
A Review of Distributed Scheduling Algorithms
for Tree based Wireless Sensor Networks

Dr. Tejas Vasavada

Assistant Professor,

Lukhdhirji Engineering College, Morbi, India

and

Dr. Sanjay Srivastava

Professor,

Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India

In this paper, distributed scheduling algorithms for data collection in tree-based Wireless Sensor Networks (WSNs)

are reviewed. The algorithms are categorized based on type of convergecast addressed by them i.e. (i) Aggregated
convergecast (ii) Raw convergecast (iii) General approaches. In aggregated convergecast scheduling algorithm,

one slot per node is selected as all incoming packets are fully aggregated with packet of the given node. So, every

node sends out only one packet. In raw convergecast, as packets are not aggregated, every node needs multiple
time-slots. It is desired that algorithms for aggregated convergecast should be bottom-up in nature (i.e. run

from leaf nodes towards the sink) to ensure aggregation freshness. In raw convergecast, the algorithms should

be hybrid in nature. It means that the execution should take place in bottom-up and also in top-down manner.
This ensures that every node transmits its own packet in the smallest possible time-slot and forward packets of

children in the same TDMA cycle. The General approaches are not designed for any fix convergecast method,

but they have other objectives like minimizing control overhead, minimizing schedule length or minimize energy
consumption and many others. This work also presents a review of algorithms related to fault tolerance. The

algorithms related to fault tolerance are aimed at quickly selecting new parent/slot when some existing parent

dies. When the given node dies, the parent of the given node does not receive packets from the given node. So,
the parent needs lesser time-slots as it has to forward lesser number of packets. Similarly, when the given node

selects new parent due to death of current parent, the new parent needs extra slots to forward packets coming from
the given node. Thus fault tolerance algorithms also take care of schedule adjustment due to change in workload

of nodes. It is found that still there is scope of further research as follows: (i) Hybrid joint scheduling & tree

formation algorithm for raw convergecast can be designed. (ii) The slot assignment should be elastic in nature.
The given node should be assigned additional slots when required and slots should be revoked when not needed.

(iii) The scheduling algorithm should have some provision of priority-based data transmission. When a node has

urgent or high-priority data, it should be allowed to transmit it without waiting for its transmission turn.

Keywords: Sensor Networks,Tree Formation,Scheduling,Distributed Algorithms

1. INTRODUCTION

Wireless sensor nodes are very small electronic devices with capability to sense the environment.
In addition to sensing, they are capable to store and process the information. The sensor nodes
are deployed in an area where some quantities are to be observed. The quantities of interest
are like pressure, temperature, humidity, solar radiation and many others. In last few years,
sensor networks are deployed for many real applications. Some of them are like environmental
research (Selavo [2007],Barrenetxea [2008]), volcano monitoring (WernerAllen [2006],W.Z.Song
[2009]), water monitoring (Kim [2008]) and weather monitoring(Hartung [2006]) .

Every sensor network has one or more sink nodes present. All the sensor nodes send their
observations towards the sink node. Often nodes are randomly deployed in the region. So,
routing path is required from each node to the sink. Thus it is required to form some logical
topology. In McGrath [2014] and Mamun [2012], various logical topologies are explained along
with their comparison. Following are the well-known logical topologies: (i) Flat (i) Chain (iii)

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



214 · Tejas Vasavada and Sanjay Srivastava

Star (iv) Ring (v) Tree (vi) Cluster.
Flat means no logical topology. The basic technique used for data transmission is flooding.

Due to flooding, nodes receive duplicate messages. As a result, more energy is consumed. As
sensor nodes are energy-constrained devices, flooding affects lifetime of the network. So, flat
topology is not a good choice. It is also difficult to predict the latecy as path is not fixed.

In Figure 1, chain topology is shown. The nodes are arranged in a linear chain (i.e. bus). The
sink node is at one end of the chain. It is denoted as S. Every node sends packet to the next
node towards the sink. The node receiving the packet forwards the packet to the next node.
Thus finally packet reaches the sink. If any one node in the chain fails, network is partitioned
into disconnected subsets. So, nodes which are disconnected from the sink can not send data to
the sink. Thus chain topology has very low fault tolerance.

Fig. 1: Chain Topology

In Figure 2, star topology is shown. The star topology has sink in the center. All the nodes
send data to the sink in one hop. The star topology seems less scalable as all the sensor nodes
need to be at one hop distance from the sink. Its variants like cluster and tree (explained later)
are more scalable. Ring topology is illustrated in the Figure 3. In case of ring topology, sensors
and sink are arranged in the form of ring. The data transmission takes place in circular fashion.
Every node receives packets from neighbor on one side and sends to the neighbor on the other
side. Like chain, if any one node fails, network is partitioned. Thus ring topology also has low
fault tolerance.

Fig. 2: Star Topology Fig. 3: Ring Topology

In the tree topology, every node has one parent and number of children nodes. The sink is the
root of the tree. Every node sends packets towards the sink through parent node. One sample tree
is shown in Figure 4. In a tree, every node receives packets from its children and may aggregate
all incoming packets with its own packets and send a single packet to the parent node. The task
of aggregation is possible in chain and ring also. But in both of them, every node receives packet
from only one node. Whereas in tree, node may receive packets from multiple nodes. Thus tree
seems most suitable topology for applications which require data aggregation. In case of chain or
ring topology, maximum hop distance from sink to the the last node (i.e. leaf) is (n− 1), where
n is number of nodes in the network. Whereas in a balanced tree, it is on the order of log2 n.
Thus packet latency is likely to be less in tree compared to chain or ring topology.

In Figure 5, cluster topology is illustrated. The network is divided into small regions. Each
region is known as cluster. Each cluster has one node named as Cluster-Head (CH). All the
nodes around the CH are cluster members. All the members send their packets to the CH. The
CH may aggregate the incoming packets and send out a single packet. Each CH may be directly

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



A Review of Distributed Scheduling Algorithms for Tree based Wireless Sensor Networks · 215

Fig. 4: Tree Topology

connected to the sink. Alternatively, second level of clustering may be formed such as CHs are
members and they send data to their cluster-head.

Fig. 5: Cluster Topology

The cluster members can be either at one-hop distance or multi-hop distance from the CH.
If member nodes are at single hop distance from CH, the topology inside the cluster is a star
topology with CH as the center node. If nodes are at multi-hop distance, the topology inside the
cluster is a tree with CH as the root. Even in the tree, we can think that multiple star topologies
are present because a node may be connected to multiple children nodes. Thus the given node
is in center node of star topology. This is why it is mentioned earlier that tree and clusters are
extensions of star topology.

From above discussion on topologies, it is concluded that flat topology is not useful in practice
because of its poor performance with respect to network lifetime. The tree topology is more
suitable for applications which need aggregation and also results in smaller latency than chain
and ring topologies. Even a cluster can be considered as a tree. Thus due to robustness of the
tree, it is a very popular topology. Our focus is also on tree-based networks.

Tree formation can take place in either centralized or distributed manner. The works presented
in O.D.Incel [2012], Soua [2013], Pan [2008], Malhotra [2011], Ghosh [2010] and Hia [2011] are
some examples of centralized algorithms. In case of centralized approach, sink runs tree formation
and slot assignment algorithms. Then it propagates parent and slot information to all the nodes.
So, sink must know entire topology. If deployment is regular, topology information may be
fed to the sink. But nodes are randomly deployed in many practical applications. Thus it is
required that nodes have to send their positions to the sink node as input to scheduling and tree
formation algorithms. Thus every node should have GPS (Global Positioning System) installed.
An alternate is to run localization algorithms.

As explained in subsequent sections, when distributed approach is used, every node performs
parent and slot selection itself. When a node wants to select new parent due to failure of existing

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



216 · Tejas Vasavada and Sanjay Srivastava

parent, it can perform parent (and also slot) selection itself in case of distributed approach. But,
if pure centralized approach is used, sink has to find new parent. Thus tree repairing and schedule
maintenance need to be done centrally. The distributed approach results in faster tree repairing
and schedule maintenance compared to the centralized approach as decision is taken locally.

It is easy to implement centralized algorithms. The centralized approach considers the network
as a unit disk graph. So, it fails to take into account effects of real-time interference. In contrast,
in distributed algorithms, every node selects a parent and slot taking into account its local
neighborhood. So, the decision also takes into account real time interference. As distributed
algorithms seem more appropriate considering decentralized nature of sensor networks, our focus
is also on distributed parent selection and slot assignment.

In Ghosh [2011] and M.Bagga [2014], many scheduling algorithms for tree based sensor networks
are reviewed. But they have covered mostly centralized approaches. In M.Bagga [2014], only
aggregated convergecast scheduling is considered. Here, we are going to present algorithms for
both i.e. aggregated and raw convergecast. As tree repairing and schedule maintenance both
should be done effectively, we have also reported papers addressing both. We could not find any
paper which reviews distributed scheduling algorithms along with approaches to recover from
node failure. So, this review paper seems to be the first of its kind.

2. DISTRIBUTED SCHEDULING ALGORITHMS

Fig. 6: Classification of Distributed Scheduling Algorithms

The basic objective of every scheduling algorithm is to assign one or more time slots to edges
or nodes of tree. When a node selects a transmission slot, the slot should be such that data
transmission done during that slot does not collide with packets received by neighboring nodes.
Thus before selecting a transmission slot, node should determine which slots are already used by
its neighbor nodes. The papers differ in the proposed method of finding collision free schedule.
Otherwise their objective is same i.e. to select a transmission slot which does not create collisions.

In Figure 6, classification of distributed scheduling algorithms is given. There are three main
categories: (i) Those designed specially for aggregated convergecast (ii) Those designed specially
for raw convergecast (iii) General approaches i.e. designed neither for aggregated convergecast
nor for raw convergecast. But adaptable to any of them.

In aggregated convergecast, parent node aggregates packets coming from children with its own
packet. So, every node is assigned one transmission slot. If a node has n children, it has n
reception slots and one transmission slot. Parent is assigned higher slot than children so that it

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



A Review of Distributed Scheduling Algorithms for Tree based Wireless Sensor Networks · 217

can aggregate packets of children with its own packet and forward in the same TDMA frame.
This reduces data delivery delay. One way of assigning higher slot to parent is to do bottom-up
scheduling. That is, scheduling should start from leaf nodes and continue till sink.

In raw convergecast, parent node does not aggregate packets coming from children with its
own packet. Every node is assigned one slot to transmit its own packet and additional slots
to transmit packets coming from its children. Thus if a node has n children, it needs (n + 1)
transmission slots and n reception slots. Here parent node can be assigned slot earlier than its
children. As data is not aggregated, parent node should send its own packet as soon as it is
generated. This would result in better data delivery delay.

The methods presented in DRAND(Rhee [2006]), GLASS(C.Lin [2011]), Distributed Channel
Allocation and Scheduling (DCAS) (Saifullah [2014]) and DD-TDMA(Wang [2007]) are general
approaches of slots selection. Even they are not designed specifically for tree structure. As
mentioned earlier, packet delivery delay in aggregated convergecast can be minimized if parent is
assigned higher slot than children. Raw convergecast requires every node to select more than one
slots. As aggregation is not done, parent node can select a lower slot than children to forward
its own packet. These methods do not have such features. So, they are not directly applicable to
aggregated or raw convergecast. But they may be adapted for either of the two. Their objectives
are like reducing control overhead of slot selection (GLASS (C.Lin [2011])) or to reduce the
schedule length (DD-TDMA (Wang [2007]), DCAS (Saifullah [2014])).

2.1 Aggregated Convergecast

In this subsection, some important papers attempting scheduling for aggregated convergecast are
summarized. At the end of the subsection, a qualitative comparison is also given.

In Wu [2009], distributed algorithms for tree formation and slots assignment are proposed. Tree
formation works as follows. The sink initiates the process by flooding FORM TREE message in
network. Upon receiving FORM TREE, a node periodically broadcasts HELLO message to its 2-
hop neighbors for some time. The HELLO message contains followings: (i) 1-hop neighborhood
of sender (ii) parent node ID, if selected. So nodes receiving this message can know about
interference at transmitting node.

From candidate parents (i.e. those who have already joined the tree), node chooses the parent
which is nearest to sink. If more than one candidate parents are at the same depth, the one
with the least interference is selected as parent. Selecting the least interfered node results in
better slots reuse. After selecting parent, node unicasts JOIN TREE message to sink. When
sink receives JOIN TREE from all the nodes, it considers that tree formation is complete. It
initiates scheduling next. Scheduling works as explained below.

The sink floods the network with ASSIGN SLOT packet. The sink selects slot K−1 as its send-
ing slot. Here K is the largest slot in frame. Then periodically broadcasts GET SLOT(sink,K-1)
to its 2-hop neighbors for some time. When the given node vi receives a GET SLOT message
from parent, it selects a slot si one less than that selected by parent. This slot is tentative. It
broadcasts (vi,si ) to its 2-hop neighbors and starts a timer.

If some neighbor has already selected the same slot, it sends REJECT message. Upon reception
of REJECT message, node selects a time slot one less than previously selected slot and repeats the
procedure i.e. broadcast to 2-hop neighbors. If given node does not receive REJECT by the time
timer expires, it finalizes the slots si and informs the same by broadcasting GET SLOT(vi,si)
message to 2-hop neighbors. Now children of vi will continue the same procedure. This procedure
will continue until all the nodes including leaf nodes select their slots.

In Yu [2012], joint tree formation and slots assignment is proposed. It is known as MOSS (Many
to One Sensors to Sink) communication protocol. In joint approach, parent and slot selection
takes place at the same time. So, one algorithm does both i.e. tree formation and scheduling.

Sink initiates the process by broadcasting PADV (Parent Advertisement) message. Its one hop
neighbors receive the message. PADV contains the time slot selected by sender. Nodes receiving
PADV keep record of parent’s id and parent’s slot. Then these nodes send SEL (Select) message

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



218 · Tejas Vasavada and Sanjay Srivastava

Approach Paper Parent selection
criteria

Sequential DWS (Wu [2009]) Interference

Joint (top-down) MOSS (Yu [2012]) Distance from
given node

Joint (bottom-up) DICA (Bagga [2015]) No. of unscheduled

Multipath DICA (Bagga [2013a]) Neighbours

Multipath Multichannel DICA (Bagga [2013b])

Table a: Summary of Aggregation Convergecast Scheduling Algorithms

back to sink (i.e. parent) indicating that sink is selected as parent. SEL message also contains
the time-slot selected by child node. The sink (i.e. parent) sends SCH (Schedule) message in
reply. From SCH message, child comes to know whether its slots selection is successful or not.

If selection of slot is not successful, child has to try again. If successful, child node broadcasts
PADV message and whole procedure is repeated. Now child becomes parent of some other nodes.
A node may receive multiple PADV messages. That is, it may have more than one candidate
parents. It selects the node as parent which is nearest to the sink in terms of hop count. If more
than one candidate parents have same hop count, selection is done based on distance between
given node and candidate parent node. The nearest candidate is selected as parent. This would
save transmission power. At the end, all the nodes including the leaf nodes are scheduled.

In Bagga [2015], a distributed joint bottom-up tree formation and scheduling algorithm is
proposed. It is named as DICA (Distributed algorithm for Integrated tree Construction and data
Aggregation). As the first step, network is divided into levels. A node is in level L if it is L hops
away from sink. Every node has information about its level L and neighbors in level L-1, L and
L+1. Once leveling is done, parent selection and schedule assignment takes place in bottom-up
manner. That it starts from leaf nodes and continues till the sink.

Every node at Level L is allowed to select parent nodes from level L-1, L or L+1. Node selects
such a parent to whom it can transmit in lowest possible time slot. For a time slot T, node
prepares a candidate parent set. It consists of nodes for whom following is true: (i) they don’t
receive in slot T (ii) they don’t transmit in slot T (iii) they don’t overhear from other nodes in
slot T.

From the candidate parent set, the node with the minimum number of unscheduled neighbors is
selected as parent. This selection criteria is aimed at maximizing slots reuse. Parent is scheduled
only after all its children are scheduled. As parent has to aggregate children’s data with its own
data, it should wait until children send their data.

The ideas presented in Bagga [2013a] and Bagga [2013b] are like extensions of work presented
in Bagga [2015]. In Bagga [2015], single channel is assumed and only one path is established
from every sensor node to sink node. In Bagga [2013a], multiple paths are established from
every sensor to sink. This results in better fault tolerance and load balancing. In Bagga [2013b],
data aggregation scheduling utilizing multiple paths as well as multiple channels is done. Use
of multiple channels reduces schedule length as interfering nodes can use same slot at different
frequency.

2.1.1 Discussion. In the Table a, comparison of the three aggregation convergecast scheduling
algorithms is presented. It is seen that they differ in the criteria of selecting the parent. The
DICA(Bagga [2015]) and MOSS(Yu [2012]) are joint approaches. That is, every node selects
parent and slot at the same time. In contrast, DWS(Wu [2009]) does parent and slot selection in
two different phases, first parent selection followed by slot selection. As explained in DICA(Bagga
[2015]), joint approach is better than sequential approach. In sequential approach, tree is formed
first. Then scheduling algorithm is applied to the same tree. Thus the structure of the tree
controls the performance of the scheduling algorithm. But in joint approach, tree and schedule
are built hand in hand. So, there is no question of tree structure controlling the performance of

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



A Review of Distributed Scheduling Algorithms for Tree based Wireless Sensor Networks · 219

scheduling algorithm.
Among the three algorithms, the bottom-up approach is the most suitable. As mentioned

earlier, to maintain aggregation freshness, scheduling in aggregated convergecast must take place
in bottom-up fashion. That is, parent should be assigned higher time slot than children. In
DWS(Wu [2009]), parent is assigned higher slot than children. It is not perfect bottom-up
approach. As mentioned in Ren [2012], many times networks are heterogenous in nature. Different
types of sensors are present in the same network. For example, temperature, pressure, humidity
and solar radiation sensors are present in the same region.

All these different types of sensors are part of the same tree. In that case, perfect aggregation
may not be feasible at every node. Let us assume that a temperature sensor is a parent of two
different sensor nodes, one pressure sensor and the other temperature sensor. The parent can
aggregate temperature reading coming from the child with its own reading. But, it can not
aggregate pressure reading with the temperature reading. So, two packets would come out from
the parent node i.e. one pressure packet and the other is temperature packet. If all the three
nodes were temperature sensors, only a single packet would come out of the parent.

Thus in heterogeneous network, a node should be scheduled only after its children are scheduled.
Otherwise, it would not estimate the number of slots required. The MOSS(Yu [2012]) is not
suitable in this case as it is top-down. In addition, DWS(Wu [2009]) would not be efficient
because when a node selects a slot, all its ancestors may be required to select additional slots.
The DICA(Bagga [2015]) is likely to work well for both i.e. homogeneous and heterogeneous
networks as it is bottom-up in nature.

2.2 Raw Convergecast

Some important papers addressing raw convegecast are summarized in this subsection along with
their qualitative comparison.

In Lee [2008], FlexiTP (Flexible TDMA Protocol) is proposed. It handles tree formation,
scheduling and fault tolerance. Fault tolerance part is mentioned in Section 3. Tree formation is
initiated by sink. It generates a token. Token passes through tree in Depth First Search manner.
When a node receives a token, it broadcasts a signal. All nodes who receive this signal become
children of the node. Then node forwards the token to child whose ID is lowest. Every node
repeats this procedure. Finally token reaches to sink after all the nodes find their children.

Once tree formation is complete, sink initiates slots assignment. It also involves use of tokens.
When a node receives a token, it selects its transmission slots. A node selects slots in such a
way that its transmission does not interfere with two-hop neighbors. After claiming a slot, node
shares its slot information with one and two hop neighbors. When a node selects a slot, its
parent also requires a slot to forward node’s data. Thus selection of a slot by a node leads to
slots selection by all the nodes till sink.

In B.Zeng [2014], collaboration based distributed scheduling algorithm is proposed. It is as-
sumed that tree is already formed using some known algorithm. Basic idea behind slot selection is
as follows. Node knows its total workload. It is sum of its own workload and that of its children.
Based on workload and available time slots, node selects a slice. Here slice is a sequence of slots
for transmission. Then it broadcasts a request packet. The request packet contains slice. All the
neighbor nodes receive request packet. Every neighbor sends a reply packet. The reply packet
either grants the requested slice or rejects it. If transmission of data packet during requested slice
does not create collision, neighbor node grants the request. Else it rejects the request. If request
is granted by all neighbors, node fixes the slice as its transmission slots. It also broadcasts an
acknowledgement (ACK) message as confirmation. If any one neighbor node rejects the request,
node does not send ACK.

In R.Soua [2014], scheduling algorithms for raw convergecast are proposed. It is assumed that
nodes can use more than one channels for transmission. Two versions of same algorithm are
proposed : centralized and distributed. The aim is to reduce schedule length and data generated
by a node should reach the sink in same cycle. It is considered that different nodes have different

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



220 · Tejas Vasavada and Sanjay Srivastava

Approach Paper Parent Selection
criteria

Hybrid FlexiTP (Lee [2008]) Lowest ID

Bottom Up Collaboration based (B.Zeng [2014]) Not addressed

Top Down Joint Channel & Slot Not addressed
Assignment (R.Soua [2014])

Table b: Summary of Raw Convergecast Scheduling Algorithms

traffic requirements. Accordingly different frames have different number of slots active. Each
frame is known as a wave.

Centralized algorithm works as follows: sink has idea about traffic load of each node and entire
topology. It sorts nodes in descending order of number of slots required to transmit their data.
Nodes are processed for slot and channel assignment in order of priority. Every node is assigned
lowest available channel and slot for transmission in given frame. As channels are limited, a node
can not send all the packets in a single frame. Thus multiple waves are required. Sink calculates
slot and channel allocation for each wave.

Distributed approach works as follows. Nodes exchange hello packets to know about two hop
neighbors and their traffic load. First wave is computed by sink as sink has information about
entire topology and traffic available at each node. Sink forwards the first wave to nodes. Thus
every node knows its allocated channel and time slot for first wave. Rest of the waves are
computed by individual nodes locally.

2.2.1 Discussion. In Table b, the three raw convergecast scheduling algorithms are compared.
In Collaboration based scheduling (B.Zeng [2014]) and Joint channel and slot assignment (R.Soua
[2014]) algorithms tree is assumed to be present. The FlexiTP(Lee [2008]) first forms the tree and
then scheduling is done. This means that all the three algorithms execute scheduling algorithm
on the existing tree. As mentioned earlier, joint slot and parent selection would result in smaller
schedule length. Every node selects a single parent. Packets are transmitted to the same parent
in multiple slots. If joint approach were used, multiple parents may be selected to confirm data
transmission in the smallest slot

In raw convergecast, bottom-up slot assignment is not desirable. As aggregation is not done,
given node need not wait for its children to send the packets. It could transmit earlier than
children. That is, it may use smaller slot. Even pure top-down approach is also not suitable. As
mentioned in R.Soua [2014], node knows it total workload i.e. rate at which packets are coming
from children. So, node could select the required time-slots. In that case, the node is assigned
smaller slots than its children. It could not forward incoming packets in the same cycle.

It is better to use hybrid approach like in FlexiTP(Lee [2008]). In FlexiTP, every node selects
time slot to transmit its own packet. But when a node selects a time-slot, all its ancestors select
additional time-slots to send the packets coming from the given node. Thus complete scheduling
involves multiple top to bottom and bottom to top slot assignments. That is why we call it
‘hybrid’. It has two advantages. First, every node could send its own packet as early as possible.
Second, packets coming from descendants can be forwarded in the same TDMA cycle.

In FlexiTP, every node sends the token to the child with the lowest ID. Now that child gets a
chance to expand its subtree. So, it finds its children and becomes parent of some nodes. That
is why, parent selection criteria is written as ‘lowest ID’ in Table b. As the other two algorithms
assume that tree is already formed using some algorithm, it is concluded that they do not address
parent selection.

In collaboration based algorithm (B.Zeng [2014]) and Joint slot and channel allocation algo-
rithm (R.Soua [2014]), every node selects all required slots in one go. So the control overhead
would be less than Hybrid approach of FlexiTP(Lee [2008]. As a result, energy consumption
would also be reduced. The same thing is verified through simulation results of B.Zeng [2014].
Thus this a trade off between control overhead and latency. In FlexiTP(Lee [2008]), due to hybrid

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



A Review of Distributed Scheduling Algorithms for Tree based Wireless Sensor Networks · 221

approach, packets of every node would reach to the sink in the same TDMA cyle. But control
overhead would be high compared to the other two approaches. In collaboration based approach,
node’s own packets would be delayed. In case of joint scheduling and tree formation (R.Soua
[2014]), packets would reach to sink in the next cycle.

2.3 Miscellaneous Approaches

In this subsection, generalized methods of scheduling (i.e. not designed for a specific convergecast)
are reviewed along with their qualitative comparison.

In Rhee [2006], DRAND (Distributed RANDomized Algorithm) is proposed. Every node selects
its own time slot. Time slots selection requires 3-way message exchange. A node willing to select
slot first broadcasts REQUEST message. All its neighbors receive this message. In response,
every neighbor sends GRANT message back. GRANT message contains id of sender and list
of time-slots used in one hop neighborhood of sender. Once requesting node receives GRANT
messages from all neighbors, it has an idea about which slots are used in its two-hop neighborhood.
It selects the minimum slot not used in its two-hop neighborhood and broadcasts RELEASE
message. It contains id of sender and the slot selected. Thus all neighbors of given node update
their list of used slots. Message complexity of DRAND is on the order of number of two hop
neighbors of given node.

In Wang [2007], DD-TDMA (Deterministic Distributed TDMA) scheduling is proposed. It is
proposed to minimize the distance between transmission and reception slots of every node. If
transmission and reception slots of a node are nearby, it is not desirable to keep the node in
sleep mode in intermediate slots. It is better to keep the node in idle mode than to put into
sleep because frequent on/off switching consumes more energy than idle listening. Scheduling
algorithm similar to DRAND is proposed. It is shown through simulations that DD-TDMA
results in lesser number of slots than DRAND. Its running time and message complexity both
are lesser compared to D-RAND.

In Saifullah [2014], Distributed Channel Allocation and Scheduling protocols (DCAS) are pro-
posed. As per IEEE 802.15.4 standard, a node can operate over multiple channels. Sensor nodes
are tiny. Every node normally contains one radio transceiver. So it can operate on one channel
at a time. Distributed algorithms for Receiver Based Channel Assignment (RBCA) and Link
Based Channel Assignment (LBCA) are proposed.

The general approach followed by RBCA and LBCA is to form different conflict graphs (i.e. one
for RBCA and the other for LBCA). In both the conflict graphs, nodes are presented as vertices.
In conflict graph of RBCA, an edge is present between two vertices if they are interfering receivers.
Whereas in conflict graph of LBCA, an edge is present between two vertices if they are interfering
senders. Edges in conflict graph are assigned different channels. The total number of channels are
always fixed (for example, 16 in 802.15.4). To guarantee interference free transmission, interfering
nodes using the same channel are assigned different transmission slots.

In C.Lin [2011], a distributed and scalable time slots assignment protocol called GLASS (Grid
based LAtin Square Scheduling) is proposed. In distributed scheduling algorithms, nodes have to
exchange control messages with neighbors to decide time slots. This creates a lot of network traffic
and results in more energy consumption at nodes. The GLASS protocol is aimed at reducing
scheduling overhead. In GLASS, network is divided into cells forming a virtual grid. Each cell
of grid is of size R x R. The value of R is 2.1r, where r is ratio range.

The GLASS protocol works in three steps. In the first step, every sensor finds its cell. The
algorithm for this is executed locally in each sensor node. It requires every sensor to know its
location. Once cell is identified, each sensor associates itself with a transmission sub-frame. A
Transmission Frame (TF) is a sequence of time-slots. It is repeated again and again over time.
A TF is divided into Sub Transmission Frames(STFs). Sensor finds its STF based on the ID of
the cell to whom it is associated with.

Using Latin Square Matrix (LSM) technique, sensor of every cell selects slots for transmission
and reception. Every sensor broadcasts its ID, cell ID and STF in its two hop neighborhood.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



222 · Tejas Vasavada and Sanjay Srivastava

Paper Objective

DRAND (Rhee [2006]) Scheduling only

DD-TDMA (Wang [2007]) Reduce frequency of

On-off switching

DCAS (Saifullah [2014]) Reduce schedule
Length

GLASS (C.Lin [2011]) Reduce Control
Overhead

Table c: Summary of Miscellaneous Algorithms

Thus every sensor knows about details of sensors present in its cell. Every sensor builds a LSM.
The rows in LSM are sensors and columns are slots. From LSM, transmission and reception
slots are selected such that no collision occurs between interfering nodes i.e. nodes in two hop
neighborhood. We have not explained LSM in detail. For details, the reader may refer the full
paper.

2.3.1 Discussion. The importance of DRAND(Rhee [2006]) is that it is one of the pioneering
paper in the field of distributed scheduling. It is the first distributed algorithm evaluated on real
test-bed of sensor nodes. It results in better performance in terms of schedule length and control
overhead compared to other approaches of that time.

The objective of DD-TDMA(Wang [2007]) is to reduce energy consumption by reducing fre-
quency of on-off switching of nodes. The DCAS (Saifullah [2014]) uses multiple channels to
reduce the total slots used to schedule the network. As a result, packets would reach to sink
faster. Every node will get transmission turns more quickly. Finally, GLASS (C.Lin [2011]) is
aimed to reduce control overhead generated during time-slot selection. As a result, energy of
nodes would be saved.

It can be deduced that the papers summarized in this sub-section propose different methods
of reducing schedule length or reduce energy consumption. The cause of energy consumption
may be either on-off switching, control overhead or data transmission. These techniques may
be plugged into scheduling algorithms described in the previous two sub-sections with suitable
modifications.

3. ALGORITHMS FOR FAULT TOLERANCE

Sensor nodes have limited energy. It is possible that some nodes die because of lack of energy.
When a node dies, its children in the tree need to select new parent. As entire subtree rooted
at orphan child is shifted to new parent, workload of new parent may increase. It may need to
select extra time slots. More specifically all the nodes from new parent to sink may require extra
slots. Thus change in topology not only requires tree repairing but also slots adjustment.

Often new nodes are added into network after initial deployment. This is to maintain connec-
tivity. Each newly added node joins the tree i.e. selects some existing node as parent. This will
increase workload of parent. Parent will require more time-slots.

In many applications, for e.g. environment monitoring, nodes are deployed in large quantity in
a region of interest. They are continuously sensing the environment and periodically sending the
data to sink. When some critical event occurs, some nodes, not necessarily all, may start sensing
at higher rate. The data that a node senses during this critical period may not be temporarily
correlated and thus may not be aggregated. As a result, node may require more time-slots to send
additional packets. As such all nodes from given node to sink require more time-slots. Common
mechanism can be used to handle topology and workload variation.

In Zao [2013], slots assignment in the case of dynamic traffic pattern is considered. Most of
the scheduling algorithms consider static traffic pattern. It is considered that every node has
fix number of packets available at the beginning of a TDMA frame. But as explained in Zao
[2013], sometimes traffic pattern does not remain fix. Due to temporal and spatial correlation, a

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



A Review of Distributed Scheduling Algorithms for Tree based Wireless Sensor Networks · 223

node does not send packet in every frame. When there is a considerable difference in previously
sent reading and current reading, packet is sent. Some applications require conditional reporting.
When certain condition is satisfied, reading is to be transmitted to sink.

But slots allocation is done considering full traffic load. Thus often many slots remain unused.
Nodes waste their energy in idle listening during slots assigned for receiving. This problem is
addressed in Zao [2013]. It is proposed that parent transmits packets only after it receives packets
from all children. Thus transmission slots of parent come after transmission slots of children.
Whenever children of the given node have no data to send, it will transmit its own packet in very
first transmission slot. In remaining slots, it will not transmit anything. When parent of given
node finds first reception slot empty, it considers that node has no more data to transmit. So it
remains in sleep mode during those slots. Thus energy is not consumed in idle listening.

In L.Zang [2012], fault tolerant scheduling is considered. It may happen that some node dies
because of lack of energy. When a node dies, all its children should select new parent. As parent
changes, old transmission slots may become invalid and new slots may be required. It is suggested
that every node should compute a set of backup parents during tree formation. Also backup slots
should also be computed. Backup slot means the slot using which communication will take place
with backup parent. When parent node fails, its every child switches to new parent. As backup
slots are pre-computed, delay of finding new slots is not present. But at the same time total
schedule length increases. This increases end to end packet delay.

In Chaktraborty [2013], convergecast tree management from arbitrary node failure is proposed.
Only tree formation is addressed, not scheduling. Otherwise the idea is same as in L.Zang [2012].
Distributed algorithm for tree construction is suggested. During tree construction, every node
computes its alternate parent. Whenever a node fails, its children switch to alternate parent.
Then alternate parent is considered as main parent. So tree repairing is done without much delay.
If main parent and alternate parent both fail at the same time, node has to find new parent at
the time when failure is detected. Thus failure of single parent is handled pro-actively whereas
failure of multiple parents is handled reactively.

In Chaktraborty [2014], an improvement of the work done in Chaktraborty [2013] is presented.
In the previous work, tree maintenance was done in either proactive or reactive manner. Failure of
single node was handled proactively i.e. alternate parent was pre-computed. But when multiple
nodes fail, reactive recovery is used. Recovery mechanism proposed in Chaktraborty [2014] results
in smaller route repair delay compared to that of Chaktraborty [2013].

It is proposed that every node is either active or redundant. Active nodes are part of the tree.
Redundant nodes are not part of the tree. During tree formation itself, every node decides whether
it is active or redundant. Around each node few redundant nodes are present. Whenever an active
node fails, a redundant node around failed node becomes active. Now data passes through that
node. One more important feature presented in the paper is load balancing. The non-leaf nodes
do not differ much in the count of children nodes. If any one node has large number of children,
it will spend more energy in receiving packets and so it will die very quickly.

In Lee [2008] also fault tolerance is considered. Node has four types of slots: FTS (Fault
Tolerant Slot), MFS (Multi-Function Slot), Transmission and Reception slots. FTS is used for
fault tolerance. MFS is used to ensure time synchronization with children and sharing slots
information with children. Whenever a node does not listen from its parent for two consecutive
MFS (Multi-Functional Slot), parent is considered dead. During next FTS period, node will
broadcast distress signal. All its neighbors will reply.

Node will select the neighbor having shortest path to sink as new parent. It will inform the
decision to new parent. New parent will select a data transmission slot for child and assigns the
same. Parent will also select a slot for transmitting data coming from child. Every node on the
path to sink will select additional slot and inform to its parent. Whenever a node claims new slot,
it has to propagate this information two its one hop and two-hop neighbors. This is to prevent
collision of packets between interfering nodes. Node broadcasts slots information during MFS

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



224 · Tejas Vasavada and Sanjay Srivastava

Paper Approach

Zao [2013] Node goes to sleep
in unused slots

L.Zang [2012] Compute backup parent
and slot in advance

Chaktraborty [2013] Compute backup parent

in advance

Chaktraborty [2014] Use of redundant

nodes

FlexiTP If nothing is heard

(Lee [2008]) from parent for two
MFS, parent may be died

Table d: Summary of Fault Tolerant Algorithms

and also during FTS.

3.1 Discussion

In the Table d, different approaches of fault tolerance are summarized. The papers address
following two issues: (i) When there is a reduction in traffic, nodes should not waste energy in
idle listening (Zao [2013]) (ii) When some node dies, its children should quickly switch to new
parent and slot (L.Zang [2012],Chaktraborty [2013] and Chaktraborty [2014]).

4. CONCLUSION AND OPEN ISSUES

We have reviewed different papers related to distributed scheduling algorithms, classified them
and talked about their strengths and weaknesses. From discussion about scheduling algorithms
and fault tolerance methods, it can be said that joint scheduling algorithms are preferable com-
pared to sequential approach. That is, scheduling and parent selection should be done at the
same time. In addition, the algorithms should also aim to reduce the control overhead generated
during slot and parent selection process. There should also be a provision to quickly recover from
node failures.

To summarize, a list of papers reviewed is given Table e. The papers are grouped as per the
type of problem addressed i.e. aggregated convergecast, raw convergecast, generalized approaches
and fault tolerance. The papers in each group are listed in order of year of publication. Against
each paper, its objective is also mentioned. Still there is scope of further research in this domain.
The possible research issues are summarized in next few paragraphs.

No joint scheduling & tree formation algorithm for raw convergecast is designed yet. In Bagga
[2015], joint scheduling & tree formation for aggregation convergecast scheduling is proposed.
It is bottom-up in nature. As explained earlier, it is desirable to have hybrid approach in raw
convergecast. That is, every node should select slot to send its own packet at earliest (i.e. top-
down, from root to leaves). But, the slots required to forward children’s packets should be selected
later (i.e. bottom-up, from leaves to root). It would be an interesting task to design hybrid joint
scheduling & tree formation for raw convergecast.

In fault tolerance, mainly following two issues are considered: (i) When traffic is less, how to
prevent idle listening in unused slots. (ii) Select new parent/slot when current parent dies. The
problem of sudden rise in traffic at a node is not handled yet. It is possible that some sensors
may start sensing at higher rate when some event occurs.

For example, temperature sensors in a jungle may increase rate of sensing when fire takes place.
They need more time slots to quickly forward the data. It is required that these sensors should be
temporarily given more time slots. When they come back to normal sensing rate, additional slots
may be relinquished. Thus scheduling mechanism should be elastic in nature i.e. slots should be
granted and revoked as and when required.

When some important event occurs, sensors should be able to send the related readings without
much delay. In a small network, the schedule length would be small. But schedule length would

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



A Review of Distributed Scheduling Algorithms for Tree based Wireless Sensor Networks · 225

Year Paper Type Objective

2009 Distributed Wakeup Aggr. Conv. Minimize
Scheduling (Wu [2009]) Energy Consumption

2012 MOSS (Yu [2012]) Aggr. Conv. Minimize
Energy Consumption

2013 Multipath Aggr. Conv. Minimize

DICA ([Bagga 2013a]) Schedule Length

2013 Multipath Aggr. Conv. Minimize

Multi-channel DICA ([Bagga 2013b]) Schedule Length

2015 DICA ([Bagga 2015]) Aggr. Conv. Minimize

Schedule Length

2008 FlexiTP ([Lee 2008]) Raw Conv. Minimize Buffering
of Packets

2014 Collaboration based (B.Zeng [2014]) Raw Conv Minimize Energy
Consumption

2014 Joint Channel & Slot Raw Conv Minimize
Assignment (R.Soua [2014]) Schedule Length

2006 DRAND (Rhee [2006]) Generalized Collision-free Schedule

Formation

2007 DD-TDMA (Wang [2007]) Generalized Reduce frequency of

On-off switching

2011 GLASS (C.Lin [2011]) Generalized Reduce Control
Overhead

2014 DCAS (Saifullah [2014]) Generalized Reduce schedule

Length

2012 L.Zang [2012] Fault Tolerance Fast Tree Repairing

2013 Zao [2013] Fault Tolerance Minimize Energy

Consumption

2013 Chaktraborty [2013] Fault Tolerance Fast Tree Repairing

2014 Chaktraborty [2014] Fault Tolerance Fast Tree Repairing

Table e: Summary of Papers Reviewed

be large in a large network. If an event occurs in some part of the network, the nodes in a large
network will have to wait for longer duration to get transmission turn. Some method may be
developed to support priority-based data transmission. That is, normally nodes transmit in their
assigned slot. But if some high-priority data is to be sent, it should be sent without much delay.

REFERENCES

Bagga, M. 2013a. Efficient multi-path data aggregation scheduling in wireless sensor networks. IEEE Interna-

tional Conference on Communications.

Bagga, M. 2013b. Multi-path multi-channel data aggregation scheduling in wireless sensor networks. IEEE

Wireless Days International Conference.

Bagga, M. 2015. Distributed low latency data aggregation scheduling in wireless sensor networks. ACM Trans-

actions on Sensor Networks 11,3.

Barrenetxea, G. 2008. Sensorscope: Out-of-the-box environmental monitoring. USENIX OSDI .

B.Zeng. 2014. A collaboration based distributed tdma scheduling algorithm for data collection in wireless sensor
network. Journal of Networks, Academy Publishers 9,9.

Chaktraborty, S. 2013. Convergecast tree management from arbitrary node failure in sensor network. Ad Hoc

Networks Journal, Elsevier Publications 11,6.

Chaktraborty, S. 2014. Topology management ensuring reliability in delay sensitive sensor networks with
arbitrary node failure. International Journal of Wireless Inf. Networks, Springer Publications 21,4.

C.Lin. 2011. A distributed and scalable time slot allocation protocol for wireless sensor networks. IEEE Trans-
actions on Mobile Computing 10,4.

Ghosh, A. 2010. Bounded degree minimum radius spanning trees for fast data collection in wireless sensor
networks. IEEE INFOCOM .

Ghosh, A. 2011. Scheduling algorithms for tree-based data collection in wireless sensor networks. Theoretical
Aspects of Distributed Computing in Sensor Networks, Springer .

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



226 · Tejas Vasavada and Sanjay Srivastava

Hartung, C. 2006. Firewxnet: A multi-tiered portable wireless system for monitoring weather conditions in

wildland fire environments. ACM MobiSys.

Hia, M. 2011. W-mac: A workload-aware mac protocol for heterogeneous convergecast in wireless sensor networks.
MDPI Sensors Journal 17,2.

Kim, Y. 2008. Nawms: Nonintrusive autonomous water monitoring system. ACM SenSys.

Lee, W. 2008. Flexitp: A flexible schedule based tdma protocol for fault tolerant and energy-efficient wireless

sensor networks. IEEE Transactions on Parallel and Distributed Systems 19,6.

L.Zang. 2012. Fault tolerant scheduling for data collection in wireless sensor networks. IEEE GLOBECOM .

Malhotra, B. 2011. Aggregation convergecast scheduling in wireless sensor networks. Springer Journal of

Wireless Networks 17,2.

Mamun, Q. 2012. A qualitative comparison of different logical topologies for wireless sensor networks. MDPI

Journal of Sensors.

M.Bagga. 2014. Data aggregation scheduling algorithms in wireless sensor networks: Solutions and challenges.
IEEE Communication Surveys & Tutorials 16,3.

McGrath, M. 2014. Sensor network topologies and design considerations. Sensor Technologies Healthcare,

Wellness and Environmental Applications, Springer .

O.D.Incel. 2012. Fast data collection in tree based wireless sensor networks. IEEE Transactions on Mobile
Computing 11.

Pan, M. 2008. Quick convergecast in zigbee beacon enabled wireless sensor networks. ACM Journal of Computer

Communications.

Ren, F. 2012. Attribute-aware data aggregation using potential-based dynamic routing in wireless sensor networks.
IEEE Transactions on Parallel and Distributed Systems 24,5.

Rhee, I. 2006. Drand: Distributed randomized tdma scheduling for wireless ad hoc networks. IEEE Transactions

on Mobile Computing 8,6.

R.Soua. 2014. A distributed joint channel and time slot assignment for convergecast in wireless sensor networks.
6th International Conference on New Technology, Mobility and Security.

Saifullah, A. 2014. Distributed channel allocation protocols for wireless sensor networks. IEEE Transactions

on Parallel and Distributed Systems 25,9.

Selavo, L. 2007. Luster: Wireless sensor network for environmental research. ACM SenSys.

Soua, R. 2013. Musika: A multi-channel multiple sinks data gathering algorithm for wireless sensor networks.
IEEE International Wireless Communications and Mobile Computing Conference (IWCMC).

Wang, Y. 2007. A deterministic distributed tdma scheduling algorithm for wireless sensor networks. International

Conference on Wireless Communications, Networking and Mobile Computing.

WernerAllen, G. 2006. Fidelity and yield in a volcano monitoring sensor network. USENIX OSDI .

Wu, F.-J. 2009. Distributed wake up scheduling for data collection in tree based wireless sensor networks. IEEE
Communication Letters 13,3.

W.Z.Song. 2009. Air-dropped sensor network for real-time high-fidelity volcano mon- itoring. ACM MobiSys.

Yu, C. 2012. Many to one communication protocol for wireless sensor networks. International Journal of Sensor

Networks, Inderscience Publications 12,3.

Zao, W. 2013. Scheduling data collection with dynamic traffic patterns in wireless sensor networks. IEEE
Transactions on Parallel and Distributed Systems 24,4.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.



A Review of Distributed Scheduling Algorithms for Tree based Wireless Sensor Networks · 227

Dr. Tejas Vasavada is an Assistant Professor of Information Technology at Lukhdhirji
Engineering College (Run by Government of Gujarat), Morbi, India. He has received PhD
degree from Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, India in January, 2019. His research interests include ad hoc & sensor
networks, distributed algorithm design and simulation & modeling.

Dr. Sanjay Srivastava is a professor at Dhirubhai Ambani Institute of Information and
Communication Technology (DA-IICT), Gandhinagar, India. He has received his PhD
from University of California, Los Angeles. He works in the area of sensor networks and
network protocol design and analysis.

International Journal of Next-Generation Computing, Vol. 10, No. 3, November 2019.


