
A Secure Source Routing Protocol for Mobile Ad
Hoc Networks

Baban A. Mahmood and D. Manivannan

University of Kirkuk and University of Kentucky

Routing protocols for Mobile Ad Hoc Networks (MANETs) have been extensively studied. Some of the well-
known source routing protocols presented in the literature that claim to establish secure routes are susceptible to

hidden channel attacks. In this paper, we address this issue and present a novel secure routing protocol, based on
sanitizable signatures, that is not susceptible to hidden channel attacks.

Keywords: Routing in MANETs; Secure routing; Mobile ad hoc Networks; MANETs.

1. INTRODUCTION

Nodes in a Mobile Ad Hoc Network (MANET) form a network among themselves without the
use of any fixed infrastructure such as access points or base stations, and communicate with
each other by cooperatively forwarding packets on behalf of others. MANETs have applications
in areas such as military, disaster rescue operations, monitoring animal habitats, etc. where
establishing communication infrastructure is not feasible(Li and Singhal [2005], Shen and Zhao
[2013], Talooki et al. [2013], Kavitha et al. [2013], Jain et al. [2013]).

Routing protocols designed for MANETs can be broadly classified as geographic routing proto-
cols (e.g., GPSR Karp and Kung [2000]) and topology-based routing protocols. Topology-based
routing can be classified into proactive routing protocols like DSDV proposed by Perkins and
Bhagwat [1994] in which nodes use pre-established table-based routes, reactive (on-demand)
routing protocols (e.g., AODV Perkins and Royer [1999]), and hybrid routing protocols(e.g., Li
and Singhal [2005], Hsu and Lei [2009], Giruka and Singhal [2007]).

Due to their intrinsic characteristics, MANETs are more vulnerable to attacks than infras-
tructure based networks. There are two main categories of attacks, namely, passive attacks and
active attacks (Abdelaziz et al. [2013]). In passive attacks, adversarial nodes do not disrupt the
operation of routing protocols, whereas in active attacks, adversarial nodes try to disrupt route
discovery, route maintenance and data forwarding. An adversarial node can disrupt the route
discovery by offering a better route than a route offered by a genuine node to disrupt packet de-
livery. Adversarial nodes can also impersonate other nodes to launch other sophisticated attacks.
One of the aims of a secure routing protocol is to establish a valid route between a source and
a destination in the presence of adversarial nodes. Several secure routing protocols have been
proposed in the literature for MANETs. Yih-Chun and Perrig [2004] present a survey of secure
routing protocols.

Hurley-Smith et al. [2017] propose a security framework for routing in MANETs. They demon-
strate the suitability of their framework for wireless communication security by comparing their
framework with other frameworks such as IPsec through simulation. Xu et al. [2017] physi-
cal layer security aware routing protocols for ad hoc networks. Arulkumaran and Gnanamurthy
[2019] propose a method for detecting black-hole attacks in MANETs using Fuzzy trust approach.
Xia et al. [2019] propose an attack-resistant Trust inference model for securing routing in Vehicu-
lar Ad hoc NETworks (VANETs). Kojima et al. [2019] propose a secure routing protocol which
improves security of an existing protocol. Li et al. [2019] present a method for finding routes

Authors’ addresses: Baban A. Mahmood, Computer Science Department, University of Kirkuk, Baghdad St.,
Kirkuk, Iraq, Email:Baban@netlab.uky.edu and D. Manivannan, Department of Computer Science, University of

Kentucky, Lexington, KY 40508, Email: mani@cs.uky.edu

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 213

to the destination through reliable nodes. They also demonstrate how it can resist black-hole
attacks. Salehi and Boukerche [2019] point out how opportunistic routing protocols perform
poorly in the presence of malicious nodes and classify the security-related opportunistic routing
protocols into different categories and compare them.

1.1 Paper Objectives

In this paper, we observe that many of the routing protocols presented in the literature (e.g., SRP
by Papadimitratos and Haas [2002], Ariadne by Hu et al. [2005], endairA by Ács et al. [2006],
etc.) that are claimed to be secure were in fact proved to be susceptible to hidden channel attacks.
Then, we propose a novel secure source routing protocol, called Secure Ariadne (SAriadne), that
establishes a secure and valid route. We discuss in detail how SAriadne is not susceptible to
hidden channel attacks, unlike the protocols mentioned above.

1.2 Organization of the Paper

The rest of the paper is organized as follows: In Section 2, we review the related protocols and
discuss how they have been identified to be susceptible to hidden channel attacks. In Section 3
we discuss Chameleon Hash functions and Sanitizable Signatures which are needed in the design
of the proposed protocol. In Section 4, we present our protocol. In Section 5, we analyze and
discuss how our protocol prevents hidden channel attacks. Section 6 concludes the paper.

2. RELATED WORK AND THEIR VULNERABILITIES

In this section, we discuss some of the secure source routing protocols presented in the literature
and discuss how they are susceptible to hidden channel attacks.

2.1 Secure Routing in Mobile Ad Hoc Networks (SRP)

SRP, proposed by Papadimitratos and Haas [2002], is an on-demand source routing protocol
that has the basic characteristics of reactive routing protocols. Route requests are generated
by a source S and protected by Message Authentication Code (MAC)(Krawczyk et al. [1997]).
The MAC is computed using the key that S shares with the target node T . S broadcasts the
route request to all its neighbors. When a neighbor of S (or an intermediate node) receives the
route request, it appends its id to the request and rebroadcasts the updated request if it has not
seen that request before; otherwise, it discards the request. Intermediate nodes do not check the
validity of the MAC in the request because no node possesses the key used to compute it except
S and T .

When the target T receives the request, it verifies the MAC in the request. If the MAC is
valid, then the target node assumes that all the adjacent pairs of nodes accumulated in the route
request forms a valid route. The target then computes a MAC using the key it shares with the
source and authenticates the route. This is then sent back to the source S through the reverse
route traversed by the request. For example, a route request message received by an intermediate
node Xj has the following form.

mrreq = (rreq, S, T, id, sn, (X1, ..., Xj),macS),

where id is the id assigned to the route request rreq, sn is a sequence number, and macS is
the MAC computed on rreq, S, T, id, and sn by S using the key it shares with T . Now, if
S, X1, ..., Xp, T is the discovered route, then all intermediate nodes Xj , (1 ≤ j ≤ p) will receive
mrrep as a route reply, where

mrrep = (rrep, S, T, id, sn,(X1,...,Xp),macT),

where macT is the MAC computed by the target T using the key it shares with S on the message
fields preceding it. Intermediate nodes must check the route reply header to verify that both

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

214 · Baban A. Mahmood et al.

id and sn fields are correct. In addition to that, intermediate nodes need to check that they
are neighbors with both their upstream and downstream nodes before sending the route reply
upstream.

An intrinsic point to observe in this protocol is that the upstream route from T to S is
authenticated by the target, but the downstream route from S to T is not authenticated by
S. This means that there could be malicious pair of nodes that are not neighbors but claim to be
neighbors in the route request that reaches the target. These malicious nodes could divert traffic
through other routes as observed by Papadimitratos and Haas [2002]. It is also possible for a
malicious node to pad route requests with ids of nodes that are not its neighbors. The malicious
node can impersonate these nodes in the reply phase in such a way that the reply propagates
to the source node. Hence, the route received by the source may be invalid because some of the
nodes specified in the route as neighbors may not be neighbors.

A Sample Network Configuration Wherein an Attack Exists Under SRP found by Buttyán et al.

2.1.1 How SRP is Susceptible to Hidden Channel Attack. Buttyán and Vajda [2004] have
found that SRP is susceptible to hidden channel attack. We briefly discuss how SRP is suscep-
tible to hidden channel attack using the network configuration in Figure 1; in this Figure, A is
an adversarial node. Suppose node S in Figure 1 broadcasts a route request to discover a route
to the target T . When V receives this request, it rebroadcasts the request. Thus, A receives the
request mV from V , where

mV = (rreq, S, T, id, sn, (Q,V),macS);

here id is the request id, sn is the sequence number, and macS is the MAC computed by S using
the key it shares with T . A, the adversarial node, then inserts an arbitrary sequence of node ids
λ into the request and broadcasts the message mA, in the name of X, where

mA = (rreq, S, T, id, sn, (Q,V,W, λ,X),macS).

The adversarial node A cannot determine if the pair of nodes V and W and the pair of nodes X
and Y are neighbors; however, since the nodes (i.e., V ,W ,X, and Y) in these pairs are neighbors
of A, A makes a guess that V and W , as well as X and Y are neighbors. Y is a neighbor of both
A and X and the node list ends with X; hence, when Y receives mA, it appends its id to the
node list in the request, and rebroadcasts the updated request mY , where

mY = (rreq, S, T, id, sn, (Q,V,W, λ,X, Y),macS).

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 215

When the target T receives the request from K, after it successfully verifies macS , T computes
the MAC (i.e., macT) over the route and unicasts the reply mT via the nodes in the route request
in the reverse order, where

mT = (rrep, S, T, id, sn, (Q,V,W, λ,X, Y,K),macT).

When the intermediate node Y forwards mT to node X, node A overhears the transmission. A
then forwards the message mT to V in the name of W . Since W and V are neighbors, V believes
the message is from W and forwards it to Q which in turn sends it to S. S then successfully
verifies macT and accepts the route (Q,V,W, λ,X, Y,K) which is clearly an invalid route. Thus,
SRP is susceptible to hidden channel attack.

2.2 The Basic Ariadne Protocol

Hu et al. [2005] presented Ariadne , a secure source routing protocol, based on Dynamic Source
Routing protocol (DSR), proposed by Johnson and Maltz [1996]. Under this protocol, when a
source S performs a route discovery for a target T , it is assumed that both S and T share the
secret key KST and KTS for authenticating messages. Ariadne imposes two requirements in the
route discovery phase:

—First, that the target can authenticate each node in the route traversed by the route request
so that it returns a route reply along a path that has legitimate nodes.

—Second, that a source node can authenticate each node in the route (i.e., the node list in the
route reply).

To achieve node list authentication, the authors use three different techniques: the TESLA
protocol, the standard MACs, and the digital signatures. TESLA, proposed by Perrig et al. [2000]
is a broadcast authentication scheme that requires time synchronization. Unlike other asymmetric
protocols such as RSA, proposed by Rivest et al. [1978], TESLA achieves the asymmetry from
both clock synchronization and delayed key disclosure. However, TESLA depends on the ability
of a receiver to correctly determine which keys a sender might have published (i.e., the
TESLA security condition).

In the following subsections, we discuss the three techniques used in Ariadne to make it a secure
routing protocol and discuss how all these three techniques have been found to be susceptible to
hidden channel attacks.

2.3 Basic Idea behind Ariadne with Signature

Ariadne with signatures proposed by Hu et al. [2005] differs from SRP in two aspects, as noted
by Buttyán and Vajda [2004]. First, in addition to source and target nodes, intermediate nodes
include their own digital signatures in route requests. Second, per-hop hashing is used to prevent
removal of legitimate nodes from the node list in a route request. A source node broadcasts a
route request message to its neighbors. The route request contains the source id S and the target
id T , a request id, and the MAC computed over these elements using the key S shares with T .
Together with its own id, each intermediate node hashes the MAC using a one-way hash function.
These hash values computed by intermediate nodes are called per-hop hash values. An interme-
diate node then appends its id to the node list accumulated in the route request and generates
a digital signature over this updated request. This signature is then appended to the signature
list in the request and the request is re-broadcast. For example, as noted by Buttyán and Vajda
[2004], a route request message forwarded by an intermediate node Xj has the following form

mrreq = (rreq, S, T, id, hXj , (X1, ..., Xj), (sigX1 , ..., sigXj)),

where S and T are the source and target identifiers respectively, id is the request identifier, hXj

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

216 · Baban A. Mahmood et al.

is the per-hop hash value calculated by Xj , (X1, ..., Xj) is the node list, and (sigX1
, ..., sigXj

) is
the signature list. When the route request arrives at the target T , T verifies the MAC attached
by the source, the per-hop hash of each intermediate node, and individual signature of each
intermediate node in the signature list. If these verifications are successful, the target generates
a route reply and sends it back through the list of nodes in the request in the reverse order.
Each intermediate node forwards the reply to the next hop without modifying the reply. The
reply contains the source id and the target id, the accumulated route and the digital signatures
of the intermediate nodes obtained from the route request, and a digital signature that the target
computed over these elements.

When the source S receives the reply, it verifies the digital signature of the target and the
individual signature of each intermediate node. S accepts the route returned in the route reply
if all these verifications are successful.

A Sample Network Configuration Wherein an Attack Exists on Ariadne with Signatures as Described by Buttyán
and Vajda.

2.3.1 Attack on Ariadne with Signatures. Buttyán and Vajda [2004] discovered how Ariadne
with signatures, presented above, is susceptible to hidden channel attack. We use Figure 2, which
shows part of the network configuration, to illustrate this attack; in this network, the adversarial
node A launches an attack on the route discovery initiated by S to discover a route to T . When
A receives the request mV from node V , where

mV = (rreq, S, T, id, hV , (Q,V), (sigQ, sigV)),

it does not rebroadcast the request. Also, A receives request mX from node X, where

mX = (rreq, S, T, id, hX , (Q,V,W,X), (sigQ, sigV , sigW , sigX)).

A obtains hV from mV and the signatures sigQ, sigV , and sigW from mX . From mX , A
knows that W and V are neighbors. A then computes its per-hop hash value (i.e., hA =
H(A,H(W,hV))), where H is the publicly known hash function. A then uses this informa-
tion to generate and broadcast the request mA, where

mA = (rreq, S, T, id, hA, (Q,V,W,A), (sigQ, sigV , sigW , sigA)).

When the target T receives the request, T verifies the signatures and creates a route reply mT

and sends it back to S, where

mT = (rrep, T, S, (Q,V,W,A, Y), (sigQ, sigV , sigW , sigA, sigY , sigT)).

When A receives mT , it forwards it to V in the name of W which in turn forwards it to Q.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 217

When S receives the reply, it validates all the signatures and accepts the route (Q,V,W,A, Y),
which is an invalid route because A and W are not neighbors. Thus, Ariadne with signature
protocol is susceptible to hidden channel attack.

2.4 Basic Idea Behind Ariadne with MAC

Ariadne with MAC presented by Hu et al. [2005] is similar to Ariadne with signature, presented
in Section 2.3 with the exception that it does not use digital signatures. In the route discovery
phase, the source node S broadcasts a route request message to find a route to the target T .
The request message contains the ids of both the source and the target, a request id, and the
MAC that is computed over these elements. The MAC is computed by S using the key (KST)
it shares with T . When an intermediate node X receives the route request, X hashes the MAC
with its own id using a one-way hash function. These hash values are called per-hop hash values
to prevent an intermediate node from removing nodes from the node list in the route request, as
the route request propagates.

When an intermediate node receives the request for the first time, it computes the per-hop
hash value, appends its id to the accumulated node list contained in the request, and computes its
own MAC on the updated request using the key it shares with T ; it then appends its MAC to the
MAC list in the route request and re-broadcasts the updated request. For example, as observed
and presented by Ács et al. [2006], a route request message mrreq received by an intermediate
node Xj has the following form

mrreq = (rreq, S, T, id, hXj , (X1, ..., Xj), (macX1 , ...,macXj)),

where id is the request id, hXj is the per-hop hash value (i.e., hash chain) calculated by Xj ,
(X1, ..., Xj) is the node list, and (macX1

, ...,macXj
) is the MAC list; in this,

hXj
= H(Xj , H(Xj−1, H(..., H(X1, hS)))),

and hS is the hash value computed by S, where

hS = MACKST
(S, T, id).

When the target T receives the route request, it verifies the hash values and the MAC attached by
the source and the intermediate nodes. If these verifications are successful, the target generates
a route reply and unicasts it back via the reverse route obtained from the route request. The
route reply contains the id of the source and target, the node list obtained from the request,
and a MAC computed by the target over these elements. The MAC attached by the target is
computed using the key shared by the target and the source. Intermediate nodes do not modify
the reply. Route reply mrrep created by the target T is of the following form

mrrep = (rrep, S, T, (X1, ..., Xj),macT).

When the source S receives the route reply mrrep, it only verifies the target’s MAC macT . S
accepts the route returned in the reply if this verification is successful. Otherwise, it discards the
reply.

2.4.1 Attack on Ariadne with MAC. Ács et al. [2006] found that Ariadne with MAC, pre-
sented above, is susceptible to hidden channel attack. Consider the network configuration shown
in Figure 3, wherein S initiates a route request to find a route to the target T , and X and Y are
adversarial nodes that collude. X, the first adversarial node, receives the request mA, where

mA = (rreq, S, T, id, hA, (A), (macA)).

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

218 · Baban A. Mahmood et al.

A Sample Network Configuration wherein an Attack Exists on Ariadne with MAC, as presented by Ács et al.

Instead of appending its MAC, X puts hA on the MAC list and rebroadcasts the request mX .
X does that because Y will need this hash value to omit the nodes between X and Y .

mX = (rreq, S, T, id, hA, (A,X), (macA, hA)).

Because intermediate nodes do not verify the MACs, the intermediate node B does not detect
this attack. The second adversarial node Y receives the route request mC , where

mC = (rreq, S, T, id,H(C,H(L,H(M,H(B, hA)))),
(A,X,B,M,L,C), (macA, hA,macB ,macM ,macL,macC)).

Then, Y drops the nodes (B,M,L,C) from the node list and their corresponding MACs from the
MAC list (i.e., (macB ,macM ,macL,macC)). Y can do that because it knows that the request
has passed through the first adversarial node X by recognizing X in the node list. Y also could
get hA from the MAC list by determining the position of X in the node list. Hence, Y computes
hY = H(Y, hA), needed to omit the nodes (B,M,L,C), and its MAC macY on the modified re-
quest. Then Y rebroadcasts the modified request mY that is received, updated, and rebroadcast
by D, where

mY = (rreq, S, T, id, hY , (A, Y), (macA,macY)).

When T receives the request, it validates the MACs and the per-hop hash value in the request,
generates a reply mT , and sends it back to S, where

mT = (rrep, T, S, (A, Y,D, T),macT).

When Y receives mT , it re-inserts the dropped nodes into the node list and forwards the modified
reply mY rrep to C, where

mY rrep = (rrep, T, S, (A,X,B,M,L,C, Y,D, T),macT).

Since the intermediate nodes B,M,L,C do not verify mY rrep, each of them forwards the reply
mY rrep. When X receives the reply, it removes the nodes B,M,L,C and its id from the list and
forwards the reply mXrrep

to A, where

mXrrep
= (rrep, T, S, (A, Y,D, T),macT).

When S receives mXrrep
, it computes the MAC over the fields preceding the macT in route

reply and verifies if it is same as macT that was computed by T ; if it is, then it accepts the route
as a valid route, even though it is an invalid route. Thus, the Ariadne with MAC protocol
is susceptible to hidden channel attack.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 219

2.5 Basic Idea Behind the Optimized Version of Ariadne with Iterated MAC

Ariadne has another version that uses iterated MAC computations (Hu et al. [2003]), instead
of independent MACs that are computed separately, as in section 2.4. As noted by Ács et al.
[2006], compared to the other versions of Ariadne, this iterated MAC version has superior se-
curity characteristics and is more secure. Like the other versions, a source node broadcasts a
route request to all its neighbors. Each intermediate node updates the request that is received
for the first time and re-broadcasts the updated request. The route request mj that reaches an
intermediate node Xj , (1 ≤ j ≤ p, on a route S = X0,X1,...,Xp,Xp+1 = T is of the following form

mj = (rreq, S, T, id, (X1, ..., Xj),macSX1
...Xj

),

where id is the request id, (X1, ..., Xj) is the accumulated route (i.e., the node list), macSX1 ...Xj

is the MAC computed by Xj with the key it shares with the target T over the route request mj−1
received from Xj−1, where

mj−1 = (rreq, S, T, id, (X1, ..., Xj−1),macSX1
...Xj−1

).

When the target T receives the route request from the last intermediate node Xp, it recomputes
the MAC iteratively and compares it with the value received in the request, if they are same.
Since T shares a key with each intermediate node, it can iteratively reconstruct the MAC se-
quence. If the verification is successful, it means that each intermediate node in the node is
genuine. The target then generates a route reply mrrep, where

mrrep = (rrep, S, T, id, (X1, ..., Xp),macT);

here macT is the MAC computed by T with the key it shares with S on the message fields that
precede it (i.e., on (rrep, S, T, id,X1, ..., Xp)). The reply mrrep is then unicast via the nodes in
the request in the reverse order (i.e., via the nodes Xp, Xp−1, ..., X1) to the source S. When an
intermediate node receives the reply, it verifies that its id is in the node list. It also verifies that
the id preceding it and the id next to it in the node list are its neighbors. Intermediate nodes
do not modify the reply. When the source receives the route reply mrrep, it accepts the route
returned in mrrep as a valid route if it can successfully verify the MAC computed by the target,
i.e., macT .

A Sample Network Configuration wherein an Attack on the Optimized Version of Ariadne with Iterated MAC is
Possible.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

220 · Baban A. Mahmood et al.

2.5.1 Susceptibility of Optimized Version of Ariadne with Iterated MAC to Hidden Channel
Attack. Susceptibility of Optimized Version of Ariadne with Iterated MAC to hidden channel at-
tack was first discovered and presented by Ács et al. [2006], and briefly described by Burmester
and de Medeiros [2009]. Consider the network configuration in Figure 4, in which the source S
needs to find a route to the target T , and X and Y are adversarial nodes that collude and launch
an attack on the route discovery. The first adversarial node X receives the route request mA

from the node A, where

mA = (rreq, S, T, id, (A),macSA.)

X computes the MAC (i.e., macSAX) over mA after appending its id to the node list in the
request and then broadcasts the updated request mX , where

mX = (rreq, S, T, id, (A,X),macSAX).

When B and C receive mX , they update the request and broadcast the corresponding route
request. Y does not respond to the requests coming from B and C. A little later, X creates a
route reply mXrrep

in the name of Y and unicasts it to B, where

mXrrep = (rrep, S, T, id, (A,X,B, Y),macSAX).

Note that the MAC in this fake reply is wrong (i.e., it was not computed by the target). B
only checks the id of the reply and whether X and Y are its neighbors. Since B has previously
received request mX with id same as that included in this reply mXrrep

, it retransmits mXrrep

to X. Y intercepts mXrrep
whose MAC is macSAX which is needed by Y to remove B. Y then

creates and broadcasts route request mY , where

mY = (rreq, S, T, id, (A,X, Y),macSAXY).

Node D receives this request, appends its id to the node list, appends its MAC, and rebroadcasts
the updated request mD, where

mD = (rreq, S, T, id, (A,X, Y,D),macSAXYD).

T receives mD and verifies the iterated MAC macSAXYD. Since macSAXYD was correctly con-
structed, T accepts it, generates a route reply mT , and sends it back to the source S, where

mT = (rrep, S, T, id, (A,X, Y,D),macT).

When D receives mT , it accepts it because D’s id is in the list and both T and Y are neighbors
of D. When Y receives mT from D, it adds the id for C to the node list and sends the modified
message mYrrep

to C, where

mYrrep = (rrep, S, T, id, (A,X,C, Y,D),macT).

Node C accepts the message and forwards it to X. When X receives mYrrep , it removes the id of
C from the node list and forwards the modified message to S which in turn successfully verifies
the reply to contain a valid route. However, the reply does not contain a valid route.

In this attack, to remove the node B or C from the node list, the second adversarial node Y
needed the macSAX which was computed by X in the message mXrrep

. Y needs this MAC in
order to compute macSAXY . Hence, the adversarial nodes X and Y successfully shortened the

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 221

route to (A,X, Y,D) which is invalid because X and Y are not neighbors. Thus, the optimized
version of Ariadne with iterated MAC is susceptible to hidden channel attack.

An Illustration of the Operation of endairA. S is the source, T is the target, and X and Y are the intermediate

nodes. id is a request id. sigX , sigY , and sigT are digital signatures of X, Y , and T , respectively. Each signature
is computed over the message fields preceding it (including the previous signatures).

2.6 Basic Idea Behind endairA Protocol

endairA, presented by Ács et al. [2006], is a secure source routing protocol, in which the route
reply is authenticated; hence intermediate nodes sign the route reply instead of the route request.
A source S broadcasts a route request that contains the identifiers of both the source and the
target and a request id. Intermediate nodes that receive the request for the first time append
their id to the node list and rebroadcast the request. A typical route request mj that is broadcast
by an intermediate node Xj , (0 ≤ j ≤ i), on a route S = X0, X1, ..., Xi, Xi+1 = T , is of the form

mj = (rreq, S, T, id, (X1, ..., Xj)).

When the target receives the route request, it creates a route reply that contains the ids of the
source and the target, the node list found in the request, and a digital signature computed by
the target over the elements preceding the signature. The reply is unicast upstream through
the nodes in the request in the reverse order. When an intermediate node receives the reply, it
performs the following verifications:

(1) its id is in the node list in the reply.

(2) the id preceding it and the id next to it in the node list are its neighbors.

(3) the signatures in the route reply are valid.

If these verifications succeed, the intermediate node signs the reply and forwards it to the next
node in the node list towards the source. As Ács et al. [2006] present, a route reply, unicast by
Xj , (0 ≤ j ≤ i), is of the form

mj = (rrep, S, T, id, (X1, ..., Xi), (sigT , ..., sigXj
)),

where sigXj
is the digital signature of Xj on the message fields preceding it.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

222 · Baban A. Mahmood et al.

When the source S receives the route reply, it checks if X1 (i.e., the first id in the node list)
is one of its neighbors. Then it verifies each individual signature in the reply. S accepts the
route returned in the reply if all these verifications succeed. Figure 5 illustrates the operation of
endairA.

A Sample Network Configuration Contains Adversarial Nodes X and Y .

2.6.1 Attack on endairA. Burmester and de Medeiros [2009] describe how endairA, presented
by Ács et al. [2006], which we discussed above, is also susceptible to hidden channel attack. To
illustrate this attack, consider the network configuration shown in Figure 6 in which the source S
needs to find a route to the target T . In this configuration, nodes X and Y are adversarial nodes
and they collude to remove B from the node list in the route request as follows. Under endairA,
the second adversarial node Y receives the route request mB from node B, where

mB = (rreq, S, T, id, (A,X,B)).

Since endairA does not authenticate route requests, Y drops node B from the node list contained
in mB and broadcasts the modified route request mY ,where

mY = (rreq, S, T, id, (A,X, Y)).

When T receives the route request, it generates a route reply and unicasts it back to S. The
second adversarial node Y receives the reply mDrrep

from D, where

mDrrep
= (rrep, S, T, id, (A,X, Y,D), (sigT , sigD)).

If Y signs the reply and forwards it to B, B will discard it because its id is not in the node list.
Also, S validates the route reply only if every node in the node list returned in route reply has
signed the reply. Therefore, the first adversarial nodeX needs the signature list (sigT , sigD, sigY).
Since X and Y are adversarial nodes, they could have shared their private information. This
means that X can reconstruct the digital signature of Y (i.e., sigY). Now, Y needs to find a
mechanism through which it can deliver the signatures sigT and sigD to X. Suppose that the
node D had previously issued a route request mDrreq

with a request id id
′

to discover a route to
node A. Therefore, Y must have received mDrreq

from D

mDrreq = (rreq,D,A, id
′
, ()).

Since route requests are not secured, Y can exploit the previous request from D to A to deliver
the signatures (i.e., (sigT and sigD)) to X. To do that, Y modifies the id id

′
of the request

mDrreq
into some other id id

′′
such that it contains information that X can use to reconstruct

the signatures sigT and sigD. This information can also be encrypted. Intermediate nodes do
not detect this modification and rebroadcast the request. When X receives this request, it re-
constructs the signatures, generates route reply mX , and forwards it to A which in turn signs

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 223

the reply and forwards it to S, where

mX = (rrep, S, T, id, (A,X, Y,D), (sigT , sigD, sigY , sigX)).

The source S then verifies that each individual signature was calculated correctly by the cor-
responding nodes and accepts (A,X,Y ,D) as a valid route. Thus, endairA protocol is also
susceptible to hidden channel attack.

3. PRELIMINARIES

In this section, we review Chameleon Hash functions and Sanitizable Signatures that are needed
in the design of our protocol.

3.1 Chameleon Hash Functions without Key Exposure

Chameleon hash functions have the same characteristics of any cryptographic hash function with
a trapdoor property, which allows the computation of collisions and second pre-images once the
trapdoor information is known.

Ateniese and Medeiros [2004] proposed chameleon hash with key exposure freeness property.
This key exposure free chameleon hash function is defined by the following set of algorithms:

—Key Generation (KeyGen): A probabilistic algorithm that accepts a security parameter κ as
input, and outputs a (secret key, public key) pair (sk,pk) as follows

KeyGen : 1κ −→ (sk, pk))

—Hash: A function that accepts a public key pk, a label L, a message m and an auxiliary random
parameter r as input, and outputs a bitstring C of fixed length τ as follows

Hash : (pk,L,m, r) −→ C ∈ {0, 1}τ

—Universal Forge (Uforge): A function that accepts the secret key sk (associated with public
key pk), a label L, a message m and an auxiliary parameter r as input, and computes another
message m′ and random parameter r′ as follows

UForge(sk,L,m, r) −→ (m′, r′)

such that

Hash(pk,L,m, r) = C = Hash(pk,L,m′, r′)

—Instance Forge (IForge): A function that accepts a public key pk, a label L, and two pairs of
a message and an auxiliary random parameter (m, r,m′, r′) as input, and computes another
collision message m′′ and random parameter r′′ as follows

IForge(pk,L,m, r,m′, r′) −→ (m′′, r′′)

such that

Hash(pk,L,m, r) = C = Hash(pk,L,m′, r′) =
Hash(pk,L,m′′, r′′)

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

224 · Baban A. Mahmood et al.

The above mentioned functions ensure the following security requirements:

—Collision-Resistance, which means that given only pk, L, m and r, there is no efficient algorithm
that can find a second pair m′, r′ such that C = Hash(pk,L,m, r) = Hash(pk,L,m′, r′).

—Semantic Security, which means that the chameleon hash value C does not reveal anything
about the message m that was hashed.

—Key Exposure Freeness, which means that given C = Hash(pk,L,m, r) there is no efficient
algorithm that can find a collision (i.e., a second pair m′, r′ mapping to the same digest C) if
a recipient with public key pk has never computed a collision under label L.

Now, we describe the algorithms which create practical instances by using cryptographic prim-
itives from a discrete log-based (DL) cryptosystem to construct an efficient chameleon hash
trapdoor commitment scheme providing key exposure freeness, as presented by Ateniese and
Medeiros [2004].

The scheme consists of three efficient algorithms: Key Generation Algorithm, Hash Calculation
Algorithm, and Collision Finding Algorithm.

3.1.1 Key Generation Algorithm. An algorithm that takes a security parameter λ as input
and outputs system public parameters params = 〈p, q, g,H〉, where

—p and q are primes such that p = 2q + 1,

—g is a generator of the subgroup of quadratic residues Qp of Z∗p,
—and H : {0, 1}∗ 7→ {0, 1}τ is a collision-resistant hash function mapping arbitrary-length bit-

strings to strings of fixed length τ .

The recipient chooses as secret key x at random in [1,q-1], and then computes the corresponding
public key as y = gx.

3.1.2 Hash Calculation Algorithm. An algorithm that takes a public key y, message m, and
random values (r, s) ∈ Zq x Zq and then computes e = H(m, r) and C ← Hash(m, r, s) =
r − (yegs mod p) mod q.

3.1.3 Collision Finding Algorithm. An algorithm that takes a hash output C, a random mes-
sage m′, and a random value k′ ∈ [1, q − 1] and then computes a collision (m′, r′, s′) as follows
r′ = C + (gk

′
mod p) mod q

e′ = H(m′, r′)
s′ = k′ − e′x mod q
such that C = Hash(m, r, s) = Hash(m′, r′, s′)

3.2 Sanitizable Signatures

The Sanitizable Signature scheme proposed by Ateniese et al. [2005] allows a node to modify
designated portions of the document and produce a valid signature on the legitimately modified
document without any help from the original signer. The designated portions are indicated
as mutable which are subject to a prior agreement between the signer and the node. A sanitizable
signature scheme is said to be weakly transparent if verifiers can identify which parts of the
message are potentially sanitizable and, consequently, which parts are immutable.

A sanitizable signature scheme, presented by Ateniese et al. [2005] is defined by the following
set of algorithms:

—Key Generation Algorithm: A probabilistic algorithm to compute the Signer’s two public-
private key pairs: pkSsign and skSsign (for a standard digital signature algorithm) and the

Target’s two public-private key pairs pkTsanit and skTsanit (for sanitization steps).

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 225

—Signing Algorithm: A deterministic algorithm which takes as input of a message m, a private
signing key skSsign, a public sanitization key pkTsanit, random coin r, and produces a signature
σ as follows

σ ← SIGN(m, r; skSsign, pk
T
sanit)

—Verification Algorithm: A deterministic algorithm that, on input a message m, a possibly valid
signature σ on m, a public signing key pkSsign and a sanitization key pkTsanit, outputs TRUE
or FALSE as follows

V ERIFY (m,σ; pkSsign, pk
T
sanit)→ {TRUE,FALSE}

—Sanitization Algorithm: A deterministic algorithm that, on input of a message m, a signature
σ on m using public signing key pkSsign, a private sanitizing key skTsanit, and a new message
m′, produces a new signature σ′ on m′ as follows

σ′ ← SANIT (m,σ,m′; pkSsign, sk
T
sanit)

The above mentioned scheme meets the following security requirements:

—Correctness which means that the verification algorithm must accept a signature produced by
the signing algorithm.

—Unforgeability which means that it is difficult to produce a valid signature on a message that
verifies against the associated public key without the knowledge of the private signing key.

—Identical Distribution which means that σ values produced by the sanitization algorithm are
distributed identically to those produced by the signing algorithm.

4. THE PROPOSED PROTOCOL

In this section, we present our secure on-demand routing protocol, called SAriande, based on
Sanitizable Signatures discussed above. This protocol prevents the Hidden Channel Attacks.

4.1 Protocol Setup

In our protocol, we use the sanitizable signature proposed by Ateniese et al. [2005], constructed
based on the chameleon hashes presented by Ateniese and Medeiros [2004]. The two pairs of
keys used in our protocol are the (private, public) signing keys (skSsign, pkSsign) of the source S,

and the (private, public) sanitizing keys (skTsanit, pk
T
sanit) of the target T . To avoid confusion,

SIGN(.) is used for the sanitizable signature and Sig(.) is used for the underlying signature
algorithm. We assume that every node has the public key of both the signer and sanitizer. The
basic idea behind the route request propagation and the route reply propagation of our protocol
is similar to that of the optimized version of Ariadne, but we prevent hidden channel attacks
using sanitizable signature.

4.2 Basic Idea Behind our Protocol

We use sanitizable signature, proposed by Ateniese et al. [2005], in our protocol to detect and
prevent hidden channel attacks. The source node signs the route request using its private key
skSsign and the public sanitizing key pkTsanit of the target. This sanitizable signature is weakly
transparent as described by Ateniese et al. [2005] to all the nodes in the network. It will be
sanitized by the target T using T ’s private sanitizing key skTsanit.

Since this signature is weakly transparent, every other node can verify the modifications to the
sanitizable portion of the message. This helps every node verify whether the reply is coming from
the target node T . Hence, no malicious node can impersonate the target T . This prevents the
hidden channel attack during the propagation of the route request to the target node.

4.2.1 Basic Route Discovery. When a source node S needs to discover a route to a target
T , it broadcasts a route request. To do that, S generates a message m and a signature σ on m
using an algorithm SIGN , described in section 3.2. The route request message MS , initiated by

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

226 · Baban A. Mahmood et al.

S and targeted to T , contains eight fields: (route request, message m, sanitizable signature σ,
source, target, request id, node list, MAC list). The source and the target fields are set to the
ids of the source and the target nodes, respectively. The request id identifies the route request.
As in Ariadne, proposed by Hu et al. [2005], the source S initializes the node list and MAC list
to empty lists. S creates a message m = (m1, ...,mt) that is partitioned into t blocks for some
constant t and initializes m to (request id, message id, source, target, sanitizable-portion of the
message), where

m = (id,mID, S, T, sanitizable− portion).

The source S decides which portions, say mi1 , ...,mik , can be modified by the target T . The
source computes the chameleon hash, CHpkTsanit

(.), using the target’s public key pkTsanit for all
mi as follows:

m̄i =

{
CHpkTsanit

(mID||i||mi, ri)if i ∈ {i1, i2, ..., ik},
mi||i otherwise

To sign m̄, where m̄ = (m̄1, m̄2, ..., m̄t), S uses a Signing Algorithm similar to that presented in
Section 3.2. S signs m̄ with its private signing key skSsign and the public sanitization key pkTsanit
of the target T . The SIGN algorithm takes m̄, the private signing key of the source skSsign,

the public sanitization key of the target pkTsanit, and a random coin r as input and produces the
signature σ, where

σ = SIGN(m̄, r; skSsign, pk
T
sanit) = SigskSsign(mID||t||pkTsanit||m̄1||...||m̄t).

Then S broadcasts the route request MS , where

MS = (rreq, m̄, σ, S, T, id, (), ()).

The route request Mj forwarded by an intermediate node Xj (1 ≤ j ≤ n), on the route S =
X0,X1,...,Xn,Xn+1 = T is of the form

Mj = (rreq, m̄, σ, S, T, id, (X1, ..., Xj), (macSX1
...Xj

)).

macSX1
...Xj

is the MAC computed by Xj , with the key it shares with T , on the route request
Mj−1 received from Xj−1, where

Mj−1 = (rreq, m̄, σ, S, T, id, (X1, ..., Xj−1), (macSX1
...Xj−1

)).

When the intermediate node Xj receives the route request that is intended to a target T , Xj

verifies the signature σ using a Verification Algorithm, VERIFY, explained in section 3.2, where

V ERIFY (m̄, σ; pkSsign, pk
T
sanit) −→ {TRUE,FALSE} .

This verification is necessary to prevent the hidden channel attack on endairA mentioned in
Section 2.6.1. If the signature is valid, Xj checks whether it has received the same request by
checking the source id, target id, and request id. It discards the request if it has been received
before. If not, Xj appends its id Xj to the Node List and replaces the macSX1 ...Xj−1 with
macSX1

...Xj
as explained above; Xj then rebroadcasts the route request Mj .

When the target T receives the route request, first it verifies the signature σ using the verifica-
tion algorithm VERIFY, and then it validates the nodes in the list by recomputing the MACs.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 227

If these verifications are successful, T sanitizes the message m̄ using its private sanitization key
skTsanit (as explained in section 3.2) and generates a message m̄′, where,

m̄′ =

{
CHskTsanit

(mID||i||m′i, r′i) for i ∈ {i1, i2, ..., ik},
m̄i||i otherwise

The mutable portion of the message m will be replaced with the nodes in the
Node List and signed.

The sanitizing algorithm SANIT takes as input m̄, the signature σ on m̄, the modified message
m̄′, the public signing key pkSsign of the source S, and the private sanitizing key skTsanit of the
target T to generate the sanitized signature σ′, where

σ′ ← SANIT (m̄, σ, m̄′; pkSsign, sk
T
sanit).

T then generates a route reply message MT which consists of the ids of source and target, the
request id, the Node List (i.e., the accumulated route obtained from the request), the modified
message m̄′, and the sanitized signature σ′, where

MT = (rrep, m̄′, σ′, S, T, id, (X1, ..., Xn)).

Unlike Ariadne (Hu et al. [2005]), the target does not compute the MAC over the reply because
the reply is authenticated using sanitized signature σ′. The reply is then sent back to S on the
reverse route included in the route request. When each node Xj in the Node List receives the
reply, it verifies the sanitized signature σ′ of the target, using

V ERIFY (m̄′, σ′; pkSsign, pk
T
sanit) −→ {TRUE,FALSE} .

If this test returns FALSE, Xj discards the reply. If it returns TRUE, Xj verifies that the
mutable portion of the message has been modified (i.e., the signature has been sanitized) by the
target. If not, then Xj discards the reply. If both these tests succeed, Xj unicasts the reply
message to Xj−1 (1 ≤ j ≤ n), on the reverse route T = Xn+1, Xn,Xn−1,...,X1,X0 = S. Weak
transparency of the sanitizable signature gives intermediate nodes the ability to verify whether
the signature has been sanitized by T .

When S receives the reply, it checks whether the sanitized signature σ′ passes the verification
using VERIFY ; if so, the source accepts the route; otherwise, it discards it. Unlike Ariadne(Hu
et al. [2005]), the source does not need to recalculate the corresponding MAC of each intermediate
node since the authentication is done through the sanitized signature σ′.

Figure 7 shows the steps involved in route discovery under our protocol when the source tries
to discover a route to the target node T and the route request goes through the intermediate
nodes (A,B,C) before reaching T . Figures 8 and 9 respectively show how route requests and
route replies at intermediate nodes are processed under our protocol.

5. ANALYSIS AND DISCUSSION OF THE ATTACKS DETECTED BY THE PROPOSED PRO-
TOCOL

In this section, we discuss and show how our protocol prevents the hidden channel attacks.

5.1 Detecting and Preventing the Hidden Channel Attack on SRP

In SRP, intermediate nodes can easily inject invalid identifiers into route requests and forward
them to the target T which in turn verifies these non-existent nodes correctly. This is possible
because intermediate nodes neither check the source’s MAC nor they append their own MACs
to the route request. This kind of attack can be detected by our protocol. Consider the attack
explained in section 2.1.1, when the adversary A inserts the arbitrary sequence of identifier λ,

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

228 · Baban A. Mahmood et al.

An Illustration of Route Discovery Under our Protocol. The source S tries to find a route to the

target node T .

under our protocol, the node list cannot pass the verification done by the target. Hence, our
protocol prevents such attacks.

5.2 Detecting and Preventing the attack on Ariadne with Signature

In this case, the adversarial node removes a node from the Node List (i.e., the route) such that
the target can still validate the route (see Section 2.3.1). In Ariadne with Signature (see Sec-
tion 2.3), each node appends the signature generated over the fields of the received route request.
This gives ability to adversarial nodes (e.g., node A in Figure 2) to reconstruct the signatures
when they receive multiple requests before rebroadcasting any of them. This signature technique
leads to information leakage (attack) like the one presented by Buttyán and Vajda [2004], as
explained in section 2.3.1. However, this attack is prevented by our protocol. When iterating
MAC is used, the adversarial node cannot reconstruct the MAC using multiple requests. For

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 229

Handling of Route Request by an Intermediate Node Xj .

example, in Figure 2, where S initiates a route request to discover a route to T , A receives the
following two messages from nodes V and X respectively under our protocol

msg1 = (rreq, m̄, σ, S, T, id, (Q,V),macSQV), and
msg2 = (rreq, m̄, σ, S, T, id, (Q,V,W,X),macSQVWX).

Now, from message msg2 A knows that V and W are neighbors, and A needs to create a message
msg3, where

msg3 = (rreq, m̄, σ, S, T, id, (Q,V,W,A),macSQVWA).

A needs to broadcast this message so that the target can validate all the intermediate nodes with
their corresponding keys. However, in order to do that (i.e., to remove X from the route), A
needs to get the iterated MAC calculated by W (i.e., macSQVW) which is protected by W ’s key.
Hence A cannot remove X unless it knows the secrete key of W to calculate W ’s MAC (i.e.,
macQVW) and as a result, msg3 cannot be created. Thus, our protocol prevents hidden channel
attacks.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

230 · Baban A. Mahmood et al.

Handling of Route Reply by an Intermediate Node Xj

5.3 Detecting and Preventing the Attack on Basic Ariadne with MAC

Adversarial nodes in this scheme collaborate to remove a node or a sequence of nodes located
between two of the adversarial nodes as explained in Section 2.4.1. Intermediate nodes in Ariadne
with MAC append their calculated MAC values to a list of MACs giving adversaries enough
space to shorten the real route between source and target nodes. Consider the attack presented
in section 2.4.1, when the request arrives at the second adversarial node Y (see Figure 3), it drops
the sequence (B,M,L,C) from the request.

Now, let’s assume that the adversarial node can successfully remove the sequence mentioned
above from the route request and the request arrives at T . Now, under our protocol, this attack is
detected as follows. The target T puts the node list in the sanitizable position of the sanitizable
signature which in turn can be verified by each intermediate node. The accumulated route
that is sanitized in this example would be (A, Y,D). Y cannot re-insert the hidden nodes (i.e.,
(B,M,L,C)) into the route reply received from D because each of these nodes can verify the
sanitized signature which was computed by T on the received path (i.e., node list). If Y does
so, the first node C in the node list will detect Y as an adversarial node because the sanitized
signature will not be successfully verified. This prevents the reply from arriving at the source
and hence, non-plausible routes are not created. Thus, our protocol prevents this type of hidden
channel attacks.

5.4 Detecting and Preventing the attack on the Optimized Version of Ariadne with Iterated MAC

The iterating MAC calculated at each intermediate node is considered more efficient than the
other flavors of Ariadne to prevent attacks. However, this optimized version is also susceptible
to hidden channel attacks as discovered by Burmester and de Medeiros [2009] and discussed in
section 2.5.1. This is because under this version of Ariadne, intermediate nodes check neither
iterated MACs calculated by intermediate nodes nor the MAC computed by the target T .

In our protocol every node verifies that the signature is sanitized, hence, when a route reply
arrives at intermediate nodes, it will be forwarded only if the verification of the sanitized signature
succeeds.

Now, let’s explain how our protocol prevents this type of hidden channel attack. Consider the

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 231

hidden channel attack against Ariadne presented in section 2.5.1; we notice that the adversarial
node Y (see Figure 4) needs the iterating MAC (macSAX) that was broadcast by the other ad-
versarial node X. But since there is an extra node, B, between X and Y , X needs to impersonate
Y and unicast a fake reply to B such that when B forwards the reply to X, Y can intercept the
reply and extract the MAC generated by X (i.e., macSAX).

Now when X creates a fake route reply in the name of Y and unicasts it to B
(Burmester and de Medeiros [2009], see Section 2.5.1), B checks the signature and
finds it is not sanitized because T has not received the route request yet, hence B
detects that Y is an adversarial node. Thus, our protocol prevents hidden channel
attacks present in optimized Ariadne with iterated MAC.

Then, after the reply is sanitized by T , the route reply cannot be tampered with by an interme-
diate node. The source or the next upstream/downstream intermediate node to the adversarial
node can detect the modification, hence the route reply arrives intact at the source S.

It is noteworthy to mention that we use one signature that is signed by the source
S and sanitized by the target T . This signature is verified by the intermediate nodes
in the request phase as well as in the reply phase. This important feature makes
the proposed routing protocol securely propagate route requests towards the target
node (downstream flow) and also securely forward route replies towards source node
(upstream flow) at a cost of one signature which is more cost effective than other
schemes in which each node uses its own individual signature.

5.5 Detecting and Preventing the attack on endairA

The endairA protocol secures route replies by digitally signing but does not secure route requests.
Hence adversarial nodes need a strategy to hide control information while route replies are for-
warded to source nodes. Therefore, the attack found by Burmester and de Medeiros [2009] on
endariA presented in Section 2.6.1 was based on this strategy. The adversarial node Y (Figure 6)
needs to send the signature list (i.e., (sigT , sigD, sigY)) to the other adversarial node X so that
the source S accepts the reply. It is assumed that there has been a route discovery initiated by
node D towards the target A prior to the route discovery from S to T . Y uses this previous
route discovery to hide the signature list in the id of the route request so that X can reconstruct
the required information (i.e., (sigT , sigD, sigY)) from the modified id. The main reason for this
attack is that route requests are not secured.

This attack is prevented by our protocol because the main part m (Section 4.2.1) of route
requests in our protocol is authenticated, where

m = (id,mID, S, T, sanitizable− portion).

As explained in Section 4.2.1, m, which is an intrinsic part of the request, is signed by the source S
using the sanitizable signature. Each intermediate node verifies this sanitizable signature, which
is part of the request, before forwarding the request.

Now, to detect the attack on endairA, we go back to the scenario mentioned in Section 2.6.1
and briefly explained above. When the second adversarial node Y modifies id′ of the request
into some other identifier id

′′
to contain the signature list, the main portion of the route request

gets modified. This modification yields a signature different from the one sent the route request;
hence, when the neighbor nodes of Y (i.e., intermediate nodes) receive this request, they discard
it because the signature cannot be verified. Therefore, the modified request cannot travel any
further beyond the neighbors of Y which means Y cannot communicate with X using invalid
request information. As a result, this verification prevents such attacks which in turn means that
our protocol prevents hidden channel attack present in endairA.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

232 · Baban A. Mahmood et al.

6. CONCLUSION

In this paper, we discussed how some of the secure routing protocols proposed for MANETs are
in fact not secure, and presented a novel, secure routing protocol for MANETs. The proposed
protocol relies on sanitizable signature, a scheme that allows other parties to sanitize the signature
so that the original signer as well as other intermediate nodes can validate the sanitized signature.
It prevents hidden channel attacks for MANETs. The security mechanism we designed is general
and can be applied to any source routing protocol. A comprehensive analysis of the hidden
channel attacks on SRP, Ariadne with its three flavors, and endairA is provided and we showed
how our protocol detects and prevents these hidden channel attacks.

References

Abdelaziz, A. K., Nafaa, M., and Salim, G. 2013. Survey of routing attacks and counter-
measures in mobile ad hoc networks. In Proceedings of 2013 IEEE International Conference
on Computer Modelling and Simulation (UKSim).

Ács, G., Buttyán, L., and Vajda, I. 2006. Provably secure on-demand source routing in
mobile ad hoc networks. IEEE Transactions on Mobile Computing 5, 11, 1533–1546.

Arulkumaran, G. and Gnanamurthy, R. K. 2019. Fuzzy trust approach for detecting black
hole attack in mobile adhoc network. Mobile Networks and Applications 24, 2, 386–393.

Ateniese, G., Chou, D. H., Medeiros, B., and Tsudik, G. 2005. Sanitizable signatures.
In Proceedings of 10th European Symposium on Research in Computer Security. Springer
Berlin Heidelberg, 159–177.

Ateniese, G. and Medeiros, B. 2004. Security in Communication Networks: International
Conference, SCN. Springer Berlin Heidelberg, Chapter On the Key Exposure Problem in
Chameleon Hashes, 165–179.

Burmester, M. and de Medeiros, B. 2009. On the security of route discovery in MANETs.
IEEE Transactions on Mobile Computing 8, 9 (Sept), 1180–1188.

Buttyán, L. and Vajda, I. 2004. Towards provable security for ad hoc routing protocols. In
Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks. ACM,
New York, NY, USA.

Giruka, V. C. and Singhal, M. 2007. A self-healing on-demand geographic path routing
protocol for mobile ad-hoc networks. Ad Hoc Networks 5, 7 (Sept.), 1113–1128.

Hsu, C. C. and Lei, C. L. 2009. A geographic scheme with location update for ad hoc routing. In
Proceedings of Fourth International Conference on Systems and Networks Communications,
ICSNC.

Hu, Y., Perrig, A., and Johnson, D. B. 2003. Efficient security mechanisms for routing
protocols. In Proceedings of NDSS.

Hu, Y.-C., Perrig, A., and Johnson, D. B. 2005. Ariadne: A secure on-demand routing
protocol for ad hoc networks. Wireless networks 11, 1-2, 21–38.

Hurley-Smith, D., Wetherall, J., and Adekunle, A. 2017. SUPERMAN: security using
pre-existing routing for mobile ad hoc networks. IEEE Transactions on Mobile Comput-
ing 16, 10, 2927–2940.

Jain, S., Shastri, A., and Chaurasia, B. K. 2013. Analysis and feasibility of reactive routing
protocols with malicious nodes in manets. In Proceedings of International Conference on
Communication Systems and Network Technologies (CSNT).

Johnson, D. B. and Maltz, D. A. 1996. Mobile Computing. Springer US, Chapter Dynamic
Source Routing in Ad Hoc Wireless Networks, 153–181.

Karp, B. and Kung, H. T. 2000. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking.

Kavitha, K., Selvakumar, K., Nithya, T., and Sathyabama, S. 2013. Zone based multicast
routing protocol for mobile ad hoc network. In Proceedings of International Conference on

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

A Secure Source Routing Protocol for Mobile Ad Hoc Networks · 233

Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication
System (ICEVENT).

Kojima, H., Yanai, N., and Cruz, J. P. 2019. ISDSR+: improving the security and availability
of secure routing protocol. IEEE Access 7, 74849–74868.

Krawczyk, H., Bellare, M., and Canetti, R. 1997. HMAC: Keyed-hashing for message
authentication. RFC 2104, RFC Editor. February.

Li, H. and Singhal, M. 2005. An anchor-based routing protocol with cell id management
system for ad hoc networks. In Proceedings of International Conference on Computer
Communications and Networks.

Li, T., Ma, J., and Sun, C. 2019. SRDPV: Secure route discovery and privacy-preserving
verification in manets. Wireless Networks 25, 1731–1747.

Papadimitratos, P. and Haas, Z. 2002. Secure routing for mobile ad hoc networks. Mobile
Computing and Communications Review 1, 2, 27–31.

Perkins, C. E. and Bhagwat, P. 1994. Highly dynamic destination-sequenced distance-
vector routing (dsdv) for mobile computers. SIGCOMM Computing Commununications
Review 24, 4 (Oct.), 234–244.

Perkins, C. E. and Royer, E. M. 1999. Ad-hoc on-demand distance vector routing. In
Proceedings of Second IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA).

Perrig, A., Canetti, R., Tygar, J., and Song, D. 2000. Efficient authentication and signing
of multicast streams over lossy channels. In Proceedings of IEEE Symposium on Security
and Privacy.

Rivest, R., Shamir, A., and Adleman, L. 1978. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126.

Salehi, M. and Boukerche, A. 2019. Secure opportunistic routing protocols: methods, mod-
els, and classification. Wireless Networks 25, 2, 559–571.

Shen, H. and Zhao, L. 2013. ALERT: An anonymous location-based efficient routing protocol
in MANETs. IEEE Transactions on Mobile Computing 12, 6 (June), 1079–1093.

Talooki, V. N., Marques, H., and Rodriguez, J. 2013. Energy efficient dynamic MANET
on-demand (E2DYMO) routing protocol. In Proceedings of International Symposium and
Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).

Xia, H., shun Zhang, S., Li, Y., kuan Pan, Z., Peng, X., and Cheng, X. 2019. An attack-
resistant trust inference model for securing routing in vehicular ad hoc networks. IEEE
Transactions on Vehicular Technology 68, 7, 7108–7120.

Xu, Y., Liu, J., Shen, Y., Jiang, X., and Shiratorie, N. 2017. Physical layer security-aware
routing and performance tradeoffs in ad hoc networks. Computer Networks 123, 4, 77–87.

Yih-Chun, H. and Perrig, A. 2004. A survey of secure wireless ad hoc routing. IEEE Security
Privacy 2, 3 (May), 28–39.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

234 · Baban A. Mahmood et al.

Dr. Baban A. Mahmood is currently the Chair of The Department of Networking,
College of Computer Science and Information Technology at University of Kikuk, Kikuk,
Iraq. He received his Ph.D in Computer Science from University of Kentucky, Lexington,
Kentucky, USA. He received a B.Sc, degree in Computer and Software engineering from
University of Al-Mustansryah, Baghdad, Iraq, in 2003 and an M.Sc. degree in Computer
Science from University of Sulaimaniya, Kurdistan, Iraq, in 2009. He also received an
M.Sc., degree in Computer Science from University of Kentucky, Lexington, Kentucky,
USA, in 2015. He published his research work in the area of routing protocols in mobile
ad hoc networks.

Dr. D. Manivannan is currently an Associate Professor in the Computer Science De-
partment at University of Kentucky, Lexington, Kentucky, USA. He received a B.Sc degree
in Mathematics from University of Madras, Madras, India. He received an M.S in Math-
ematics, an M.S in Computer Science and a PhD in computer and information science
from The Ohio State University, Columbus, Ohio, USA, in the years 1992, 1993 and 1997
respectively. He published his research work in the following areas: fault-tolerance and
synchronization in distributed systems, security and fault-tolerance in cloud computing
systems, routing in wormhole networks, routing in mobile ad hoc networks and vehicular
ad hoc networks, vehicular clouds, channel allocation in cellular networks and wireless
personal area networks. Dr. Manivannan has published more than 80 articles in refereed
International Journals (a vast majority of which were published by IEEE, ACM, Elsevier,
and Springer) and Proceedings of International Conferences.
Dr. Manivannan served as an Associate Editor of IEEE Transactions on Parallel and
Distributed Systems, IEEE Communications Magazine and Wireless Personal Communi-
cations journal. He served as Program co-chair of three International Conferences in the areas of reliable distributed
systems and wireless networks and served as program committee member for over 40 International Conferences.
He is on the Editorial Board of Information Sciences journal. He served as reviewer for more than 35 International
Journals published by ACM, IEEE, Elsevier, Springer, Oxford University Press, Taylor and Francis and others. He
also served on several proposal review panels of US National Science Foundation and as external tenure reviewer for
other Universities. Dr. Manivannan’s research has been funded by grants from the US National Science Foundation
and the US Department of Treasury.
Dr. Manivannan is a recipient of the Faculty Early Career Development award (CAREER award) from US National
Science Foundation. He is a senior member of the IEEE and ACM.

International Journal of Next-Generation Computing, Vol. 11, No. 3, November 2020.

