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1. INTRODUCTION

Indexing through preprocessing is the basis of search today. Unfortunately, as described in Section 2, there
are real-world situations where we don’t know how to automate the creation of an index. In addition, it is
not possible to preprocess live sources of data such as a collection of webcams on the Internet. How can
one search such data?

In this paper, we show how query-specific content-based computation can be used for interactive search
when a pre-computed index is not available. Our emphasis on interactive search makes user attention more
precious than any system resource. Rather than text or numeric data, our focus is on complex data such
as digital photographs, medical images, and speech recordings.

We have been exploring this approach since late 2002 in the context of the Diamond project. An early
description of Diamond was published in 2004 [Huston et al. 2004]. Since then we have gained consider-
able experience in applying our approach to real-world problems in the health sciences. This experience
has led to extensive evolution and redesign of our early prototype, resulting in open-source middleware
called the OpenDiamond ® platform. For ease of exposition, we use the term “Diamond” flexibly: as our
project name, to characterize our approach to search (“the Diamond approach”), to describe the class of
applications that use this approach (“Diamond applications”), and so on.

We begin in Section 2 with two motivating examples drawn from our actual experience. Our early Dia-
mond prototype is summarized in Section 3, and its transformation through our collaborations is presented
in Section 4. We describe the design and implementation of our current system in Section 5, then validate
it in two parts: versatility in Section 6.1, and interactive performance in Section 6.2. Section 7 discusses
related work, and Section 8 closes with a discussion of future work.

2. MOTIVATING EXAMPLES

Faced with an ocean of data, how does an expert formulate a crisp hypothesis that is relevant to his task?
Consider Figure 1(a), showing two examples of lip prints from thousands collected worldwide by cran-
iofacial researchers investigating the genetic origins of cleft palate syndrome. From genetic and devel-
opmental reasoning, they conjecture that even asymptomatic members of families with the genetic defect
will exhibit its influence in their finger prints and lip prints. Of the many visual differences between the
left image (control) and the right image (from a family with cleft palate members), which are predictive of
the genetic defect? What search tools can the systems community offer a medical researcher in exploring
a large collection of lip prints to answer this question?

Another example pertains to the pharmaceutical industry. Long-running automated experiments for
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(a) Lip Prints in Craniofacial Research

(b) Neuronal Stem Cell Growth

Figure. 1: Examples of Hard-to-Index Data

investigating drug toxicity produce upwards of a thousand high-resolution cell microscopy images per
hour for many days, possibly weeks. Monitoring this imaging output for anomalies, often different from
previous anomalies, is the task of human investigators. Figure 1(b) shows two examples of neuronal stem
cell images from such an experiment. The left image is expected under normal growth conditions. The
right image is an anomaly. After discovering this anomaly (itself a challenging task), an investigator has
to decide whether it is a genuine drug effect or if it arises from experimental error such as loss of reagent
potency or imaging error. For some errors, aborting the entire experiment immediately may be the right
decision. What search tools exist to help discover such anomalies in real time and to see if they have
occurred before?

3. PRELIMINARY PROTOTYPE

Our early thinking on this problem was strongly influenced by the possibility of using specialized hard-
ware. Without an index, brute-force search is the only way to separate relevant and irrelevant data. The ef-
ficiency with which data objects can be examined and rejected then becomes the key figure of merit. Work
published in the late 1990s on active disks [Acharya et al. 1998; Keeton et al. 1998; Memik et al. 2000;
Riedel et al. 1998] suggested that application-level processing embedded within storage was feasible and
offered significant performance benefits. Extending this approach to searching complex non-indexed data
appeared to be a promising path.

As a first step, we built a software prototype to emulate active disks that were specialized to the task of
searching complex data. Our primary goal was to gain an understanding of the mechanisms that would be
needed for a hardware implementation. A secondary goal was to verify that interactive search applications
could indeed be built on an active disk interface. Early discard, or the application-specific rejection of
irrelevant data as early as possible in the pipeline from storage to user, emerged as the key mechanism
required. It improves scalability by eliminating a large fraction of the data from most of the pipeline.
We refer to the application-specific code to perform early discard as a searchlet, and this overall search
approach as discard-based search.

The focus of our 2004 paper [Huston et al. 2004] was a detailed quantitative evaluation of this prototype.
Qualitatively, those results can be summarized as follows:

F Queue back-pressure can be effectively used for dynamic load balancing in searchlet execution be-
tween the back-end (storage) and front-end (user workstation). Such load balancing can partly com-
pensate for slower improvement in embedded computing hardware performance, relative to desktop
hardware.
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F Application-transparent runtime monitoring of the computational cost and selectivity of searchlet com-
ponents is feasible, and can be used for dynamic adaptation of searchlet execution. Such adaptation can
help achieve earliest discard of data objects at least cost, without requiring data-specific or application-
specific knowledge.

4. EXPERIENCE-DRIVEN EVOLUTION

In the years since our 2004 paper, we have gained considerable experience in applying our approach to
real-world problems. The insights we acquired changed the strategic direction of the project and led to
the re-design and re-implementation of many aspects of our system. Foremost among these changes was
a re-thinking from first principles of the need for specialized hardware. Based on the positive outcome
of our preliminary prototype, the natural next step would have been for us to build active disk hardware.
However, actual usage experience with commodity server hardware gave pause to our original assumption
that user experience would be unacceptable.

In an example application to search digital photographs, we found user think time to be sufficiently
high that it typically allowed servers to build up an adequate queue of results waiting to be displayed to
the user. Think time often increased in the later stages of an iterative search process, as a user carefully
considered each result to distinguish true positives from false positives. Search tasks rarely required the
corpus of data to be searched to completion; rather, the user quit, once she found enough hits for her
query. Only rarely was a user annoyed because of slow rate of return of results.

Even with a compute-intensive searchlet, such as one incorporating image processing for face detec-
tion, the presence of multiple servers working in parallel typically yielded a result rate that avoided user
stalls after a brief startup delay. Discard-based search is embarrassingly parallel because each data object
is considered independently of all others. It is therefore trivial to increase search throughput by adding
more servers. This affinity for CPU parallelism and storage parallelism aligns well with today’s indus-
try trend towards higher numbers of processing cores per chip and the improvements in capacity and
price/performance of storage.

Based on these insights, we decided to defer building hardware. Instead, we continued with a software-
only strategy and sought collaborations with domain experts to address real-world problems. While col-
laborators from many domains expressed interest, the strongest responses came from the health sciences.
Extensive revision of many aspects of our system resulted from our multi-year collaborations. Today,
our system cleanly separates application-specific and application-independent functionality, with the lat-
ter encapsulated into Linux middleware based on standard Internet component technologies. The key
considerations underlying this evolution were as follows:

F Exploit temporal locality in searchlets
We often observed a distinctive usage pattern that we call interactive data exploration. In a typical
search session, a user’s formation and validation of hypotheses about the data is interleaved in a tightly-
coupled, iterative sequence. This leads to significant overlap in searchlet components as a search pro-
gresses. Caching execution results at servers can exploit this temporal locality. To take advantage of
partial overlap of searchlets, the cache can be maintained at the granularity of searchlet components.
Over time, cache entries will be created for many objects on frequently-used combinations of searchlet
components and parameters, thus reducing the speed differential with respect to indexed search. This
can be viewed as a form of just-in-time indexing that is performed incrementally at run time.

F Unify indexed and discard-based search
A recurring theme in our collaborations was the need to use information stored in a structured data
source (such as a relational database) to constrain the search of complex data objects. Consider, for
example, “From women aged 40-50 who are smokers, find mammograms that have a lesion similar
to this one.” Age and personal habits are typically found in a patient record database, while lesion
similarity requires discard-based search of mammograms.

F Enable use of domain-specific tools for searchlets
We observed several instances where a particular tool was so widely used that it was the basis of
discourse among domain experts. For example, ImageJ is an image processing tool from the National
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Institutes of Health (NIH) that is widely used by cell biology researchers. Another example is the use
of MATLAB for computer vision algorithms in bioengineering. Enabling searchlets to be created with
such tools simplifies the use of our system by domain experts, and also leverages the power of those
tools.

F Streamline result transmission
Initially, we did not pay attention to the efficiency of result transmission from server to client since
this took place over a LAN. Over time, our thinking broadened to include Internet-wide searches. This
required protocol changes for efficiency over WANs, as well changes in the handling of results. Rather
than always shipping results in full fidelity, we now ship results in low fidelity. The full-fidelity version
of an object is shipped only on demand. Since “fidelity” is an application-specific concept, this required
end-to-end changes in our system design.

F Balance versatility and customization
Another recurring theme was the tension between quick incremental extension of existing applications,
and the creation of new applications with more domain-specific support and a more natural workflow
for domain experts — attributes that proved to be important in successful collaborations. We learned
how to separate searchlet development (involving, for example, image processing) from the user inter-
action and workflow aspects of an application. Prioritizing searchlet development often exposed deep
contextual issues and assumption mismatches early in the collaboration process. We thus arrived at an
approach in which a single generic application (described in Section 6.1.1) acts as a kind of “Swiss
army knife” for searchlet development. Only when searchlet development has proceeded far enough to
be confident of success, do we begin the effort to design the rest of an application.

F Enable search of live data sources
Until recently, our focus was solely on searching stored data. The growing importance of live data
sources on the Web, such as traffic monitoring cameras, suggested that it might be valuable to extend
our system to search live data. While significant back-end extensions were necessary to enable this
functionality, we were gratified that no application-level changes were required. To a user, searching a
live stream of images from the Web appears just like searching images on server disks.

F Re-engineer the code base
As a proof-of-concept artifact, our initial prototype had numerous limitations. Over time, many aspects
of the system required extensive re-writing in order to improve efficiency, robustness, portability and
maintainability. For example, we replaced the entire communication layer for these reasons.
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Figure. 2: System Architecture
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5. DESIGN AND IMPLEMENTATION

As shown in Figure 2, our system architecture cleanly separates a domain-independent runtime platform
from domain-specific application code. The runtime platform consists of client and server code, as well
as a TCP-based network protocol. User interaction typically occurs through a domain-specific GUI.

For each search, the user defines a searchlet from individual components called filters. A filter consists
of executable code plus parameters that tune the filter to a specific target. For example, an image search
for women in brown fur coats might use a searchlet with three filters: a color histogram filter with its color
parameter set to the RGB value of the desired shade of brown; a texture filter with examples of fur patches
as its texture parameter; and a face detection filter with no parameters. The searchlet is submitted by the
application via the Searchlet API, and is distributed by the runtime system to all of the servers involved in
the search task. Each server has a persistent cache of filter code, to avoid retransmissions.

Each server iterates through its local objects in a system-determined order and presents them to filters
for evaluation through the Filter API. Each filter can independently discard an object. The details of filter
evaluation are totally opaque. The scalar return value is thresholded to determine whether a given object
should be discarded or passed to the next filter. Only those objects that pass through all of the filters are
transmitted to the client.

Servers do not communicate directly with each other; they only communicate with clients. The primary
factor driving this design decision is the simplification it achieves in the logistics of access control in
multi-realm searches. If a user has privileges to search servers individually in different authentication
realms, she is immediately able to conduct searches that span those servers. A secondary factor is the
simplification and decomposability that it achieves in the server code structure. Our experience with the
applications described in Section 6.1 confirm that this architectural constraint is a good tradeoff. Only in
one instance (the online anomaly detection application in Section 6.1.5) have we found a need for even
limited sharing of information across servers during a search. Even in that case, the volume of sharing
is small: typically, a few hundred bytes to a few kilobytes every few seconds. This is easily achieved
through the use of session variables in the APIs described in Section 5.1.

5.1 Programming Interface

The Searchlet API defines the programming interface for the application code (typically GUI-based) that
runs on the client. The Filter API defines the programming interface for filter code that runs on a server.
We provide details of each below.

5.1.1 Searchlet API. Table I lists the calls of the Searchlet API, grouped by logical function. For
brevity, we omit the calls for initialization and debugging. An application first defines filters and searchlets
through the calls in Table I(a). These are transmitted to each server involved in the current search. Next,
in response to user interaction, the application initiates and controls searches using the calls in Table I(b).
The application first defines what it means by a low-fidelity result by calling set push attrs( ). Then,
after issuing start search( ), the application calls next object( ) repeatedly as a result iterator.
At any point, typically in response to a user request, the full-fidelity version of a result can be obtained
by calling reexecute filters( ). When the user aborts the current search and goes back to selecting
a new filter or changing parameters, the calls in Table I(a) again apply.

The calls in Table I(c) allow the client to obtain a small amount of side effect data from each server and
to disseminate them to all servers. As mentioned in the previous section, this was motivated by online
anomaly detection but can be used in any application that requires a small amount of periodic information
sharing across servers during a search.

5.1.2 Filter API. Table II present the Filter API. Each filter provides the set of callback functions
shown in Table II(a), and runtime code on the server invokes these functions once for each object. Within
filter eval( ), the filter code can use the calls in Table II(b) to obtain the contents of the current
object. It can use the calls in Table II(c) to get and set attributes associated with the object. Attributes
are name-value pairs that typically encode intermediate results: for example, an image codec will read
compressed image data and write out uncompressed data as an attribute; an edge detector will read the
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set searchlet() Define current searchlet by loading
and parsing a specification.

add filter file() Load a binary file corresponding to
a filter in the current searchlet.

set blob() Set binary argument for a filter.

(a) Defining a Searchlet

set push attrs() Indicate which attributes are to be
included in the low-fidelity results
returned on the blast channel.

start search() Start a search.

next object() Get the next object from the result
queue.

num objects() Get the number of pending objects
in the current processing queue.

reexecute filters() Return full-fidelity version of
specified object, after re-executing
all filters on it.

release object() Free a previously returned object.

terminate search() Abort current search.

(b) Controlling a Search

get dev session vars() Get names and values of ses-
sion variables on a server.

set dev session vars() Set a server’s session vari-
ables to particular values
given here.

(c) Session Variable Handling

Table I: Searchlet API

image data attribute and emit a new attribute containing an edge map. As an object passes through the
filters of a searchlet, each filter can add new attributes to that object for the benefit of filters that are
further downstream. Early discard strives to eliminate an object from this pipeline after the smallest
possible investment of total filter execution time.

The calls in Table II(d) allow a filter to examine and update session variables on a server. The use of
these variables is application-specific, but the intent is to provide a low-bandwidth channel for annotational
information that is continuously updated during a search.

The runtime code on a server iterates through objects in an unspecified order. This any-order semantics
gives the storage subsystem an important degree of freedom for future performance optimizations. For
example, it could perform hardware-level prefetching or caching of objects and have high confidence that
those optimizations will improve performance. In contrast, a classical I/O API that gives control of object
ordering to application code may or may not benefit from independent hardware optimizations. This
aspect of the Filter API design ensures that applications written today are ready to benefit from future
storage systems that exploit any-order semantics.

5.2 Result and Attribute Caching

Caching on servers takes two different forms: result caching and attribute caching. Both are application-
transparent, and invisible to clients except for improved performance. Both caches are persistent across
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filter init() Called once at the start of a search.

filter eval() Called once per object, with its handle
and any data created in the init call.

filter fini() Called once at search termination.

(a) Callback Functions

next block() Read data from the object.

skip block() Skip over some data in the object.

(b) Object Access

read attr() Return value of specified attribute.

ref attr() Return reference to specified attribute.

write attr() Create a new attribute. Attributes cannot
be modified or deleted.

omit attr() Indicate that this attribute does not need
to be sent to client.

first attr() Get first attribute-value pair.

next attr() Iterator call for next attribute-value pair.

(c) Attribute Handling

get session vars() Get the values of a subset of
session variables.

update session vars() Atomically update the given
session variables using the up-
dater functions and values.

(d) Session Variable Handling

Table II: Filter API

server reboots and are shared across all users. Thus, users can benefit from each others’ search activities
without any coordination or awareness of each other. The sharing of knowledge within an enterprise,
such as one member of a project telling his colleagues what filter parameter values worked well on a
search task, can give rise to significant communal locality in filter executions. As mentioned earlier, result
caching can be viewed as a form of incremental indexing that occurs as a side-effect of normal use.

Result caching allows a server to remember the outcomes of object–filter–parameter combinations.
Since filters consist of arbitrary code and there can be many parameters of diverse types, we use a cryp-
tographic hash of the filter code and parameter values to generate a fixed-length cache tag. The cache
implementation uses the open-source SQLite embedded database [SQLite ] rather than custom server
data structures. When a filter is evaluated on an object during a search, the result is entered with its cache
tag in the SQLite database on that server. When that object–filter–parameter combination is encountered
again on a subsequent search, the result is available without re-running the potentially expensive filter
operation. Note that cache entries are very small (few tens of bytes each) in comparison to typical object
sizes.

Attribute caching is the other form of caching in our system. Hits in the attribute cache reduce server
load and improve performance. We use an adaptive approach for attribute caching because some inter-
mediate attributes can be costly to compute, while others are cheap. Some attributes can be very large,
while others are small. It is pointless to cache attributes that are large and cheap to compute, since this
International Journal of Next-Generation Computing, Vol. 1, No. 2, November 2010.
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wastes disk space and I/O bandwidth for little benefit. The most valuable attributes to cache are those
that are small but expensive to generate. To implement this policy, the server runtime system dynamically
monitors filter execution times and attribute sizes. Only attributes below a certain space-time threshold
(currently one MB of size per second of computation) are cached. As processor speeds increase, certain
attributes that used to be cached may no longer be worth caching.

5.3 Network Protocol

The client-server network protocol separates control from data. For each server involved in a search, there
is pair of TCP connections between that server and the client. This has been done with an eye to the future,
when different networking technologies may be used for the two channels in order to optimize for their
very different traffic characteristics. Responsiveness is the critical attribute on the control channel, while
high throughput is the critical attribute on the data channel, which we refer to as the blast channel. Since
many individual searches in a search session tend to be aborted long before completion, the ability to
rapidly flush now-useless results in the blast channel would be valuable. This will improve the crispness
of response seen by the user, especially on a blast channel with a large bandwidth-delay product.

The control channel provides the client synchronous control of various aspects of a search. The library
includes calls for starting, stopping, modifying a search, requesting a full-fidelity object, and so on. The
blast channel works asynchronously, since a single search can generate many results spread over a long
period of time. This TCP connection uses a simple whole-object streaming protocol. Each object in the
blast channel is tagged with a search id, to distinguish between current results and obsolete results.

5.4 Self-Tuning

At runtime, our platform dynamically adapts to changes in data content, client and server hardware, net-
work load, server load, etc. This relieves an application developer of having to deal with this complexity
of the environment.

Data content adaptation occurs by transparent filter reordering, with some hysteresis for stability. In
a typical searchlet, filters have partial dependencies on each other. For example, a texture filter and a
face detection filter can each be run only after an image decoding filter. However, the texture filter can
run before, after, or in parallel with the face detection filter. The filter ordering code attempts to order
filters so that the cheapest and most discriminating filters will run first. This is achieved in a completely
application-independent way by maintaining dynamic measurements of both execution times and discard
rates for each filter. This approach is robust with respect to upgrading hardware or installing hardware
performance accelerators (such as hardware for face detection or recognition) for specific filters.

As mentioned earlier, dynamic load balancing in our system is based on queue backpressure, and is
thus application-independent. There may be some situations in which it is advantageous to perform some
or all of the processing of objects on the client. For example, if a fast client is accessing an old, slow,
heavily-loaded server over an unloaded gigabit LAN, there may be merit in executing some filters on the
client even though it violates the principle of early discard.

5.5 External Scoping of Searches

Many use cases of our system involve rich metadata that annotates the raw data to be searched by content.
In a clinical setting, for example, patient record systems often store not only the raw data produced by
laboratory equipment but also the patient’s relevant personal information, the date and time, the name of
the attending physician, the primary and differential diagnoses, and many other fields. The use of prebuilt
indexes on this metadata enables efficient selection of a smaller and more relevant subset of raw data to
search. We refer to this selection process as scoping a discard-based search. Effective scoping can greatly
improve search experience and result relevance.

Our early research focused exclusively on discard-based search, and treated indexed search as a solved
problem. Hence, the original architecture shown in Figure 2 ignored external metadata sources. Figure 3
shows how that architecture has been modified for scoping. The lower part of this figure pertains to
discard-based search, and is unmodified from Figure 2. It can be loosely viewed as the “inner loop” of
an overall search process. No changes to application code, searchlets, or the server runtime system are

International Journal of Next-Generation Computing, Vol. 1, No. 2, November 2010.



154 · Mahadev Satyanarayanan et al.

Content Server

Content Server

Content Server

to SQL servers,
patient record systems,

directory structures,
and other meta-data

Define scope

Scope cookie

Verify scope

cookie

co
ok

ie
-s

co
pe

d
se

ar
ch

es

Scope ServerScope Server
• user authentication
• access control
• audit trail
• revocation

Scope GUI

Figure. 3: Scoping a Discard-based Search

needed in moving from Figure 2 to Figure 3 — only a few small changes to the client runtime system.
The system extensions for scoping recognize that many valuable searches may span administrative

boundaries. Each administrative unit (with full autonomy over access control, storage management, au-
diting, and other system management policies) is represented as a realm in our architecture. Realms can
make external business and security arrangements to selectively trust other realms.

Each realm has a single logical scope server, that may be physically replicated for availability or load-
balancing using well-known techniques. A user must authenticate to the scope server in her realm at the
start of a search session. For each scope definition, a scope server issues an encrypted token called a
scope cookie that is essentially a capability for the subset of objects in this realm that are within scope.
The fully-qualified DNS hostnames of the content servers that store these objects is visible in the clear in
an unencrypted part of the scope cookie. This lets the client know which content servers to contact for a
discard-based search. However, the list of relevant objects on those content servers is not present in any
part of the scope cookie. That list (which may be quite large, if many objects are involved) is returned
directly to a content server when it presents the scope cookie for validation to the scope server. Figure 3
illustrates this flow of information. Scope cookies are implemented as encrypted X.509 certificates with
lifetimes determined by the scope server.

For a multi-realm search, there is a scope cookie issued by the scope server of each realm that is
involved. In other words, it is a federated search in which the issuing and interpretation of each realm’s
scope cookies occur solely within that realm. A client and its scope server are only conduits for passing
a foreign realm’s scope cookie between that realm’s scope server and its content servers. A user always
directs her scope queries to the scope server in her realm. If a query involves foreign realms, her scope
server contacts its peers in those realms on her behalf.

A user generates a metadata query via a Web interface, labeled “Scope GUI” in Figure 3. The syntax
and interpretation of this query may vary, depending on the specific metadata source that is involved.
The scope cookie that is returned is passed to the relevant domain-specific application on the client.
That application presents the cookie when it connects to a content server. The cookie applies to all
start search( ) calls on this connection. When a user changes scope, new connections are established
to relevant content servers. Thus, the “inner loop” of a discard-based search retains the simplicity of
Figure 2, and only incurs the additional complexity of Figure 3 when scope is changed.

When the full functionality of external metadata scoping is not required, our system can also be set up
to scope at the coarse granularity of object collections. A much-simplified scope server, implemented as
a PHP application, provides a Web interface for selecting collections.
International Journal of Next-Generation Computing, Vol. 1, No. 2, November 2010.
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5.6 Live Data Sources

Support for searching live data sources was a simple extension of the system for searching stored data.
No changes to applications or to the client runtime system were necessary. The only modification to the
server runtime system was a change to the mechanism for obtaining object identities. Rather than reading
names of objects from a file we now read them from a TCP socket.

Separate processes, called data retrievers, are responsible for acquiring objects from arbitrary sources,
saving the objects locally, and providing content servers with a live list of these objects. With this design,
it is easy to incorporate new sources of data. All that is required is the implementation of a data retriever
for that data source. We have implemented the following data retrievers, each requiring less than 250 lines
of Python code:

F File: This simple retriever takes a list of files and provides them to the search system without further
processing. It mimics the old behavior of the system, before support for live data was added.

F Web image crawl: This retriever crawls a set of URLs, extracting images as input to the search.
F Video stream: This retriever takes a set of live video stream URLs and saves periodic frame snapshots

of the video for searching. The original videos are also reencoded and saved locally so that searches
can refer back to the original video which may otherwise be unavailable.

F Webcam stream: This retriever is a simpler version of the video stream retriever. It is designed to
work with a URL that returns a new static video frame each time it is retrieved.

The processing flow of live data retrieval is simple. First, a master process with a list of initial data
sources is started. The master spawns and controls a set of data retriever processes as workers. Each
worker pulls one or more data sources off the work list, processes them, and generates one or more objects
in the local file system. The names of these new objects is added to the list awaiting discard-based search.
Optionally, a worker may add more work to the work list. For example, in the case of Web crawling,
the work list would contain a list of URLs; the worker would fetch each URL, save images pointed to by
<img> and <A> tags, and add new URLs back to the work list. Workers continue until the work list is
empty; in some cases, as with a webcam, this may never happen.

6. VALIDATION

Two broad questions are of interest to us:

F How versatile is the system?
Is it feasible to build a wide range of applications with it? How clean is the separation of domain-
specific and domain-independent aspects of the system? Does it effectively support the use of domain-
specific tools, interfaces and workflows?

F How good is interactive performance?
Can users easily conduct interactive searches of non-indexed data? Are they often frustrated by the
performance of the system? Are they able to search data from a wide range of sources? Do they easily
benefit from the additional system resources such as servers?

6.1 Versatility

Over a multi-year period, we have gained confidence in our approach to searching complex data by im-
plementing diverse applications. The breadth and diversity of these applications speaks for the versatility
of our system. As explained in Section 4, it was the process of working closely with domain experts to
create these applications that exposed limitations in our system and in our thinking about discard-based
search, and guided us through extensive evolution to the current system described in Section 5. We de-
scribe five of these applications below. Except for the first, they are all from the health sciences. Our
concentration on this domain is purely due to historical circumstances. Researchers in the health sciences
(both in industry and academia) were the first to see how our work could benefit them, and helped us to
acquire the funding to create these applications. We are confident that our work can also benefit many
other domains. For example, we are collaborating with a major software vendor to apply our system to
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interactive search of large collections of virtual machine images. To encourage such collaborations, we
have made our system available open-source under the Eclipse Public License.

6.1.1 Unorganized Digital Photographs. SnapFind, which was the only application available at the
time of our 2004 paper, enables users to interactively search large collections of unlabeled photographs
by quickly creating searchlets that roughly correspond to semantic content. Users typically wish to locate
photos by semantic content (for example, “Show me the whale watching pictures from our Hawaii vaca-
tion”), but this level of semantic understanding is beyond today’s automated image indexing techniques.
As shown in Figure 4(a), SnapFind provides a GUI for users to create searchlets by combining simple
filters that scan images for patches containing particular color distributions, shapes, or visual textures.
The user can either select a pre-defined filter (for example, “frontal human faces”) or create new filters by
clicking on sample patches in other images (for example, a “blue jeans” color filter). Details of this image
processing have been reported elsewhere [Huston et al. 2004].

Our extensive modifications to SnapFind since 2004 have created a new tool called HyperFind that
supports a much wider range of filters, an improved GUI, and streamlined result shipping as described in
Section 4. HyperFind supports filters created as ImageJ macros. As an NIH-supported image processing
tool, ImageJ is widely used by researchers in cell biology, pathology and other medical specialties. The
ability to easily add Java-based plugins and the ability to record macros of user interaction are two valuable
features of the tool. An investigator can create an ImageJ macro on a small sample of images, and then use
that macro as a filter in HyperFind to search a large collection of images. A copy of ImageJ runs on each
server to handle the processing of these filters, and is invoked at appropriate points in searchlet execution
by our server runtime system. A similar approach has been used to integrate the widely-used MATLAB
tool. This proprietary tool is an interpreter for matrix manipulations that are expressed in a specialized
programming language. It is widely used by researchers in computer vision and machine learning. Based
on our positive experience with ImageJ and MATLAB, we plan to implement a general mechanism to
allow VM-encapsulated code to serve as a filter execution engine. This will increase the versatility of
our system, but an efficient implementation is likely to be challenging because of the overhead of VM
boundary crossings.

Today, we use HyperFind in the early stages of any collaboration that involves some form of imaging.
Since the GUI is domain-independent, customized filters for the new domain can be written in ImageJ
or MATLAB, and rapidly tested without building a full-fledged application with customized GUI and
workflow. Only after early searchlet testing indicates promise does that overhead have to be incurred.

6.1.2 Lesions in Mammograms. MassFind is an interactive tool for analyzing mammograms that
combines a lightbox-style interface that is familiar to radiologists with the power of interactive search.
Radiologists can browse cases in the standard four-image view, as shown in Figure 4(b). A magnifying
tool is provided to assist in picking out small detail. Also integrated is a semi-automated mass contour tool
that will draw outlines around lesions on a mammogram when given a center point to start from. Once a
mass is identified, a search can be invoked to find similar masses. We have explored the use of a variety
of distance metrics, including some based on machine learning [Yang et al. 2010], to find close matches
from a mass corpus. Attached metadata on each retrieved case gives biopsy results and a similarity score.
Radiologists can use MassFind to help categorize an unknown mass based on similarity to images in an
archive.

6.1.3 Digital Pathology. Based on analysis of expected workflow by a typical pathologist, a tool
called PathFind has been developed. As shown in Figure 4(c), PathFind incorporates a vendor-neutral
whole-slide image viewer that allows a pathologist to zoom and navigate a whole slide image just as he
does with a microscope and glass slides today. The PathFind interface allows the pathologist to identify
regions of interest on the slide at any magnification and then search for similar regions across multiple
slide formats. The search results can be viewed and compared with the original image. The case data for
each result can also be retrieved.
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(a) SnapFind (b) MassFind

(c) PathFind (d) FatFind

(e) StrangeFind

Figure. 4: Screenshots of Example Applications

6.1.4 Adipocyte Quantitation. In the field of lipid research, the measurement of adipocyte size is an
important but difficult problem. We have built a tool called FatFind for an imaging-based solution that
combines precise investigator control with semi-automated quantitation. FatFind enables the use of un-
fixed live cells, thus avoiding many complications that arise in trying to isolate individual adipocytes. The
standard FatFind workflow consists of calibration, search definition and investigation. Figure 4(d) shows
the FatFind GUI in the calibrate step. In this step, the researcher starts with images from a small local col-
lection, and selects one of them to define a baseline. FatFind runs an ellipse extraction algorithm [Goode
et al. 2007; Kim et al. 2002] to locate the adipocytes in the image. The investigator chooses one of these
as the reference image, and then defines a search in terms of parameters relative to this adipocyte. Once
a search has been defined, the researcher can interactively search for matching adipocytes in the image
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repository. He can also make adjustments to manually override imperfections in the image processing and
obtain size distributions and other statistics of the returned results.

6.1.5 Online Anomaly Detection. StrangeFind is an application for online anomaly detection across
different modalities and types of data. It was developed for the scenario described as the second example
of Section 2: assisting pharmaceutical researchers in automated cell microscopy, where very high vol-
umes of cell imaging are typical. Figure 4(e) illustrates the user interface of this tool. Anomaly detection
is separated into two phases: a domain-specific image processing phase, and a domain-independent statis-
tical phase. This split allows flexibility in the choice of image processing and cell type, while preserving
the high-level aspects of the application. StrangeFind currently supports anomaly detection of adipocyte
images (where the image processing analyzes sizes, shapes, and counts of fat cells), brightfield neurite
images (where the image processing analyzes counts, lengths, and sizes of neurite cells), and XML files
that contain image descriptors extracted by proprietary image processing tools. Since StrangeFind is an
online anomaly detector, it does not require a preprocessing step or a predefined statistical model. In-
stead, it builds up the model as it examines the data. While this can lead to a higher incidence of false
positives early in the analysis, the benefits of online detection outweigh the additional work of screening
false positives. Further details on this application can be found elsewhere [Goode et al. 2008].

6.1.6 Discussion. Through our extensive collaborations and from our first-hand experience in build-
ing the above applications, we have acquired a deeper appreciation for the strengths of discard-based
search relative to indexed search. These strengths were not apparent to us initially, since the motivation
for our work was simply coping with the lack of an index for complex data.

Relative to indexed search, the weaknesses of discard-based search are obvious: speed and security. The
speed weakness arises because all data is preprocessed in indexed search. Hence, there are no compute-
intensive or storage-intensive algorithms at runtime. In practice, this speed advantage tends to be less
dramatic because of result and attribute caching by servers in our system, as discussed in Section 5.2. The
security weakness arises because the early-discard optimization requires searchlet code to be run close to
servers. Although a broad range of sandboxing techniques, language-based techniques, and verification
techniques can be applied to reduce risk, the essential point remains that user-generated code may need
to run on trusted infrastructure during a discard-based search. This is not a concern with indexed search,
since preprocessing is done offline. Because of the higher degree of scrutiny and trust that tends to exist
within an enterprise, we expect that use of discard-based search is more likely within the intranets of
enterprises rather than in mass-market use.

At the same time, discard-based search has certain unique strengths. These include: (a) flexibility in
tuning between false positives and false negatives, (b) ability to dynamically incorporate new knowledge,
and (c) better integration of user expertise.

Tunable precision and recall: The preprocessing for indexed search represents a specific point on a
precision-recall curve, and hence a specific choice in the tradeoff space between false positives and false
negatives. In contrast, this tradeoff can be dynamically changed during a discard-based search session.
Using domain-specific knowledge, an expert user may tune searchlets toward false positives or false nega-
tives depending on factors such as the purpose of the search, its completeness relative to total data volume,
and the user’s judgement of results from earlier iterations in the search process.

It is also possible to return a clearly-labeled sampling of discarded objects to alert the user to what
she might be missing, and hence to the likelihood of false negatives. Interactive data exploration requires
at least a modest rate of return of results even if they are not of the highest quality. The user cannot
progress to the next iteration of a search session by re-parameterizing or redefining the current searchlet
until she has sufficient clues as to what might be wrong with it. Consideration of false negatives may also
be important: sometimes, the best way to improve a searchlet is by tuning it to reduce false negatives,
typically at the cost of increasing false positives. To aid in this, a planned extension of our system will a
provide a separate result stream that is a sparse sampling of discarded objects. Applications can present
this stream in a domain-specific manner to the user, and allow her to discover false negatives. It is an
open question whether the sampling of discarded objects should be uniform or biased towards the discard
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Figure. 5: Experimental Setup.

threshold (i.e., “near misses”).
New knowledge: The preprocessing for indexing can only be as good as the state of knowledge at the

time of indexing. New knowledge may render some of this preprocessing stale. In contrast, discard-based
search is based on the state of knowledge of the user at the moment of searchlet creation or parameteri-
zation. This state of knowledge may improve even during the course of a search. For example, the index
terms used in labeling a corpus of medical data may later be discovered to be incomplete or inaccurate.
Some cases of a condition that used to be called “A” may now be understood to actually be a new condition
“B.” Note that this observation is true even if index terms were obtained by game-based human tagging
approaches such as ESP [von Ahn et al. 2004].

User expertise: Discard-based search better utilizes the user’s intuition, expertise and judgement. There
are many degrees of freedom in searchlet creation and parameterization through which these human qual-
ities can be expressed. In contrast, indexed search limits even experts to the quality of the preprocessing
that produced the index.

6.2 Interactive Performance

While answering questions about the versatility of the system is relatively straightforward, answering
questions about its performance is much harder. The heart of the complexity lies in a confounding of
system-centric and domain-centric effects. Classical measures of system performance such as number of
results per second fail to recognize the quality of those results. A bad searchlet may return many false
positives, and overwhelm the user with junk; the worst case is a searchlet that discards nothing! The
user impact of a bad searchlet is accentuated by good system infrastructure, since many more results are
returned per unit time. Conversely, an excellent searchlet may return only a few results per unit of time
because it produces very few false positives. However each result may be of such high quality that the
user is forced to think carefully about it, before deciding whether it is a true positive or a false positive.
The system is not impressive from a results per second viewpoint, but the user is happy because this rate
is enough to keep her cognitively engaged almost continuously. Large think times are, of course, excellent
from a systems perspective because they give ample processing time for servers to produce results.

Clearly, from the viewpoint of the user, it is very difficult to tease apart system-centric and domain-
centric effects in our system. We therefore adopt a much less ambitious validation approach by fixing the
user trace of interactive data exploration. This corresponds to a fixed sequence of searchlet refinements,
each made after viewing the same number of results as in trace capture. Think time per result is also
distributed as in the original trace. For such a trace, we show that the distribution of user response time
(that is, unproductive user time awaiting the next result) is insensitive to network bandwidth and improves
significantly with increased parallelism. We also show that response times are comparable on LAN-based
server farms and live Web search. In other words, users can interactively search live Web data.

6.2.1 Experimental Setup. Figure 5 shows our experimental setup. All experiments involve a single
client that replays a trace of search requests. These traces are described in Section 6.2.2. The experiments
described in Sections 6.2.3 and 6.2.4 involve one to eight search servers that process data stored on their
local disks. These experiments do not involve the Web servers shown in Figure 5. To emulate live Web
search, the experiments in Section 6.2.5 use two Web servers. A Netem emulator varies network quality
between client and search servers. Another Netem emulator varies network quality between search servers
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and Web servers. Except for the Netem machines, all computers, were 3GHz Intel CoreT M 2 Duo with
3 GB of RAM running Debian Linux 5.0. The Web servers ran Apache HTTP Server 2.2.9. The Netem
machines were 3.6GHz Pentium 4 with 4GB of RAM.

Figure. 6: Picture Shown to Users

User Trace sequence Images Elapsed
viewed time (s)

1 Browse to find photo containing green grass. Set a color filter and a texture filter match-
ing the grass to find photo of dog playing in yard. Finally, set color filters matching
the dog’s brown and white patches.

166 598

2 Browse to find image of grass and image of brick wall. Set grass color and brick wall
color and texture. Drop brick wall and go with grass color until image of dog is found.
Set grass color and dog’s colors filter. Finally, drop grass color and use only dog colors.

492 972

3 Browse to find image with grass. Used grass color filter to find image of brown deer.
Used filters based on grass colors and deer color to find white hat and added white
color to search. Found dog. Set color and texture filter based on dog. Found another
image of the dog and created another brown color filter. Used first dog’s white filter
and new brown filter. Revert to dog’s white color, fur texture and brown color filter.
Finally revert to just dog white color and brown color filter.

289 1221

Table III: User Trace Characteristics

Mean (s) Median (s) σ (s)
User 1 1.23 0.81 2.23
User 2 2.04 1.00 6.74
User 3 1.01 0.75 1.29

All Users 1.35 0.82 3.93

Table IV: User Think Times

6.2.2 User Traces. The traces used in our experiments were obtained from three members of our
research team. Using the SnapFind client described in Section 6.1.1, their task was to find five pictures
of the dog shown in Figure 6. The corpus of images they searched contained about 109,000 images that
were downloaded from the Flickr [Flickr . ] photo sharing Web site. We uniformly interspersed 67 images
of the dog, taken over a year as it grew from puppy to adult, to the set of downloaded images. To allow
us to accurately measure think times, we modified the SnapFind application to display one thumbnail at a
time (rather than the usual six thumbnails). We obtained our traces at 100 Mbps, with four search servers.
Table III summarizes the traces, while Table IV shows the mean and standard deviations of user think
times. Our experiments replayed these traces on a SnapFind emulator.
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Figure. 7: Impact of Network Quality

We present our results in Figures 7 through 10 as cumulative distribution functions (CDFs) of measured
response times over 3 runs of the User 1 trace. The User 2 and User 3 traces were only used to obtain
think times. Note that the X axis in all these graphs is in log scale, to better illustrate the areas of most
interest.

6.2.3 Impact of Network Quality. Figure 7 shows the CDFs of response times when we vary the
network conditions between the client and 8 search servers from a well connected LAN environment to
typical WAN links. Under the network conditions studied, the user experience provided by the system
remains unaffected. Changes in bandwidth have little to no effect on the user experience because the
system transfers minimal data during a search. The default behaviour of the system is to return low
fidelity thumbnails of the image results instead of returning the full images. The user requests the full
fidelity version of only those images he finds of interest. Robustness to network latency is achieved by
buffering results as they arrive at the client. Often, requests for results are serviced from the buffer.
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Figure. 8: Impact of Parallel Computation

6.2.4 Impact of Parallel Computation. Figure 8 shows the CDFs of response times as the number of
search servers varies between one and eight. The results reported were obtained on a network consisting
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of the search servers and a client that connects to the servers through a simulated 1 Mbps WAN link with
30 ms RTT. Images are uniformly distributed across the search servers.

With a single search server, fewer than half of the user requests were serviced within one second. With
four servers nearly 84% of the requests are serviced within one second. Eight servers increase the portion
of requests serviced within a second to 87%. Thus, we conclude that design of the system enables users to
easily exploit opportunities for parallel computation, and take advantage of additional processors without
any application-specific support for parallelism.

6.2.5 Searching the Live Web. We evaluated the performance delivered by the system when conduct-
ing searches on content downloaded from the Web. For this experiment, the image collection is hosted on
two remote Web servers accessible through a simulated 10 Mbps WAN link with RTT of 30 ms. The client
connects to the search servers through a 100 Mbps LAN with no added latency. We varied the number
of search servers from one to eight. Each search server ran five instances of the Web image retriever. We
found that running five instances of this process strikes a balance between fully utilizing the bandwidth
available and sharing the processor time with the search process.

Figure 9 compares the performance of Web search with the performance of a local search, where the
data is stored on disks on the search servers. The figure shows that for a small number of servers, the
task is CPU bound and the performance of searching web based images is comparable to that of a local
search. However, with four or more search servers, the performance gap widens as the network link
saturates. To conduct the search over the Web, the system downloaded, on average, 3.86 GB of image
data. The magnitude of the download makes it impractical to perform such search interactively over the
1 Mbps link. Conversely, Figure 10, shows that increasing the link capacity to the Web servers improves
the performance of Web search on large clusters to levels that are comparable to local search.

It is not surprising that response times are sensitive to the capacity of the link to the Web servers.
Unlike the client, data retrievers download full resolution images since Web servers do not usually support
negotiation of image fidelity. However, provided that there is sufficient bandwidth to keep all search
servers busy, the performance of searching Web content is comparable to that of searching local content.
We expect sites deploying clusters of the system to be well connected to the Internet, thus mitigating any
network effect.

7. RELATED WORK

Diamond is the first system to unify the distinct concerns of interactive search and complex, non-indexed
data. Data complexity motivates pipelined filter execution, early discard, self-tuning for filter execution
order, the ability to use external domain-specific tools such as ImageJ and MATLAB, and the ability to
use external meta-data to scope searches. Concern for crisp interaction motivates caching of results and
attributes at servers, streamlining of result transmission, self-tuning of filter execution site, separation of
control and blast channels in the network protocol, and any-order semantics in server storage accesses.
Although no other system addresses these dual concerns, some individual aspects of our design and im-
plementation overlap previous work.

The dissemination and parallel execution of searchlet code at multiple servers bears some resemblance
to the execution model of MapReduce [Dean et al. 2004] and Hadoop [Hadoop ]. Both models address
roughly the same problem, namely, going through a large corpus of data for identifying objects that
match some search criteria. Our execution model was developed in 2002-2003 in the context of active
disks, before we became aware of MapReduce, so it is interesting to note the similarity in our independent
solutions. In both models, execution happens as close to data as possible. Of course, there are considerable
differences at the next level of detail. MapReduce is a batch processing model, intended for index creation
prior to search execution. In contrast, Diamond searchlets are created and executed during the course of an
interactive search. None of the mechanisms for crisp user interaction that were mentioned in the previous
paragraph have counterparts in the MapReduce model. Fault tolerance is important in MapReduce because
it is intended for long-running batch executions; searchlet execution, in contrast, ignores failures since
most executions are likely to be aborted by the user in at most a few minutes.

Aspects of filter execution in Diamond bear resemblance to the work of Abacus [Amiri et al. 2000],
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Figure. 9: Web at 1 Mbps with 1 to 8 Search Servers
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Figure. 10: Web at 100 Mbps with 8 Search Servers

Coign [Hunt et al. 2000], River [Amiri et al. 2000] and Eddies [Avnur et al. 2000]. Those systems pro-
vide for dynamic adaptation of execution in heterogeneous systems. Coign focuses on communication
links between application components. Abacus automatically moves computation between hosts or stor-
age devices in a cluster based on performance and system load. River handles adaptive dataflow control
generically in the presence of failures and heterogeneous hardware resources. Eddies adaptively reshapes
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dataflow graphs to maximize performance by monitoring the rates at which data is produced and con-
sumed at nodes. The importance of filter ordering has long been a topic of research in database query
optimization [Selinger et al. 1979].

From a broader perspective, indexed search of complex data has long been the holy grail of the knowl-
edge retrieval community. Early efforts included systems such as QBIC [Flickner et al. 1995]. More
recently, low-level feature detectors and descriptors such as SIFT [Lowe 2004] and PCA-SIFT [Ke et al.
2004] have led to efficient schemes for index-based sub-image retrieval. However, all of these methods
have succeeded only in narrow contexts. For the foreseeable future, automated indexing of complex data
will continue to be a challenge for several reasons. First, automated methods for extracting semantic
content from many data types are still rather primitive. This is referred to as the “semantic gap” [Minka
et al. 1997] in information retrieval. Second, the richness of the data often requires a high-dimensional
representation that is not amenable to efficient indexing. This is a consequence of the curse of dimen-
sionality [Berchtold et al. 1997; Duda et al. 2001; Yao et al. 1985]. Third, realistic user queries can be
very sophisticated, requiring a great deal of domain knowledge that is often not available to the system
for optimization. Fourth, expressing a user’s vaguely-specified query in a machine-interpretable form can
be difficult. These deep problems will long constrain the success of indexed search for complex data.

8. CONCLUSION

Diamond aims to help domain experts creatively explore large bodies of complex non-indexed data.
Through Diamond, we hope to do for complex data what spreadsheets did for numeric data in the early
years of personal computing: allow users to “play” with the data, easily answer “what if” questions, and
thus gain deep, domain-specific insights. The central premise of our work is that the sophistication of
queries we are able to pose about complex data will always exceed our ability to anticipate, and hence
pre-compute indexes for, such queries. While indexing techniques will continue to advance, so will our
ability to pose ever more sophisticated queries — our reach will always exceed our grasp. That gap is
Diamond’s sweet spot, where it will offer the greatest value.
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