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Context-Aware systems are becoming useful components in autonomic and monitoring applications and the as-
sessment of their properties is an important step towards reliable implementation, especially in safety-critical

applications. In this paper, using an avalanche/landslide alert system as a running example, we propose a tech-

nique, based on Boolean Control Networks, to verify that the system dynamics has stable equilibrium states,
corresponding to constant inputs, and hence it does not exhibit oscillatory behaviors, and to establish other useful

properties in order to implement a precise and timely alarm system.
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1. INTRODUCTION

In the first days of 2017 a hotel has been hit by an avalanche in Abruzzo, an Italian region, causing
the death of 29 people. Preliminary technical findings stated that the incident was triggered by a
series of earthquakes in central Italy, in conjunction with the raise of the atmospheric temperature
that melted the snow. In such cases, when the alarm is spread, the security manager is confronted
with two alternatives: i) evacuate the site, which often is a cumbersome and uncomfortable
operation which spreads discontent among the guests if it results in a false alarm; ii) do nothing,
in the hope that nothing dangerous will happen. In this paper, we address the problem of
formalizing, by means of a context-Aware (C-A) system, a decision process to avoid this type
of tragedies as well as false alarms. In addition, by making use of the algebraic approach to
Boolean Control Networks, we are able to assess the existence of globally attractive equilibrium
points of the overall decision system, corresponding to constant inputs, and to investigate some
interesting structural properties, that formalize system features of great practical relevance. In
detail, in Section 2 we introduce the background upon which our research is founded; in Section
3 we describe the system architecture and in Section 4 we briefly introduce the Boolean Control
Networks algebraic description. Section 5 describes the BCN model for the hydrogeological
example. In Section 6 it is shown that the BCN exhibits only globally attractive equilibrium
points, and no limit cycles, corresponding to constant inputs; in Section 7 the observability and
reconstructibility of the system are considered; Section 8 examines the possibility of identifying
some kinds of faults in the inputs that could result in errors in the alarm system, and, in Section
9, some conclusive remarks and hints for future work are made.
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2. RELATED WORKS

Context-aware computing was born out of the need to master the complexity and enhance the
flexibility of modern computing and information systems. Among the most widely used defini-
tions of Context, and of Context-aware Computing, those proposed by A. Dey [Dey 2001] state:
“Context is any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves.” and “A system is Context-aware
if it uses context to provide relevant information and/or services to the user, where relevancy
depends on the users task.”
Accordingly, sophisticated and general Context models have been proposed, to support Context-
aware applications that use them to: (i) tailor the set of application-relevant data, (ii) increase
the precision of information retrieval, (iii) discover services, (iv) build smart environments, and
others [Bolchini et al. 2007].
In the domains of Databases and Programming Languages, the design of Context-aware and Self-
adapting systems has been frequently based on the separation between Context and functional
system [Bolchini et al. 2009; Schreiber and Panigati 2017]. Even if a holistic view of the Context-
aware system in which the Context and the functional system variables sets are kept together is
possible, a separation of the two sets has been advocated, by using a component-based approach,
to master the growing complexity of modern software systems and enforcing the separation of
concerns [Djoudi et al. 2016].
The introduction of Context-awareness and Self-adaptation in safety-critical applications arose
the need of specifying and assessing their properties, mainly those related to the system depend-
ability, by means of formal methods such as Bigraphs and model-checking [Djoudi et al. 2016;
Cherfia et al. 2014]. Owing to the dynamic nature of self-adapting systems, stability has drawn
great attention among the features affecting dependability. Nzekwa et Al. [Nzekwa et al. 2010]
propose the composition of different mechanisms to obtain a flexible model for implementing
stabilization in Context-aware systems.
In [Padovitz et al. 2004; 2005] Padovitz et Al. consider a state-space approach for describing
the situation dimension and for determining the likelihood of transitions between situation sub-
spaces, all other Context dimensions remaining constant. In their model, the state variables are
constituted by the system’s sensors outputs. In an analog system, many sets of sensors values,
representing a system state, can belong to the same situation subspace as far as they satisfy the
conditions in its defining expression; a transition starts whenever one or more values change in
such a way as to respectively switch the expressions for two situation subspaces from TRUE to
FALSE and vice-versa. The likelihood of the transition is evaluated by assuming notions analogous
to those of velocity and acceleration in mechanical systems, and on the basis of the distance of
the values of the actual situation from those of its boundary.
Stability is a traditional topic in control systems theory, and in [Diao et al. 2005] the authors
explore “... the extent to which control theory can provide an architectural and analytic founda-
tion for building self-managing systems ...”. However, control systems are typically described by
means of differential equations and by Matrix Algebra, while Context-aware systems are digital
and mostly based on Logics. Inspired by biological systems, Boolean Networks (BN) and Boolean
Control Networks (BCN) have been introduced, their representative equations have been con-
verted into an equivalent algebraic form [Cheng and Qi 2010a; 2010b], and solutions to problems
such as controllability, observability, stability and reconstructibility have been proposed [Cheng
and Qi 2009; Fornasini and Valcher 2013a; 2016].
We think that cooperation between the two disciplines can be fruitful, therefore, to fill the model
gap, in this paper we model the Context as well as the functional system as Boolean Control
Networks, as briefly explained in Section 5.
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3. THE ARCHITECTURE OF THE MONITORING SYSTEM

Figure 1 shows the general architecture of a Context-aware system [Bolchini et al. 2007; Dey 2001]
conceived for monitoring possible snow/ground slides. Signals, coming from physical sensors on
the ground, are evaluated in the context of the seismic and meteorological information provided
by Web Services RSSs - which can suggest immediate danger - in order to issue alarms. Combining
the Context state with the actual physical data that are input to the functional system allows
the design of a flexible and effective prevention information system which, as an example, can
distinguish between the vibration caused by the detachment of a snow mass and that caused by
a skier or a deer occasionally passing near a sensor.

In the monitoring system some states produce outputs that can affect the environment, e.g. by
possibly activating an alarm siren. In case of an alarm, the time to evacuate a hotel can be in the
order of hours, while the seismic and meteorological conditions can change faster. The ultimate
goal of this study is to be sure that in dangerous situations an alarm signal is issued, but at the
same time that frequent changes in the Context State do not induce an oscillatory behavior of the
alarm system and the consequent movement of people out and back into the hotel. The designer
of the C-A system must ensure that no action is started before the preceding one is terminated
(e.g. reducing the evacuation time). In this paper we use a simple open-loop model; however, in
more complex C-A self managing applications, the system output can affect the context itself.

Our aim is therefore:

—To describe a Context-Aware (C-A) system, as in Figure 1, by means of a logic State Space
model; web services provide input messages to the Context and sensors provide input signals
to the Monitoring System; the Context state is a further input to the latter.

—To use BCNs and System Theory tools to asses the properties of a C-A system: the existence of
globally stable equilibrium points and the absence of oscillatory behaviors (limit cycles) under
constant inputs; the reconstructibility of the system and the detection of some faults affecting
the C-A system inputs.

. Fig. 1 Open loop Context-Aware system

4. ALGEBRAIC REPRESENTATION OF BOOLEAN CONTROL NETWORKS

We consider Boolean vectors and matrices, taking values in B = {0, 1}, with the usual logical
operations (And ∧, Or ∨, Negation ¬). δik denotes the ith canonical vector of size k, namely the
ith column of the k-dimensional identity matrix Ik. ∆k is the set of all k-dimensional canonical
vectors, and Lk×n ⊂ Bk×n the set of all k × n logical matrices, namely k × n matrices whose
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columns are canonical vectors of size k. Any matrix L ∈ Lk×n can be represented as a row vector
whose entries are canonical vectors in Lk, namely L =

[
δi1k δi2k . . . δink

]
, for suitable indices

i1, i2, . . . , in ∈ [1, k]. [A]`j is the (`, j)th entry of the matrix A. A nonsingular square matrix in
Lk×k is a permutation matrix.

There is a bijective correspondence between Boolean variables X ∈ B and vectors x ∈ ∆2,
defined by the relationship

x =

[
X
X

]
.

We introduce the (left) semi-tensor product n between matrices (and hence, in particular, vectors)
as follows [Cheng et al. 2011]: given L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2 , we set

L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), where T := l.c.m.{c1, r2}.
The semi-tensor product represents an extension of the standard matrix product, by this meaning
that if c1 = r2, then L1 nL2 = L1L2. Note that if x1 ∈ ∆r1 and x2 ∈ ∆r2 , then x1 nx2 ∈ ∆r1r2 .
By resorting to the semi-tensor product, we can extend the previous correspondence to a bijective
correspondence [Cheng et al. 2011] between Bn and L2n . This is possible in the following way:

given X =
[
X1 X2 . . . Xn

]> ∈ Bn set

x :=

[
X1

X1

]
n
[
X2

X2

]
n · · ·n

[
Xn

Xn

]
.

This corresponds to

x =


X1X2 . . . Xn−1Xn

X1X2 . . . Xn−1 Xn

X1X2 . . . Xn−1Xn

...
X1X2 . . . Xn−1Xn

 .
A Boolean Control Network (BCN) is a logic state-space model taking the following expression:

X(t+ 1) = f(X(t), U(t)),
Y (t) = h(X(t), U(t)), t ∈ Z+,

(1)

where X(t), U(t) and Y (t) are the n-dimensional state variable, the m-dimensional input variable
and the p-dimensional output variable at time t, taking values in Bn, Bm and Bp, respectively.
f and h are logic functions, i.e. f : Bn × Bm → Bn, while h : Bn × Bm → Bp. By resorting to
the semi-tensor product n, the BCN (1) can be described as [Cheng et al. 2011]

x(t+ 1) = Ln u(t) n x(t),
y(t) = H n u(t) n x(t), t ∈ Z+,

(2)

where L ∈ L2n×2n+m and H ∈ L2p×2n+m . This is called the algebraic expression of the BCN. The
matrix L can be partitioned into 2m square blocks of size 2n, namely as

L =
[
L1 L2 . . . L2m

]
.

For every i ∈ {1, 2, . . . , 2m}, the matrix Li ∈ L2n×2n represents the logic matrix that relates
x(t+ 1) to x(t), when u(t) = δi2n , namely

u(t) = δi2m ⇒ x(t+ 1) = Lix(t).

It is worth remarking that the previous algebraic expression (2) can be adopted to represent any
state-space model in which the state and input variables take values in finite sets, and hence the
sizes of the state and input vectors need not be powers of 2. In that case oftentimes BCNs are
called multi-valued Control Networks [Cheng et al. 2011]. With an abuse of terminology, in this
paper we will always refer to them as BCNs. Moreover, we will replace 2n, 2m and 2p with the
generic symbols N,M and P .
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5. THE BCN MODEL OF THE HYDROGEOLOGICAL EXAMPLE

5.1 The Context model

5.1.1 Context Input Variables. The values of the Context Input Variables are supplied by RSS
messages coming from National Web Services, such as Meteorological forecasts and the National
Geophysics Institute. Even if the message frequency can be variable, for ease of modeling, we
suppose that the system samples them with the same frequency. Moreover, we suppose that a
real danger situation can be expected only when a defined number - in our example at least four
- of consecutive earthquake announcements are sent together with a snow forecast.
We assume:

INGV{earthquake,¬earthquake} := U1

METEO{snow,¬snow} :=U2

Therefore, by expressing the context input variables in terms of canonical vectors, we get:

Context Input Vector:

u(t)=

∣∣∣∣∣∣∣∣
U1 U2

U1 ¬U2

¬U1 U2

¬U1 ¬U2

∣∣∣∣∣∣∣∣ ∈ ∆4 := {δ1
4 , δ

2
4 , δ

3
4 , δ

4
4}

5.1.2 Context States. As previously mentioned, we assume that simultaneous snow and earth-
quake alerts can be regarded as reliable only if not isolated, namely if a sufficiently high number
of consecutive (simultaneous) alerts are sent (and received). For this reason we introduce as
Context State a counter:

COUNTER{0, 1, 2, 3, > 3} =: C

In the representation by means of canonical vectors, the counter is denoted by c and takes
values in ∆5 := {δ1

5 , δ
2
5 , δ

3
5 , δ

4
5 , δ

5
5}, depending on how many consecutive simultaneous alerts for

snow and earthquake have been received. Specifically, for i = 1, 2, 3, 4, we have that c(t) = δi5 if
the counter is i− 1 at time t, while c(t) = δ5

5 if the counter is at least 4 at time t.
If the counter at time t has a value in {δ1

5 , δ
2
5 , δ

3
5 , δ

4
5} and the context input is u(t) = δ1

4 (another
simultaneous snow and earthquake alert comes in), then the counter value at t + 1 is increased
by 1. If c(t) = δ5

5 and u(t) = δ1
4 , then c(t + 1) = δ5

5 , while in every other case the counter is
reset1 to c(t+ 1) = δ1

5 .
Therefore, the counter updates according to the following model (BCN):
c(t+ 1) = Cn u(t) n c(t), where

C =
[
C1 C2 C3 C4

]
∈ L5×20, and

C1 = C n δ1
4 = [δ2

5 δ
3
5 δ

4
5 δ

5
5 δ

5
5 ]

C2 = C n δ2
4 = [δ1

5 δ
1
5 δ

1
5 δ

1
5 δ

1
5 ]

C3 = C n δ3
4 = C2

C4 = C n δ4
4 = C2

Obviously, the number of consecutive alert situations is a design variable which allows to set
more stringent - if increased - or more relaxed - if lowered - requirements on the alarm system.

1This is one possible solution, but it may be regarded as somewhat dangerous: if the counter gets erroneously reset,

then the alert ends up being significantly delayed. An alternative solution could be that of simply decreasing by
one the counter if u(t) 6= δ14 (or if u(t) = δi4, i = 2, 3). This solution would be more robust to possible disturbances

occasionally affecting the context inputs.
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5.1.3 Context Output. Introduce the Context model output

CONTEXT-ALERT{danger, quiet} := Uc

We assume that the CONTEXT-ALERT variable Uc is danger (the corresponding canonical
vector uc takes the value δ1

2) if and only if there have been at least four simultaneous snow and
earthquake alerts.
So, the variable uc updates following the algebraic rule:
uc(t) = Hc n c(t)
where
Hc =

[
δ2
2 δ

2
2 δ

2
2 δ

2
2 δ

1
2

]
∈ L2×5

Figure 2 shows the state diagram for the Context automaton.

. Fig. 2 Context State diagram for the hydrogeological example

5.2 The Functional System model

5.2.1 Functional System Input Variables. We assume that, in addition to the CONTEXT-
ALERT variable, the Functional System model receives other three input signals from local
sensors, so that at the end the input variables determining the system dynamics are the following
ones:

terrain temperature {high, low} := V1

snow height {high, low} := V2

accelerometer {high, low} := V3

context-alert {danger, quiet} := V4 = Uc

Input Vector:
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v(t)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V1 V2 V3 V4

V1 V2 V3 ¬V4

V1 V2 ¬V3 V4

V1 V2 ¬V3 ¬V4

V1 ¬V2 V3 V4

V1 ¬V2 V3 ¬V4

V1 ¬V2 ¬V3 V4

V1 ¬V2 ¬V3 ¬V4

¬V1 V2 V3 V4

¬V1 V2 V3 ¬V4

¬V1 V2 ¬V3 V4

¬V1 V2 ¬V3 ¬V4

¬V1 ¬V2 V3 V4

¬V1 ¬V2 V3 ¬V4

¬V1 ¬V2 ¬V3 V4

¬V1 ¬V2 ¬V3 ¬V4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ ∆16

5.2.2 Functional System State. The CONTEXT-ALERT input is already the result of re-
peated and consecutive notifications of alert situations, so we may regard it as a variable that
is hardly affected by false alarms. Also, we assume that a disturbance that can instantaneously
modify the terrain temperature or the snow height, unless connected with an earthquake, is sta-
tistically not very realistic. On the other hand, the accelerometer may be a source of false alarms
since it can detect a “high” signal for reasons that are not related to earthquakes: for instance,
animals running close to the accelerometer. As a result, we regard as reliable only repeated alerts
coming from the accelerometer. So, as in the case of simultaneous snow and earthquake warnings,
we require, for instance, that the accelerometer has been “high” for two consecutive time instants
(before t) in order to regard the information given by the accelerometer as a real warning.
We introduce the state variable:

ACC-COUNTER{0, 1, > 1}

The canonical vector representing the accelerometer counter is denoted by a and takes values
in ∆3 = {δ1

3 , δ
2
3 , δ

3
3}. Specifically, a(t) = δ1

3 if the counter is 0 at time t; a(t) = δ2
3 if the counter

is 1 at time t; and a(t) = δ3
3 if the counter is at least 2 at time t.

If the counter at time t has a value in {δ1
3 , δ

2
3} and the accelerometer vector is v3(t) = δ1

2 , then
the counter value at t+ 1 is increased by 1. If a(t) = δ3

3 and v3(t) = δ1
2 , then a(t+ 1) = δ3

3 , while
when v3(t) = δ2

2 the counter is moved back to a(t+ 1) = δ1
3 .

Therefore, the accelerometer counter updates according to the following BCN:

a(t+ 1) = An v3(t) n a(t), where

A =
[
A1 A2

]
∈ L3×6, and

A1 = An δ1
2 = [δ2

3 δ
3
3 δ

3
3 ]

A2 = An δ2
2 = [δ1

3 δ
1
3 δ

1
3 ]

5.2.3 Functional System Output. We assume that the Functional System output can take
three values:

ALARM {temp− high, snow − high, acc− counter > 1, acc− high, ctx− danger}
ATTENTION {temp−low, snow−high, acc−counter−∗, acc−∗, ctx−∗ OR temp−high, snow−
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low, acc− counter− ∗, acc− ∗, ctx− ∗ OR temp− high, snow− high, acc− counter− low, acc−
∗, ctx−∗ OR temp−high, snow−high, acc−counter−∗, acc−low, ctx−∗ OR temp−high, snow−
high, acc− counter − ∗, acc− ∗, ctx− quiet}
NORMAL {temp− low, snow − low, acc− counter − ∗, acc− ∗, ctx− ∗}

Note that the alarm is sent out only when “acc − counter > 1” and “acc-high”. This means
that at the time t∗ the alarm signal is issued if the accelerometer has detected some movement
for at least three consecutive time instants t∗, t∗ − 1 and t∗ − 2. Of course, as for the context-
alert variable, the choice of how long we want to wait before issuing the alarm signal is a design
parameter that balances conflicting requirements: security on the one hand and the need to avoid
false alarms on the other.

The functional system output is denoted by m and takes values in ∆3. Based on the previous
description of the three possible output values, it follows that the output vector is generated
based on the state a(t) and the input v(t) according to the following model :

m(t) = Mn v(t) n a(t), where

M =
[
M1 M2 . . . M16

]
∈ L6×16, and

M1 = M n δ1
16 = [δ2

3 δ
2
3 δ

1
3 ]

M2 = M n δ2
16 = [δ2

3 δ
2
3 δ

2
3 ]

Mi = M n δi16 = M2, for i = 3, . . . , 12
M13 = M n δ13

16 = [δ3
3 δ

3
3 δ

3
3 ]

Mi = M n δi16 = M13, for i = 14, 15, 16

So, overall, the system model is a Boolean Control Network obtained by connecting the BCN
describing the context and the BCN describing the functional model, and hence it is described
by the following equations:

c(t+ 1) = Cn u(t) n c(t) (3)

a(t+ 1) = An v3(t) n a(t) (4)

v4(t) = Hc n c(t) (5)

m(t) = Mn v(t) n a(t). (6)

Note that the previous system could be represented as a standard BCN having u(t) := u(t) n
v1(t)nv2(t)nv3(t) as input, x(t) := c(t)na(t) as state vector, and y(t) = m(t) as output. Such
a representation, however, would be of larger dimension and would not contribute to a better
understanding of the system properties. On the contrary, it would make the overall analysis more
complicated. So, we investigate the model properties by making use of the previous description
(3)-(6). This provides further evidence of the convenience of using Context-Aware systems to
model the system dynamics. Note that the current cascade structure, having two counter variables
as state variables of the two connected BCNs, can be easily adapted to model a large class of
Context-Aware systems that describe a decision process, in particular, an alert system. So, even
if we focus on this specific model, it is immediate to understand how the results and properties
derived in the following extend to all the alert systems that can be modeled along these same
lines.

Let us start by investigating the equilibrium points corresponding to constant inputs.
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6. EQUILIBRIA CORRESPONDING TO CONSTANT INPUTS

Definitions and methods to find equilibrium points in a system modeled as a BN have been
described in detail in [Cheng et al. 2011; Cheng et al. 2011; Fornasini and Valcher 2013b] to which
we refer for further deepening. In this paper we make use of these concepts and characterizations
to address equilibrium points of BCNs corresponding to constant inputs.

Definition 1. Given a BCN

x(t+ 1) = Ln ũ(t) n x(t), (7)

y(t) = H n ũ(t) n x(t), (8)

with x(t) ∈ ∆N , ũ(t) ∈ ∆M and y(t) ∈ ∆P , we say that xe ∈ ∆N is an equilibrium point of the
BCN corresponding to the constant input ū, if{

x(0) = xe

ũ(t) = ū,∀ t ∈ Z+
⇒ x(t) = xe,∀ t ∈ Z+.

xe ∈ ∆N is a globally attractive equilibrium point of the BCN corresponding to the constant
input ū, if for every x(0) ∈ ∆N when applying ũ(t) = ū,∀ t ∈ Z+, we obtain that there exists
τ = τ(x(0)) ≥ 0 such that x(t) = xe,∀ t ∈ Z+, t ≥ τ .

Clearly, if xe ∈ ∆N is an equilibrium point of the BCN (7)-(8) corresponding to the constant
input ū, then the corresponding output takes the constant value ye := H n ūn xe.
In order to identify the equilibrium points of a BCN corresponding to some constant input
ū = δkM , it is sufficient to evaluate the equilibria of the Boolean network [Cheng et al. 2011]

x(t+ 1) = Lkx(t). (9)

Such equilibria are the states δiN ∈ ∆N such that δiN = Lkδ
i
N , and hence the states δiN ∈ ∆N

such that [Lk]ii = 1. Furthermore, an equilibrium point is globally attractive (assuming that the
input remains constant) if and only if all columns of LN

k coincide with δiN .
In order to identify the equilibrium points of our specific BCN (3)-(6), we easily observe that it
is sufficient to first identify the equilibria of the context and then those of the functional model.
The analysis of (3) and the expressions of the matrices Ck, k ∈ {1, 2, 3, 4}, immediately reveal
that

—for ū = δ1
4 there is a unique equilibrium point ce = δ5

5 , and it is globally attractive;

—for ū = δi4, i 6= 1, there is a unique equilibrium point ce = δ1
5 , and it is globally attractive, in

turn.

The constant output value corresponding to the two cases are v̄4 = δ1
2 for ū = δ1

4 , and v̄4 = δ2
2

for ū = δi4, i 6= 1.
Let us now consider the functional model (4). We have the following two cases:

—for v̄3 = δ1
2 there is a unique equilibrium point ae = δ3

3 , and it is globally attractive;

—for v̄3 = δ2
2 there is a unique equilibrium point ae = δ1

3 , and it is globally attractive, in turn.

So, to summarize, we have the following situation:

Constant input Equilibria
ū = δ1

4 , v̄3 = δ1
2 ce = δ5

5 , ae = δ3
3

ū = δ1
4 , v̄3 = δ2

2 ce = δ5
5 , ae = δ1

3

ū = δi4, i 6= 1, v̄3 = δ1
2 ce = δ1

5 , ae = δ3
3

ū = δi4, i 6= 1, v̄3 = δ2
2 ce = δ1

5 , ae = δ1
3
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If we now introduce the remaining inputs, and we recall that the input v̄4 is the output of the
context model, we obtain the following results that describe for each constant input the equilibria
and the corresponding constant outputs.

Constant input Equilibria Constant output

v̄1 = δ1
2 , v̄2 = δ1

2 ,
v̄3 = δ1

2 , ū = δ1
4

ce = δ5
5 , ae = δ3

3 me = δ1
3

v̄1 = δ2
2 , v̄2 = δ2

2

v̄3, ū arbitrary
(ce,ae) ∈

{(δ1
5 , δ

1
3), (δ1

5 , δ
3
3), (δ5

5 , δ
1
3), (δ5

5 , δ
3
3)} me = δ3

3

all other choices
(ce,ae) ∈

{(δ1
5 , δ

1
3), (δ1

5 , δ
3
3), (δ5

5 , δ
1
3), (δ5

5 , δ
3
3)} me = δ2

3

This analysis shows that no limit cycles can appear, and hence no contradicting alarm messages
can be delivered by the system.

7. OBSERVABILITY AND RECONSTRUCTIBILITY

The definitions of observability and reconstructibility are given by slightly adjusting those given
in [Fornasini and Valcher 2013a], since in this paper we assume that the input at time t directly
affects the update of the output at time t (we consider proper BCNs as opposed to the strictly
proper BCNs, typically investigated in the literature). These properties have been the subject of
an extensive research, in particular we refer the interested reader to [Laschov et al. 2013; Zhang
and Zhang 2016].

Definition 2. Given a BCN (7)-(8), with x(t) ∈ ∆N , ũ(t) ∈ ∆M and y(t) ∈ ∆P , we say that
the BCN is

—observable if there exists T ∈ Z+ such that the knowledge of the input and output vectors in
the discrete interval {0, 1, . . . , T} allows to uniquely determine the initial state x(0);

—reconstructible if there exists T ∈ Z+ such that the knowledge of the input and output vectors
in the discrete interval {0, 1, . . . , T} allows to uniquely determine the final state x(T ).

The hydrogeological model proposed in this paper is not observable. Indeed, it is easily seen
that the first BCN:

c(t+ 1) = Cn u(t) n c(t)
v4(t) = Hc n c(t)

(10)

is not observable, since initial states as c(0) = δ1
5 and c(0) = δ2

5 corresponding to the constant
input ũ(t) = δ4

4 , t ∈ Z+, generate the same output sequence v4(t) = δ2
2 , t ∈ Z+. This clearly pre-

vents the whole interconnected BCN representing the hydrogeological system to be observable.
It is worth remarking, however, that the system is observable in a weak sense (see [Laschov et al.
2013; Zhang and Zhang 2016]), since for every pair of initial states there exists a specific choice
of the input sequence that would generate two distinct output trajectories from which the initial
states could be recognised.

Lack of observability is not a major issue. In particular, observability does not seem to be
a fundamental system property for the hydrogeological model, since identifying the initial state
of the system during some observation interval does not bring any practical advantage. On
the other hand, reconstructibility is a more relevant property to investigate: by identifying the
current system state, say x(T ), from the observation of the input and the output in some time
interval [0, T ], one may anticipate whether an alert signal will lead to an alarm signal at the next
time instant or not and hence be ready to run away or to provide support.
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Proposition 1. The hydrogeological system described by (3)-(4)-(5)-(6) is reconstructible and
the definition of reconstructibility holds for T = 4.

Proof. We exploit the fact that the overall system is represented as a cascade of two BCNs
and first investigate the possibility of identifying the context state from the available information.
We note that every time the input u(t) is equal to δ1

4 the counter variable c increases when moving
from t to t+1, unless it has already reached the maximum value in which case it remains constant
to the value c(t+1) = c(t) = δ5

5 . Conversely, if u(t) 6= δ1
4 then, independently of c(t), the counter

state c(t + 1) takes the value δ1
5 . This implies that if we know the input sequence u(t), t ∈ Z+,

(even if we ignore the output) then at latest at T1 = 4 (a situation that occurs only if c(0) = δ1
5

and u(t) = δ1
4 for t = 0, 1, 2, 3) we are able to identify exactly c(T1). Therefore the state of

the context is always reconstructible (indeed, based on the input sequence alone). If we identify
c(T1) then, knowing u(t) for t ≥ T1, we are able to determine c(t) and v4(t) for t ≥ T1.
At the same time, we now know v(t), t ≥ T1, which is the input of the Functional System model:

a(t+ 1) = An v3(t) n a(t)
m(t) = Mn v(t) n a(t).

(11)

So, if we prove the reconstructibility of this second system, we have proved the reconstructibility
of the overall hydrogeological system. Reconstructibility of (11) is easily proved along the same
lines as for the first BCN. Indeed, every time the input v3(t) is equal to δ1

2 the counter variable
a increases when moving from t to t + 1, unless it has already reached the maximum value in
which case it remains constant to the value a(t + 1) = a(t) = δ3

3 . Conversely, if v3(t) 6= δ1
2

then, independently of a(t), a(t + 1) takes the value δ1
3 . This means that if we know the input

sequence v3(t), t ∈ Z+, then at latest at T2 = 2 we are able to identify exactly a(T2) (and hence
a(t), t ≥ T2).
Putting together the two parts of the reasoning, we can claim that from T = max{T1, T2} = 4
onward, we are able to identify both c(t) and a(t). This proves that the system is reconstructible
and the definition holds for T = 4.

8. FAULT DETECTION

A general theory of fault detection in the context of BCNs is still at an early stage, nonetheless
there have been some interesting contributions addressing this important problem [Fornasini and
Valcher 2015a; 2015b; Sutavani et al. 2019; Zhang et al. 2018]. The fault detection problem
investigated in [Fornasini and Valcher 2015a; 2015b; Zhang et al. 2018] refers to the case when
the matrices L and H involved in the state and output equations (7) and (8) are replaced by two
different (and potentially arbitrary) logical matrices LF and HF , as a consequence of a fault. In
the context of the hydrological system (and of any alarm system for which the alarm is launched
only when some variable take critical values on a sufficiently long time interval), the state variables
represent counter variables, and the state-update equations are extremely elementary. So, the
case of a fault that arbitrarily affects the matrices that regulate the counter variables update does
not seem a very realistic one. Similarly, the case when the matrix that generates the alarm/alert
output signal is replaced by a different logic matrix seems too general and not representative of
the real faults that may affect the system.

An exception is represented by the case when the change of the matrices L or H formalizes
a very classical type of fault that has been investigated for logic circuits: the so called stuck-in
fault. In the context of the hydrogeological system, this corresponds to the case when one (or
more) state variable is stuck at some constant value, independently of the soliciting input. In
other words, we are considering the case when one of the counters for some reasons does not
update (the case when both counters get stuck at the same time is extremely unrealistic).

Assume that there exists some time instant τ ∈ Z+ such that either c(t) = c(τ) for every
t ≥ τ or a(t) = a(τ) for every t ≥ τ . The problem that we want to investigate is the following
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one: Assuming that we know the hydrogeological system model (3)-(4)-(5)-(6), and that we have
access both to the inputs u(t),v1(t),v2(t),v3(t) and to the output y(t) = m(t), are we able to
detect such a fault? If so, are we able to identify which of the two counters is blocked?

The observability and reconstructibility analysis carried on in the previous section allows to
provide a quite complete answer to both questions. It is in fact easy to see that if the stuck-
in fault affects the context state variable at t = τ and blocks the context state at the value
c(t) = δi5, i 6= 5, for every t ≥ τ , then every input signal u(t), t ∈ Z+, that starting from t = τ
does not take the value δ1

2 for more than 3 consecutive time instants, will generate the constant
context output signal v4(t) = δ2

2 (context-alert= quiet), exactly as it would if the context state
would be correctly working starting from that same value c(t) = δi5 at t = τ but correctly
evolving in time. This is due to the fact that the system is not observable and hence different
state trajectories are compatible with the same input-output trajectories; in particular, there exist
constant state trajectories that cannot be distinguished from time-varying state trajectories. A
quite similar analysis could be carried on for the Functional System state variable a(t), since the
case when a is stuck at δ1

3 or at δ2
3 cannot be detected from the output signal m(t), when v3 is

identically equal to δ2
2 . This allows to say that, in general, a stuck-in fault may not be detected

and hence, a fortiori, identified.
This is surely not a good system feature. However, it must be remarked that the situations we have
depicted are those when an alarm signal would have not been generated even if the system state
would have not been stuck at a constant value. Indeed if the input signals u(t),v1(t),v2(t),v3(t)
simultaneously take the value δ1

2 on a sufficiently large time window, then stuck-in faults that
would erroneously lead to a non-alarm signal could be easily identified and hence corrected.

Indeed, the simple knowledge of u(t), t ∈ Z+, allows to identify c(t) for t ∈ Z+, t ≥ T1 = 4.
Similarly, the knowledge of v3(t), t ∈ Z+, allows to identify a(t) for t ∈ Z+, t ≥ T2 = 2. This
means that we can obtain an estimate ĉ(t) of c(t) and an estimate â(t) of a(t), and these estimates
are both exact from T = T1 = 4 onward, provided that the system is not affected by faults. By
making use of these estimates and the system model, we can derive the estimate of the context
output

v̂4(t) = Hc n ĉ(t) (12)

and of the overall system output

m̂(t) = Mn v̂(t) n â(t), (13)

where v̂(t) := v1(t) n v2(t) n v3(t) n v̂4(t).
So, if the inputs are all equal to δ1

2 for at least 4 consecutive time instants, we know that an
alarm signal should be generated and if this is not the case then a fault has necessarily occurred.

To conclude, we have proved what follows for the hydrogeological model:

Proposition 2. Given the hydrogeological system described by (3)-(4)-(5)-(6), a stuck-in fault
for one of the state variables, c(t) or a(t), cannot be identified corresponding to all the input
sequences, but if one of the counters gets stuck at a value that is not maximum, thus preventing
the possible generation of an alarm, then the previous state estimator always allows to detect and
identify the stuck-in fault at latest after T = 4 times instants after the fault has occurred.

Note, finally, that a false alarm cannot possibly be issued, because this would require not only
that one of the counters is stuck to the maximum value but also that the other is at the maximum
value in turn and the inputs are all high, but this is the case when the alarm message should be
issued!
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9. CONCLUSIONS AND FUTURE WORK

In this paper we model a simple Context-aware system as a Boolean Control Network in order
to use the powerful tools typical of system theory, which apply to linear analog systems, also to
digital systems, whose properties are usually expressed by logical rules. The ultimate goal is to
pave the way to formally assess reliability and safety properties of self adapting safety critical
systems.
The existence of globally attractive equilibrium points under constant input and the recon-
structibility of the system have been proved, as well as the possibility of identifying some faults
which could adversely affect the system output.
Further work is to be made to apply these techniques to more complex feedback systems, where
the output of the functional systems can affect in turn the state of the Context, and to en-
hance fault tolerance by considering possible correlations among the sensors and other system
input/output devices.
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