Rose, C. A.
2012. Casvid: Application level monitoring for sla violation detection in clouds. In 2012
IEEE 36th Annual Computer Software and Applications Conference. IEEE, 499–508.

Garg, S. K., Versteeg, S., and Buyya, R. 2013. A framework for ranking of cloud computing
services. Future Generation Computer Systems 29, 4 (jun), 1012–1023.

Gupta, A., Kapoor, L., and Wattal, M. 2011. C2c (cloud-to-cloud): An ecosystem of
cloud service providers for dynamic resource provisioning. In Advances in Computing and
Communications. Springer Berlin Heidelberg, 501–510.

Itani, W., Ghali, C., Bassil, R., Kayssi, A., and Chehab, A. 2014. ServBGP: BGP-inspired
autonomic service routing for multi-provider collaborative architectures in the cloud. Future
Generation Computer Systems 32, 99–117.

Krintz, C. 2013. The AppScale cloud platform: Enabling portable, scalable web application
deployment. IEEE Internet Computing 17, 2 (mar), 72–75.

Lee, C. B. and Snavely, A. 2006. On the userscheduler dialogue: Studies of user-provided
runtime estimates and utility functions. The International Journal of High Performance
Computing Applications 20, 4, 495–506.

Lucas-Simarro, J. L., Moreno-Vozmediano, R., Montero, R. S., and Llorente, I. M.
2013. Scheduling strategies for optimal service deployment across multiple clouds. Future
Generation Computer Systems 29, 6 (aug), 1431–1441.

McClusky, E. and Mitra, S. 2004. Computer Science Handbook. Vol. 2nd. CRC Press,
Chapter Fault Tolerance.

Petcu, D., Macariu, G., Panica, S., and Crăciun, C. 2013. Portable cloud applica-
tions—from theory to practice. Future Generation Computer Systems 29, 6 (aug), 1417–
1430.

R. Buyya, R. N. Calheiros, A. B. S. G. Cloudsim: A framework for modeling and simulation
of cloud computing infrastructures and services. http://www.cloudbus.org. The cloud
computing and distributed systems laboratory, University of Melbourne.

Wishart, R., Robinson, R., Indulska, J., and Jøsang, A. 2005. Superstringrep: reputation-
enhanced service discovery. In Proceedings of the Twenty-eighth Australasian conference on
Computer Science-Volume 38. Australian Computer Society, Inc., 49–57.

Wu, Z. and Madhyastha, H. V. 2013. Understanding the latency benefits of multi-cloud
webservice deployments. ACM SIGCOMM Computer Communication Review 43, 2 (apr),
13–20.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

248 ⋅ Lohit Kapoor, Seema Bawa and Ankur Gupta

Lohit Kapoor received the B.E. degree in Information Technology, M.Tech Degree in
Information Communication and the Ph.D. degree in Computer Science and Engineering
(Cloud Computing) from Thapar University, Patiala, Punjab. During his Doctorate, he
has published a number of papers focused on Cloud Computing and Machine Learning
in various reputed journals. His research interests cover the Cloud Computing, Data
Science, Machine Learning and Artificial Intelligence.

Dr. Seema Bawa holds M.Tech (Computer Science) degree form IIT Khargpur and
Ph.D. from Thapar Institute of Engineering and Technology, Patiala. She is currently
Professor, Computer Science and Engineering and Dean (Student Affairs) at Thapar Uni-
versity, Patiala since September 2010. As Dean (Student Affairs) she has made students
excel in diverse skills and areas with determination and conviction. She has demon strated
wonderful managerial skills by heading the department for more than six years.
The department has grown in all dimensions including academics, research, man power
development and finances. Her areas of research interests include Parallel, Distributed
Grid and Cloud Computing, VLSI Testing, Energy aware computing and Cultural Com-
puting. Dr. Bawa has rich teaching, research and industry experience. She has worked
as Software Engineer, Project Leader and Project Manager, in software industry for more
than five years before joining Thapar University. She has been Coordinator of two national level research and
development projects sponsored by Ministry of Information and Communication Technology. She is the author/co-
author 111 research publications in technical journals and conferences of international repute. She has served as
Advisor / Track chair for various national and international conferences. She has supervised eight Ph.D. and forty
four M.E theses so far. Prof. Bawa is an active member of IEEE, ACM, Computer Society of India, and VLSI
Society of India. She has been rendering her services across the globe as an editor and reviewer of various reputed
journals of these societies.

Prof. Ankur Gupta is the Director at the Model Institute of Engineering and
Technology, Jammu, India, besides being a Professor in the Department of Computer
Science and Engineering. Prior to joining academia, he worked as a Technical Team Lead
at Hewlett Packard, developing software in the network management and e-Commerce
domains. He obtained B.E (Hons) Computer Science and MS Software Systems degrees
from BITS, Pilani and his PhD from the National Institute of Technology in India. His
main areas of interest include peer-to-peer networks, network management, software
engineering and cloud computing. He has published over 65 peer-reviewed papers in
reputed international journals and conferences and is a recipient of the AICTE’s (All
India Council for Technical Education) Career Award for Young Teachers. He has 17
patents pending in diverse technical domains and is a senior member of both the IEEE
and ACM.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.

