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Increased number of vehicle-based road accidents is a key reason for the death and disability of people. Timely
information on accidents can save lives. Current accident detection systems are either working towards increasing

the accuracy of detection or the severity of the accident. Accurate information of an accident type can help the

emergency medical services (EMS) to identify the most appropriate type of rescue and medical assistance to the
victims. This work introduces a smartphone-based accident detection and classification (ADC) system that not

only detects the accident but also classifies the type of accident as collision, rollover, or fall-off, using internal and

external sensors. We have developed an end-to-end IoT system that exploits a multi-sensor data fusion framework
to accurately classify the type of accident. The framework combines the decisions of three different classifiers based

on Nave Bayes (NB), K-Nearest Neighbor (KNN), and Random Forest (RF) methods using stacking ensemble

approach. Logistic Regression based stacking approach is found to be highly accurate in comparison to NB, KNN,
and RF classifiers when they were used individually.
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1. INTRODUCTION

Growth in population and per capita income has contributed to increased ownership of vehicles
across the globe. The rise in vehicle numbers has resulted in a significant increase in traffic which
in turn has contributed to an increase in fatalities and injuries due to road accidents. Over-
speeding, rash driving, intoxication, driver’s exhaustion, poor weather, poor road conditions,
vehicle breakdown, and the presence of stray animals on the roads are among the causes of road
accident deaths. More than 1.35 million people die and 50 million people suffer injuries every
year because of accidents on the roads (WHO, 2018). Road fatalities are the eighth biggest cause
of death, out of which about 74 percent were males and 26 percent females. More than 90 percent
of all road deaths occur in low- and middle-income nations, despite possessing nearly 60 percent
of the world’s vehicles (WHO, 2019).

Prompt accident notification to appropriate emergency services such as the nearest police
station, fire station, emergency medical services (EMS), etc. is necessary for providing aid to
injured persons in a timely manner. In road accidents most human lives are lost due to delays
in emergency medical help. As per the Golden Hour Principle (Lerner and Moscati, 2001), there
is a strong chance that prompt medical help can prevent death during the golden hour. Golden
Hour is defined as the time duration between traumatic injury and medical assistance. If the time
from accident to first aid is reduced, then the probability of death becomes one third (Sánchez-
Mangas et al., 2010). Although this essential automatic emergency notification mechanism is a
standard accessory in certain newer and costlier cars, most cars of today are not equipped with
these high-end automated warning systems.

Information and communication technologies have been used in the recent past to notify the
EMS after an accident (Fogue et al., 2012). Most of the research work is limited to enhancing
accident identification accuracy, assessing the severity of accidents, or reducing the post-accident
rescue period (Ponte et al., 2016)(Chung and Recker, 2012). Failure to not classify the type of
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accident as a rollover, collision, or fall-off is another drawback of most of the existing accident
detection systems. Merely recording the occurrence of an accident incident greatly restricts
the capacity of EMS to provide the best kind of rescue and medical assistance to the victims.
Therefore, an inexpensive and highly accurate accident detection and classification (ADC) system
is required that can be retrofitted to any vehicle, and which automatically send the essential
details of accidents to the EMS so that in time rescue action can be initiated.

Contribution of this work: Research work for developing methods for predicting, avoiding,
and detecting road accidents is mainly focused on either improving accuracy or reducing rescue
time after road accidents occur. In this work, we have proposed an end-to-end IoT architecture
that can detect the accident, and send the emergency notification to the intended recipients to
start the rescue operation on time. The research also focuses on finding the highly accurate ADC
model. Our IoT architecture exploits the multi-sensor data fusion framework to accurately detect
and classify the type of accident. This framework fuses the outputs (decisions) of Nave Bayes
(NB), KNN (K-Nearest Neighbor), and RF (Random Forest) classifiers by using stacking ensem-
ble, and concludes that logistic regression-based stacking ensemble outperforms these classifiers
if they were used individually. This accident classification can sometimes be incredibly useful
when planning the rescue operations. Our proposed solution is economical and effectual that can
be retrofitted in any vehicle.
The rest of the paper is organized as follows. Major literature survey in the area of vehicle colli-
sion, rollover, and fall-off detection/notification, and multi-sensor fusion is described in Section 2.
The architecture of our end-to-end IoT system and model variables explained in Section 3. The
hardware setup and software setup is described in Section 4. Section 5 provides the description
of possible accident scenarios, whereas experimental setup and data collection are explained in
Section 6. Multi-sensor data fusion framework for the ADC system that incorporates four differ-
ent ADC models, based on NB, KNN, RF classifiers, and Stacking ensemble technique, has been
proposed in Section 7. Section 8 presents the performance evaluation of the proposed system,
which is followed by concluding remarks in Section 9.

2. RELATED WORK

This section discusses research work related to the detection, localization, modeling, analysis, and
reporting of road accidents. Sadeky et al. (2010) used real-time video clips from traffic control
systems to create the histogram of flow gradients (HFG). The features of the HFG are used as
inputs for designing the logistic regression-based model to predict the road accidents. In order
to minimize the number of false alarms, Smolka and Skublewska-Paszkowska (2016) introduced
a smartphone-based collision detection system that uses the magnetometer, accelerometer, and
GPS modules. Several crash metrics were proposed by McIver et al. (1996). The measurements
included the acceleration values, the squared acceleration, the amount of acceleration over a
period of time, and the velocity curve shape. Kumar et al. (2019) have used two standard
NHTSA datasets to train and test the Logistic Regression based learning model to predict the
vehicle collision when the impactor hit the vehicle, and when the vehicle collides with a pole.
Sada and Moriyama (1998) have suggested that a crash can be detected by adjusting the velocity
threshold. The threshold adjustment was based on physical quantities included acceleration, jerk,
displacement, and velocity.

A combination of different types of sensors including force sensor, accelerometer, and pressure
sensor has been used by some systems (Dunwoody and Stern, 1998) for rollover sensing. Steiner
et al. (1997) introduced a model for rollover detection using acceleration and yaw rate sensors.

Kumar et al. (2020b) have used the SVM (Support Vector Machine) based model to detect
the fall-off of a vehicle from an altitude by using different parameters including the change in
altitude, speed of the vehicle, and absolute linear acceleration with detection accuracy of 98.2
percent. Kumar et al. (2020) have utilized accelerometer, GPS and barometer sensors to classify
the vehicle fall-off severity as mild, moderate, and severe. KNN (K-Nearest Neighbor) based
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supervised machine learning model has been used to classify the severity of the fall-off with an
average F1-score of 0.95.

Some systems in the literature can notify the emergency services about a particular incident.
Acharya et al. (2007) and Ibrahim et al. (2016) have developed systems that use data from the
gyroscope and accelerometer to observe and report the roll-over events of the vehicles to the
intended recipients. Aloul et al. (2015) devised an Android app to develops an accident detection
system based on Hidden Markov Models (HMM) and Dynamic Time Warping (DTW) using
data from the accelerometer. An SMS based accident notification, which contains the severity
and location of the incident, is sent to the emergency services, family, and police. Bhatti et al.
(2019) used a smartphone’s built-in speed, position, pressure, sound, and gravity sensors to
create a low-cost and compact solution, which can detect an accident incident and informs it to
the local hospital. Fernandes et al. (2016) created an Android app that collects feedback from
mobile sensors to identify crashes and rollovers, along with road risk alerts provided by nearby
vehicles. Dar et al. (2019) have suggested an approach focused on fog computing to develop a
low-cost smartphone sensors based system to reduce the delay in reporting an accident to the
nearest hospital.

None of these mechanisms show the ability to classify the type of accident that is useful in
determining the nature and amount of emergency services needed, and in particular the number
of injured persons. Sensor fusion is used in different fields of engineering to enhance the accuracy
of the systems by combining the data of different sensors. A Fuzzy expert system is used by the
Damousis and Tzovaras (2008) to combine the most relevant features derived from the vehicle
driver’s eyelid activities and the system can predict the sleep effectively. Felisberto et al. (2014)
has proposed a system that can use the fusion of different networked sensors to detect the accident
of elderly people in the home environment. Moulik and Majumdar (2018) developed an IoT based
system that uses the fusion of multiple ultrasonic sensors data to detect human accidental falls.
The fuzzy inference system to implement that multi-sensor fusion is found to be sixteen percent
more accurate than previous systems.

Sensor fusion has been used in different works for accident detection. However, for accident
classification, to the best of our knowledge, no major work has been reported in the literature,
especially for enhancing the accuracy. Chan (2002) has surveyed the methods used by many
current crash detection systems. It also indicates multi-sensor data fusion (MSDF) can enhance
the crash sensing capabilities, but the ability of MSDF had yet to be recognized. Zhang et al.
(2018) tried to fuse data from multiple sources by integrating traffic measurements with social
media tweets to track road incidents in real-time. According to the authors, when using the SVM
as a classification model with 5-fold cross-validation, the integration of multiple data sources
improves prediction accuracy. The CARSENSE program, which brings together twelve major
industrial and research collaborators, proposed to create a sensor network to provide appropriate
information about the vehicle environment to help drive at low speed in complicated urban
conditions (Langheim, 2002). The article explains the program’s key results in terms of improving
individual sensors and fusing the information from these sensors into a fusion device.

Several intelligent systems have been developed by different car manufacturing companies such
as OnStar (Barabba et al., 2002) by General Motors, Ford SYNCs 911 Assist (Ghangurde, 2010)
by Ford Motor Company, Safety Connect (Toyota Motor Corp, 2020) by Toyota Motor Cor-
poration, BMW Assist (Englisch, 2002) by BMW, Suzuki Connect (Maruti-Suzuki, 2018) by
Maruti-Suzuki India Ltd., etc. These systems are equipped with several state-of-the-art features
but these systems are factory fitted, costly, and less focused on accident detection, classification,
and notification.

This work introduced a new sensor fusion-based solution for detecting and classifying the
accident events, which is not undertaken in any other current work. We have introduced a novel
sensor fusion framework that implements sensor fusion (or data fusion) at different levels of
processing to improve the accuracy of accident classification.
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3. ARCHITECTURE OF THE SYSTEM

3.1 Architecture of our IoT System

We developed a smartphone-based IoT enabled architecture, as shown in Figure 1, to report
automobile accident detection and classification, and to report the incident type and location to
the relevant agencies for prompt and focused rescue operation. Sensors of Android smartphone
and Sensordrone (Lohani and Acharya, 2017) are used to read the values of four different vehicle
motion-related physical and environmental parameters viz. speed of the vehicle, absolute linear
acceleration, change in altitude, and a maximum of pitch and roll, to address this research
problem. Smartphone receives the Sensordrones data via Bluetooth link. If an accident occurs,
the smartphone sends the relevant information such as accident type, location, vehicle ID, etc. to
the IoT server using a 4G/LTE internet connection. IoT server sends the emergency notifications
to the intended stakeholders such as family, and nearest police station, EMS, towing service, etc.
using a multicast publish/subscribe system. Our architecture uses the fusion of sensors data at
different levels of processing to increase the accuracy and reliability of the proposed ADC system.
The detailed sensor fusion based workflow diagram of the system is described in section 7.

Figure 1. Architecture of proposed IoT system.

3.2 Model Variables

3.2.1 Speed of the Vehicle. It is very probable that if a vehicle encounters a significant acci-
dent, whether it is a rollover, a collision, or a fall-off, its velocity will eventually become almost
zero. GPS of the smartphone is used to calculate the vehicles speed. GPS receives NMEA
(National Marine Electronics Association) strings (NMEA, 2020) from satellites which contains
information about the time, location, and speed of the device, etc. Following NMEA sentence
showing the velocity 018.8 knots which is equal to 35 km/h.

$GPRMC, 172232, A, 1831.333, N, 07734.321, E, 018.8, 054.4, 150320, 003.1, W*6A

3.2.2 Maximum of Roll and Pitch. An object’s rotation angles around the X-axis (longitu-
dinal), Y-axis (lateral), and Z-axis (vertical) are recognized as roll, pitch, and yaw (azimuth),
respectively (Figure 2(left)). Roll and pitch were measured by fusing the rotation information
given by the three inertial sensors viz. accelerometer, gyroscope, and magnetometer of the smart-
phone using the complementary filter. Original rotational data is expressed in the matrix called
rotational matrix. Euclidean space can be rotated θ anti-clockwise about the origin with the
help of a rotation matrix. We find that a rollover occurred if either of the roll or the pitch is
greater than 90. Taking the maximum of roll and pitch has reduced the dimensionality of the
input vector without losing the sense of the variables, which decreases the training and testing
time of ML algorithms.

No individual inertial sensor is sufficient to efficiently determine the orientation, due to their
limitations and measurement drifts. The magnetometer sensor can accurately determine the
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azimuth but not pitch and roll, while the accelerometer sensor can accurately calculate the pitch
and roll, but not azimuth. At higher frequency, short-term measurements of the magnetometer
and accelerometer arrangement are not reliable due to some minor small external forces. For
correction a low-pass filter is necessary because the combination of these two inertial sensors
performs well at lower frequency. Gyroscope can measure the roll, pitch, and azimuth individually
but it also suffers to strong drifts in measurements at low frequency in the long run. Gyroscope
performs well at high frequency, so a high-pass filter is necessary to get more stable results.

Every sensor has its advantages and disadvantages, but the complementary fusion of these
inertial sensors can reduce the measurement drifts substantially (Kumar et al., 2020a). A com-
plementary filter (Kubelka and Reinstein, 2012), comprising of both low-pass filter and high-pass
filter (Figure 2(right)), generates more precise results by adding the fractions of weight to the
outputs of low pass and high pass filters. If Pgyro is the pitch produced by the high-pass fil-
ter, and Pacc mag is the pitch produced by the low-pass filter, then the resulting pitch by the
complementary filter can be calculated as

Pitch = α ∗ Pgyro + (1− α) ∗ Pacc mag (1)

where α is the weight factor whose considered value is 0.98. Similarly, the roll and azimuth can
be calculated.

Figure 2(left). yaw, pitch and roll; Figure 2(right). complementary filter.

3.2.3 Absolute Linear Acceleration (ALA). When a moving vehicle drops from a height, the
vehicle’s orientation after the fall may not be the same as it was on the road. Due to this,
deceleration may distribute in three gravitational axis X, Y, and Z, and the correct force of impact
cannot be measured. Irrespective of the vehicles orientation, a resultant vector of distributed
components of deceleration, called ALA (also known as Signal Magnitude Vector (Lee et al.,
2018)), is calculated to handle this problem. ALA exhibits the characteristic of deceleration
parallel to the direction of the collision. ALA is a positive value measured by the smartphones
accelerometer in terms of g, where g ≈ 9.80665 m/s2. If DECX , DECY , and DECY are the
decelerations along with the X-, Y-, and Z-axis then ALA can be calculated as

ALA =
√

(DECX)2 + (DECY )2 + (DECZ)2 (2)

In the literature, it is stated that if a vehicle hits a solid obstacle at a speed of more than 23 km/h,
the deceleration strength will always cross 5g (Kendall and Solomon, 2014). An accelerometer’s
normal signal generation rate may be more than 2000 Hz. Processing the data and recording the
highest value of deceleration fluctuation, generated for 1ms to 2ms during the collision, at such a
high frequency is very difficult, particularly when we need exact decisions with the help of limited
resources. Although, this problem is addressed by Iyoda et al. (2016) by using a 10-ms moving
average, but averaging technique can undermine the maximum value. To record the maximum
deceleration at every axis, we have used a 10-ms moving maximum technique, which records the
peak values of every 10-millisecond window. If DEC Xt1, DEC Xt2, DEC Xt3, , DEC Xtn are
n readings of deceleration at X-axis during 10 milliseconds, the resultant highest deceleration
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DECX at X-axis will be

DECX = max(DEC Xt1, DEC Xt2, DEC Xt3, ..., DEC Xtn) (3)

Resultant maximum decelerations at Y-axis and Z-axis can be observed similarly.

3.2.4 Change in Altitude. Change in the altitude is the most responsible factor that dra-
matically changes during the fall, which helps the model to predict the vehicles fall-off more
accurately. There is no specific instrument that can calculate altitude exclusively (because GPS
cannot measure the altitude shift at the same coordinates), but atmospheric pressure P can be
used to calculate it using the following formula.

Altitude = 44330.77 ∗ (1− (
P

P0
)0.190263) (4)

where P0 (≈ 101.325 kilo-pascals) is atmospheric pressure at sea level. We have used the baro-
metric altimeter of the Sensordrone to monitor the atmospheric pressure P .

4. HARDWARE AND SOFTWARE SETUP OF THE SYSTEM

4.1 Hardware Setup

A full hardware setup is shown in Figure 3, which consists of a SAMSUNG Galaxy S8 Android
smartphone, a Sensordrone, and a 1:12 scaled radio-controlled (RC) toy car.

Figure 3. Hardware Setup.

In addition to external sensors, a 9-axis inertial sensor (range: 179 for pitch and roll; and
16g for deceleration) and GPS sensor of the Samsung Galaxy S8 Android smartphone has been
used. Inertial sensors are used to measure the roll, pitch, and deceleration and a GPS sensor is
used to calculate the vehicles speed and accidents location. Although for our proposed system
any Android smartphone can be used because now a day almost every Android smartphone has
inertial and GPS sensors, but S8 s 4 GB RAM and 1.9 GHz processor makes it a little favorable
computing device for the experiment purpose.

For measuring the altitude of the vehicle, Sensordrones barometer is used. Sensordrone (Lohani
and Acharya, 2017) is a portable programmable device that contains seven different inherent
sensors to measure different parameters of the environment, such as light, temperature, pressure,
humidity, CO, proximity, etc. It can be connected with any computing device using Bluetooth.

It is not viable to iteratively get experimental data samples using a real vehicle as it is a
very expensive and life-threatening process. So, we have used GPTOYSs Foxx S911 RC Car
(GP TOYS, 2020), a 1:12 scaled radio-controlled (RC) toy car, to emulate the real-life accident
scenario. This toy car is made for off-road gaming and it has a maximum speed of 53 km/h,
operating range of more than 80 meters, 2.4 GHz 4-channel transmitter frequency, 45°turning
angles, dimension (L= 31.0 cm, W=26.5 cm, H=15.0 cm), and 1.078 kg weight.
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4.2 Software Setup

In this work, two Android applications for sending and receiving emergency alerts have been
developed. To capture and process the data coming from different sensors, SNUSense app is
installed in the smartphone of accident victim (or car driver).

As shown in Figure 4(left), SNUSense is developed to capture and process different parameters
from smartphone sensors (such as rotation angles, vehicle speed, ALA, location, date/time), and
from Sensordrone sensors (such as pressure, temperature, altitude, humidity, CO, illuminance,
etc.). Although, SNUSense is a multi-sensing application which aggregates several environmental
parameters, in this work it is tuned to process only four parameters viz., speed, ALA, altitude
change, and the maximum of roll and pitch to detect and classify the accident type and notify
it to the Google Firebase IoT Server (Google Developers, 2020) using 4G/LTE internet link. It
can record all parameters in a CSV file in the smartphones memory.

SNUAlertApp is developed to receive emergency alerts about accidents as shown in Figure
4(right). It need to be installed in smartphones of all rescue stakeholders. An alert notification
with alarming beep noise appears in the rescuers smartphone with some important information
about the accident and the victim such as drivers ID, accident location, severity, etc. A single
click on the notification shows the accident location on Google Map with a tracker icon on it,
which help the rescuers to locate the accident site easily.

Figure 4(left). SNUSense application; Figure 4(right). SNUAlertApp application.

International Journal of Next-Generation Computing, Vol. 11, No. 2, July 2020.



198 · Nikhil Kumar et al.

5. ACCIDENT SCENARIOS

This work focuses on the detection and classification of four separate vehicle accident scenarios,
(a) collision, (b) fall-off, (c) rollover and (d) no-accident, based on the four variables of (a) speed,
(b) ALA, (c) altitude change, and (d) maximum of pitch and roll. Table I shows the thresholds
of four model variables for each accident scenario. It is very intuitive that after every type of
accident speed becomes zero eventually. The speed threshold of 2 km/h is considered because of
the GPS sensors delay in measurement updates. The ALA threshold is considered to 5g for all
types of collisions to avoid false positives. Also, in the literature, it is mentioned that if a vehicle
impacts with a non-moving obstacle (whether on the road or with the earth after falling from an
altitude) with a minimum speed of 23 km/h (i.e. 21 feet/s), then deceleration always marks 5g
(Kendall and Solomon, 2014). It can also be observed from the following standard Equation (5)
of velocity that when an object (or vehicle) falls from more than 8 feet, it attains a final velocity
of 22 feet/s in less than 0.8 seconds, if the initial velocity is considered as zero.

final velocity = initial velocity + g ∗ t (5)

Here g is the gravitational acceleration and t is the time. Some sensors such as GPS and barometer
show some lag in reading timings of parameters that we have considered while implementing the
models.

Table I: ACCIDENT DETECTION AND CLASSIFICATION CRITERIA

Accident Type
Speed

(2 km/h)

ALA

(5g)

Altitude Change

(8 feet)

Max of Pitch and Roll

(90°)
Collision <2km/h >5g <8feet Any Value

Rollover <2km/h Any Value Any Value >=90°
Fall-off <2km/h >5g >8feet Any Value

No Accident Conditions other than above mentioned.

6. EXPERIMENTAL SETUP AND DATA COLLECTION

6.1 Experimental Setup

To carry out collision, rollover, and fall-off experiments and to mimic the real-life accident sce-
narios, Sensordrone and the Android smartphone is attached close to the CG (center of gravity)
of the RC car to obtain the unbiased readings. We used a plastic road barricade as an obstacle
to crash the RC car and collected the collision data (Figure 5(right)). To conduct the fall-off
experiments, RC car is dropped multiple times on a wooden Tennis court from a 15 feet elevated
running track in Indoor Sports Complex of Shiv Nadar University (Figure 5(left)). We used a 4
cm thick board of plywood to perform the rollover tests. Board was tilted 30° with the flat land
surface (Figure 5(center)). The speed of the car during all the experiments was 35 km/h.

6.2 Data Collection

Sudden drop of speed, and the rise of ALA is evidence of the RC car’s collision event in Figure
6(left). Graph in Figure 6(center) is representing an RC car’s fall-off scenario, in which a gradual
drop in speed, and rise in altitude-change indicates the duration of fall, and a sudden rise in ALA
indicates the collision on the tennis court after the fall. One second moving window is used to
monitor the altitude change since the dropping object will reach the final velocity of more than
30 km/h in one second, which is high enough to produce a deceleration of more than 5g. In
Figure 6(right), the sudden rise in the maximum value of pitch and roll is accurately predicting
the rollover incident. The red dotted line in each graph indicates the incident when an accident
occurred.
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Figure 5(left). Fall-off setup application; Figure 5(center). Rollover setup; Figure 5(right). Collision setup.

Figure 6(left). Collision; Figure 6(center). Fall-off; Figure 6(right). Rollover.

7. MULTI-SENSOR DATA FUSION FRAMEWORK FOR ACCIDENT DETECTION AND CLASSI-
FICATION (WORKFLOW DIAGRAM)

Figure 7. Workflow diagram of proposed system.

Sensor fusion is the synthesis of different sensors’ data, which provides better results than a
single sensor. In this work, a multi-sensor data fusion framework is proposed whose workflow
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diagram is shown in Figure 7. Our framework is based on a refined categorization of three-level
modeling, where sensor fusion can be applied at low-level, intermediate-level, and high-level of
processing (Elmenreich, 2002). Low-level fusion incorporates multiple raw data sources to pro-
duce new data (features) which is intended to be more insightful than the inputs. Intermediate
fusion combines various features to make a decision. In this work, we have used KNN, NB, and
RF classifiers individually to implement the intermediate fusion. In order to achieve the high
accuracy, high-level fusion combines the decisions of several classifiers. Decision fusion meth-
ods include ensemble methods (e.g., voting, stacking, etc.), fuzzy-logic and statistical methods.
We are using Stacking ensemble approach to fuse the decisions of KNN-, NB-, and RF-based
classifiers.

7.1 Raw-Data Fusion (Low Level Fusion)

From raw data collection to the model variables (features) extraction, all aspects of the pre-
processing part of the framework are already explained in detail in section 3.2. Almost at every
stage of pre-processing, different kinds of raw data have been fused to increase the accuracy of the
resultant data. This includes (a) getting the ALA from the accelerometer (Cooperative Fusion),
(b) applying the complementary filter to stabilize the drifts in pitch and roll values provided by
the three inertial sensors (Complementary Fusion), and (c) recording the maximum value of pitch
and roll (Competitive Fusion) (Elmenreich, 2002).

7.2 Feature Fusion (Intermediate Level Data Fusion)

In classification problems, to make the correct decisions, several features need to be combined
in some way. There are different approaches such as statistical methods, probabilistic models,
machine learning (ML) models, etc., which can be used to make a classification, decision, or
inference. In this work, we are analyzing the performance of three ML models viz., KNN, RF,
and NB, so that we can compare their accuracy to each other, and to a meta-classifier that fuses
their output in the next level of fusion.

7.2.1 K-Nearest Neighbor (KNN) based ADC Model. K-Nearest Neighbor (KNN) is a simple
algorithm that predicts each observation based on its ”similarities and differences” with other
observations. It is a memory-based algorithm, which can’t be represented by a closed model.
This means training samples are needed at run time and predictions are made directly from the
relationships of the samples. This makes the KNN method much quicker for small datasets and
more flexible than other algorithms such as Linear Regression, SVM, etc., which need training.
K-NN learns through analogy, as a comparison is performed between a single test tuple and a
collection of identical training tuples (Adeniyi et al., 2016).

The test tuples classification is based on similarities with the class of nearest k neighbors, where
k represents the number of neighbors required for class determination (Steenwijk et al., 2013).
Pairwise distance between observations is used to determine the similarity or dissimilarity between
observations. Euclidean distance and Manhattan distance both are the most common metrics
to measure the distance between two observations. In this model, we have used the Euclidean
distance metric that measures straight line distance between two samples. In this research, KNN
technique is used to model the case of vehicle accident detection and classification, based on
four input variables (attributes), (a) AltitudeChange, (b) MaxOfPitchAndRoll, (c) Speed, and
(d) ALA, and one output class variable - AccidentType. The possible outcomes of the proposed
model are: (a) Collision, (b) Rollover, (c) Fall-off, and (d) No-Accident. If xr(xr1, xr2, ..., xrM )
is training tuple and xs(xs1, xs2, ..., xsM ) is the testing tuple, then for all features, Euclidean
distance, d(xr, xs), between them is calculated by

d(xr, xs) =

√√√√ M∑
j=1

(xrj − xsj)2 (6)
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where M is the number of attributes. In our model, the value of M is four as the number of
training attributes are four. The classifier’s decision is based on the test tuple being at the closest
distance to the trained tuples. If d1, d2, ..., dk are the Euclidean distances of KNN training tuples
of different classes from a testing tuple xs, then the class of xs would be the same as the class of
testing tuple whose Euclidean distance from xs is min{d1, d2, ..., dk}.

7.2.2 Random Forest (RF) based ADC Model. Random Forest is a supervised machine learn-
ing algorithm for regression and classification, which is proposed by Breiman (2001) and Biau
(2012). Random Forest is an ensemble technique (Breiman et al., 1984) used in several clas-
sification areas (Seera and Lim, 2014) that works with the idea of the grouping of multiple
weak learners to create a strong learner. CART (Classification and Regression Trees) technique
(Genuer et al., 2008) is used by the RF to develop a bagging technique (Liaw and Wiener, 2002)
based on multiple decision trees. The purpose of the CART technique is to learn the best possible
classification and relationship between dependent variables and independent variables. For RF,
each tree chooses a subset of the data set randomly to construct an independent decision tree.
Every randomly chosen subset divided repeatedly from the root node to the child node until this
division reaches the leaf node without pruning. Every tree individually classifies the features and
the target variable, and decides for the final class. Every tree provides a class, and based on the
majority voting, RF decides the final class.

In our data set we have four independent variables (a) AltitudeChange, (b) MaxOfPitchAn-
dRoll, (c) Speed, and (d) ALA, and one dependent variable - AccidentType. If R is the number
of RF trees, our RF algorithm can be summarized as follows:
Step 1: For each tree Tr of R, repeat the following steps 2 to 7:
Step 2: Draw Z as the bootstrap sample of size N from training data set X
Step 3: Generate an RF tree Tr using Z by recursively repeat steps 4 to 6 for each node until
the minimum node size one is reached.
Step 4: Randomly select m (=2) variables (where 1 <= m <= b

√
4c) from M (=4) variables

Step 5: Choose the best variable among m randomly selected variables to split the node based on
the minimum Gini Index (Han et al., 2016)
Step 6: Split the node into two child nodes
Step 7: The final output class would be the ensemble of all RF trees i.e. if Cr(x) is the predicted
class of rth RF tree and x is the random vector then final output class C of complete Random
Forest would be

C = majority vote{Cr(x)}r1 (7)

7.2.3 Nave Bayes (NB) based ADC Model. Another NB-based classification technique is em-
ployed for ADC. The NB approach is highly scalable, and the number of predictors scales linearly
(Šingliar and Hauskrecht, 2010). Because of its computational simplicity and its ability to be
trained very quickly (Yang et al., 2015), it is preferred over other classification techniques. As
it is not sensitive to irrelevant features, it is resilient to noisy data. This approach is based on
the assumption that the predictor variables are autonomous, i.e. the existence of certain features
does not affect a specific feature present in a class. The Nave Bayes model includes multiple pre-
dictor variables (AltitudeChange, MaxOfPitchAndRoll, Speed, and ALA) and a target variable
(AccidentType) as model output. Let Y be the state of target variable (or class), and vector
X = (x1, x2, ..., xn) is the state of n predictor variables. We need to measure the likelihood of Y
given X to estimate the value of Y based on X. The conditional probability Y | X is calculated
as

p(Y |X) =
p(X|Y )p(Y )

p(X)
(8)
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where, p(Y ) and p(X) are directly derived constants from the data. To get the value of X | Y ,
it is factorized as

p(X|Y ) = p(x1, x2, · · · , xn|Y ) =

n∏
i=1

p(xi|Y ) (9)

From equations (8) and (9), we get

p(Y |X) =
p(Y )

p(X)

n∏
i=1

p(xi|Y ) (10)

where, parameters p(Y ), p(X), and p(xi | Y ) of our classification model are directly learned from
the training data. Hence, the conditional distribution of Y | X is calculated from the equation
above. The value of target variable Y | X is the classification output and Y with the highest
probability will be the state of the model.

7.3 Decision Fusion (High Level Data Fusion)

Several highly accurate revolutionary classifiers for real-life data classification have been devel-
oped in recent years. However, the accuracy of many of these classifiers depends on the application
in hand. The presumption of most classifiers that real-life data has a strong similarity to training
data may not be valid in real-life implementation. Lack of suitable training data is a significant
reason for the poor performance of most of the classifiers.

Due to the good performance achieved in many tasks such as classification or regression prob-
lems, ensemble models have become more important over the last few years (Ren et al., 2016).
Ensemble learning (Dietterich, 2000)(Mendes-Moreira et al., 2012) is an approach that integrates
various models of learning to boost the results obtained from each particular model. The com-
bination (fusion) of several classifiers outputs (decisions) may reduce the probability of choosing
an under-performing classifier. The errors made by one classifier, when classifying instances, are
usually averaged out by another classifier’s right classification, so that the cumulative classifica-
tion accuracy is improved. Bagging, boosting, and stacking are the most commonly used and
well-known ensemble methods.

Bagging (Bühlmann et al., 2002)(Breiman, 1996a), also called bootstrap aggregating, is an
ensemble method that combines multiple decision trees predictions to minimize variance in pre-
dictions, thereby eliminate over-fitting by model averaging, and is resilient to outliers and noisy
data. This eventually contributes to greater predictive accuracy.

Boosting (Freund and Schapire, 1997)(Schapire, 1990) is another ensemble method that pro-
vides sequential learning of the predictors. The first predictor is learned throughout the entire
data set, while the following are learned through the training set based on the results of the
previous one.

In this paper, the stacking approach (Breiman, 1996b) has been used because bagging and
boosting uses the same type of weak learners. On the other side, in stacking, base classifiers
should be of different type to allow a final impartial decision. These stacked ensembles appear to
outperform all of the individual base learners (e.g., a single Random Forest or Gradient Boosting
Method) and have proved to be an asymptotically optimal learning system (Van Der Laan et al.,
2007).

7.3.1 Stacking based ADC model. Stacking has a structure of two levels: level-0 classifiers
(base-classifiers) and level-1 classifier (meta-classifier) (Wolpert, 1992). The base-classifiers are
trained with the training data set, and their predictions are produced. Then the meta-classifier
is trained to map the outputs of the base-classifiers to the actual class label with the meta-data.
The meta-data could be {(y1

j , y
2
j , ..., y

n
j ), yj}, where ynj denotes the prediction provided on the

jth instances by the nth base-level classifier, and yj is the actual class name. The qualified base-
classifiers will give their predictions individually during the process of classifying a new data
instance, and those predictions will be used as the feedback to meta-classifier to generate the
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final decision. Let Y denote the target variable, X denotes the input space, and y1
j , y

2
j , ..., y

n
j

denote the predictions learned from n-machine learning algorithms. A linear ensemble model
constructs a predictive function for an interval target j,

b(ŷj) = w1 ∗ y1
j + w2 ∗ y2

j + ...+ wn ∗ ynj (11)

where w1, w2, ..., wn are the model weights and ŷj is the predicted class. An easy way to define
these weights is to set them all equal to 1/n so that each variable contributes to the final ensemble
equally. Additionally, you can assign greater weight to the models that you think would work
better. While assigning weights by hand can often be fair, using a learning algorithm to estimate
them can usually boost the final ensemble efficiency. Logistic regression is a widely used approach
for final model stacking, due to its computational efficiency and model interpretability. The model
weights (wn) are determined in a regression model by solving the following least-squares problem:

min

n∑
j=1

(yj − (w1 ∗ y1
j + w2 ∗ y2

j + ...+ wn ∗ ynj ))2 (12)

In this work, in each run of our stacking ensemble, K-Nearest Neighbor, Random Forest, and Nave
Bayes learners are the base-learners with equal model weights and Logistic Regression learner is
the meta-learner.

8. PERFORMANCE EVALUATION

This segment evaluates the performance of different ADC models based on K-Nearest Neigh-
bor (KNN), Nave Bayes (NB), Random Forest (RF), and Logistic Regression based Stacking
Ensemble Model (Stacking). The results were obtained through the SNUSense databases 1050
mixed experimental observations of collision, rollover, fall-off, and no-accident events. 10-fold
cross-validation is used to validate (regularize) each model by explicitly breaking the data set
before the training and testing process, so that all models can use the same data splits. K-fold
cross-validation is among the techniques used to assess a machine learning model’s efficacy; this
is also a re-sampling method used to validate a model when we have a small data set.

Scatter plots of each model are shown in Figure 8, which are easily understandable with the
color-coding scheme used. In these scatter plots, colored dots are depicting true positives (TP),
and cross signs are depicting the false positives (FP) and false negatives (FN) results of accident
events.

Confusion matrix in Figure 9 is showing the number of correctly and incorrectly classified
observations for each model for detailed analysis. The performance of proposed classification
models is evaluated through accuracy, precision, recall, and F1-score metrics with the help of the
confusion matrix (Powers, 2011).

Accuracy is the most obvious performance metric for a classification model which is simply a
ratio of correctly predicted observations and total observations. Accuracy is a good measure but
only when the number of TP and true negatives (TN) are almost same.

Accuracy =
total of true positive observations

total of actual positive observations
(13)

Precision is the ratio of total TP observations and all positive observations. More precision
indicates a less FP rate.

Precision =
total of true positive observations

total of positively predicted observations
(14)

Recall is the ratio of total TP observations and a total of actual positive observations.

Recall =
total of true positive observations

total of actual positive observations
(15)
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Figure 8. Scatter plots of KNN(top-left), NB(top-right), RF(bottom-left) and Stacking(bottom-right) based ADC

models.

F1-score is the harmonic mean of precision and recall. F1-score is generally more useful than
accuracy, particularly if the class distribution is uneven.

F1− score = 2 ∗ (
Precision ∗Recall
Precision+Recall

) (16)

The classification efficiency of the KNN based classification technique is presented in Table II.
The KNN based classification model has a mean of precision, recall, and F1-score of 0.87, 0.98,
and 0.92, respectively.

Table II: DETECTION AND CLASSIFICATION PERFORMANCE OF KNN-BASED ADC MODEL

Accident Type TP FP TN FN Accuracy Precision Recall F1-score

Collision 18 11 1021 0 99.95% 0.62 1.00 0.77

Fall-off 45 0 1005 0 100.00% 1.00 1.00 1.00

No Accident 726 0 280 44 95.81% 1.00 0.94 0.97

Rollover 217 33 800 0 96.86% 0.87 1.00 0.93

An average F1-score of 0.92 for the four types of accident incidents suggests high accuracy of
the proposed KNN-based ADC model. The model performs best with F1-score of 1.00 for fall-off
accident detection, followed by a no-accident, rollover, and fall-off cases with F1-score of 0.97,
0.93, and 0.77, respectively. The overall accuracy of the model is observed 95.8 percent with 1006
TP observations.

Table III is providing a description of proposed NB-based ADC models performance. The NB-
based model has an average precision, recall, and F1-score of 0.89, 0.94, and 0.91, respectively.
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Figure 9. Confusion matrix of KNN(top-left), NB(top-right), RF(bottom-left), and Stacking(bottom-right) based

ADC models.

The model performs better in fall-off accident events with an F1-score of 1.00 followed by no-
accident, rollover, and collision with F1-scores of 0.96, 0.89, and 0.78 respectively. With a total
of 995 TP observations, the accuracy of NB-based model is found to be 94.76 percent.

Table III: DETECTION AND CLASSIFICATION PERFORMANCE OF NB-BASED ADC MODEL

Accident Type TP FP TN FN Accuracy Precision Recall F1-score

Collision 16 7 1025 2 99.14% 0.70 0.89 0.78

Fall-off 45 0 1005 0 100.00% 1.00 1.00 1.00

No Accident 739 24 256 31 94.76% 0.97 0.96 0.96

Rollover 195 24 811 22 95.62% 0.89 0.90 0.89

Table IV explains the efficiency of ADC model based on the RF. After the no-accident events
with F1-score of 0.99, the model performs well for rollover events with an F1-score of 0.97, which
is followed by fall-off and collision events with F1-scores of 0.95 and 0.74, respectively. The RF
model’s average precision, recall, and F1-score were observed as 0.90, 0.96, and 0.91, respectively.
The accuracy of the RF-based model is found to be 97.52 percent with 1024 TP observations.
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Table IV: DETECTION AND CLASSIFICATION PERFORMANCE OF RF-BASED ADC MODEL

Accident Type TP FP TN FN Accuracy Precision Recall F1-score

Collision 17 11 1021 1 98.86% 0.61 0.98 0.74

Fall-off 41 0 1005 4 99.62% 1.00 0.91 0.95

No Accident 762 15 265 8 97.81% 0.98 0.99 0.99

Rollover 204 0 833 13 98.76% 1.00 0.94 0.97

Although, NB-, KNN-, and RF-based classification models perform well, one can notice that
in comparison to these methods, the stacking ensemble method achieved a lower false-positive
rate with 1045 TP observation. Decision fusion of NB, KNN, and RF models output by logistic
regression-based meta classifier is found to be highly accurate with an accuracy of 99.52 percent.

Table V shows that the mean of precision, recall, and F1-score of the model are 0.99, 0.99, and
0.99, respectively. After the no-accident class with F1-score of 1.0, the model performs well with
rollover and fall-off events with F1-score of 0.99 for each, which is followed by collision with an
F1-score of 0.97.

Table V: DETECTION AND CLASSIFICATION PERFORMANCE OF STACKING-BASED ADC MODEL

Accident Type TP FP TN FN Accuracy Precision Recall F1-score

Collision 18 1 1031 0 99.90% 0.95 1.00 0.97

Fall-off 44 0 1005 1 99.90% 1.00 0.98 0.99

No Accident 768 3 277 2 99.52% 1.00 1.00 1.00

Rollover 215 1 832 2 99.71% 1.00 0.99 0.99

The accuracy of KNN, RF, NB and Stacking based ADC models are 95.8%±1.5, 97.52%±2.0,
94.76%± 3.0, and 99.52%± 0.48, respectively. By analyzing the results in the preceding text and
error bar graph of Figure 10, we can state that decision fusion by stacking ensemble outperforms
the individual NB, KNN, and RF-based classifiers for our accident detection and classification
problem.

Figure 10. Error bar graph of all approaches.
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9. CONCLUSION

This work proposed a novel smartphone-based end-to-end IoT system to detect, classify, and
report vehicle accidents. The proposed system uses several sensor fusion schemes to enhance
the accuracy of the classification. Four input features i.e. altitude change, maximum of pitch
and roll, speed and ALA, are used to accurately classify the accident events as collision, fall-off,
rollover, and no-accident. Android smartphone’s GPS and 9-axis inertial sensors, and Sensor-
drones atmospheric barometer sensor are used to monitor the values of input parameters. For
initial classification, three base classifiers namely NB, KNN, and RF have been used and their
performance is compared using the accuracy, precision, recall, and F1-score metrics. To further
increase the classification accuracy of our ADC system we have fused the output of three base
classifiers namely NB, KNN, and RF, by a meta classifier. Logistic regression based stacking
ensemble method is used as a meta classifier. When individually analyzed, the RF-based model
is found to be highly accurate with an average F1-score of 0.97 than NB and KNN based models,
however, stacking, with three base classifiers, outmatched RF-based models with 0.99 average
F1-score. Our ADC system is economical in comparison to factory fitted systems and can be
retrofitted easily in existing vehicles.
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