
DNA Computing Algorithm for a school
Timetable Problem

Kuntala Boruah1, Manash Kapil Pathak2, Ranjan Sarmah1

1Assistant Professor, School of Innovation and Technology, Assam Rajiv Gandhi University of Coop-

erative Management (ARGUCOM), Sivasagar, Assam, India
2Assistant Controller of Examination, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Nagaon,

Assam, India

Deoxyribonucleic acid (DNA) computing is believed to have the potential to offer an effective approach to reduce
any NP problem from exponential to polynomial time. Recently, use of biomolecules for solving scheduling problems
has gained tremendous attention. In this paper a theoretical proof-of concept algorithm is proposed to address
timetable scheduling problem which is a classical NP complete problem. The efficiency of this algorithm owes to the
parallel processing property of DNA. Information relating to resources like the set of classes, teachers, time slots and
subjects are encoded in the form of unique DNA sequences. Initially, all the possible (valid as well as invalid)
allocations are generated and, in each step, the illegal sequences are discarded until finally left out with one or more
potential solutions that satisfy the given set of constraints. The time complexity of the proposed algorithm is
independent of the size of the problem. Moreover, the proposed algorithm can be applied to solve several other
scheduling problems with necessary modifications.

Keywords: DNA; DNA Computing; NP complete problem; Parallelism; Timetable problem.

1. INTRODUCTION

DNA computing is a rapidly evolving area that employs the strands of DNA along with wet lab
biochemical reactions for computational purpose. Adleman [1994] recognized the computational
power of DNA and demonstrated the first ever experimental solution to an instance of Hamil-
tonian path problem. After his innovative attempt, DNA computing is witnessing tremendous
growth. Lipton [1995] proposed a model to solve the satisfiability problem (SAT). Since then,
DNA computing has been receiving enormous attention from researchers working in a wide range
of areas. Tides of new models have been proposed since 1994 which are categorized into Adleman-
Lipton model, sticker model, restriction enzyme model, self-assembly model and surface-based
model, logic gate and Boolean circuit simulation model etc. (Adleman [1998], Lipton [1995],
Rowies et al. [1998], Quyang et al. [1997], Winfree et al. [1998], Sakamoto et al. [2000], Smith
et al. [1998], Boruah and Dutta [2018]). The parallelism property of DNA has the potential to
reduce NP problems from exponential time to polynomial time. Based on this property, several
papers have been published suggesting algorithms to solve various NP-complete problems (Li
et al. [2006], Xiao et al. [2006], Chang et al. [2012], Wang et al. [2012], Wang et al. [2013], Wang
et al. [2014], Chang et al. [2014]).

In this work a theoretical model is proposed to solve an instance of school time table problem
using specially encoded strands of DNA. Biochemical operations such as affinity purification,
PCR, gel electrophoresis are used as computational tools for the model.

1.1 Related Work in The Field of Timetable Problem

Almost three decades ago Gotlieb [1963] and Even et al. [2002] showed that all timetable problems
are NP-Complete. It deals with the task of scheduling faculty (resource person) to deliver lectures
to the allotted classes at suitable time slots in accordance with the predefined set of constraints.
Over the time, several approaches such as genetic algorithm (Chu and Fang [1999], Cowling et al.

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

DNA Computing Algorithm for a school Timetable Problem · 63

[2002], Sigl et al. [2003], Pezzella et al. [2008], Bhaduri [2009], Ghaemi et al. [2007]), Swarm
Optimization(Chu et al. [2006]), agent-based approach (Opera [2007]), combination of simple
search and swapping i.e. simple search swapping (Aycan and Ayav [2009]), column generation
approach (Huisman [2006]), combination of swarm optimization and local search (Chen and Shih
[2013], Zhang et al. [2019]), differential evolution (Zhong et al. [2012]), graph coloring approach
(Ganguli and Roy [2017], Redl [2007], Burke et al. [1994], Wood [1968]) etc. have been employed
to address such problems.

Beside the above strategies, non-convention techniques such as DNA computing emerged as
one of the most interesting candidates due to its inherent parallelism property. Cheng et al. [2010]
utilized the DNA tile self-assembly property to solve timetable problems with complexity O(mn).
Zhixiang Yin and his co-researchers (Yin and Chen [2010]) demonstrated an easy and feasible
model to address timetable problems by employing an innovative technology of AcryditeTM gel
separation. Wang et al. [2015] came up with a model to solve an unbalanced assignment problem
which ensures applicability to real life situations. Popov et al. [2014] suggested another algorithm
to solve timetable problems.

Brute force strategy ensures solution to NP class problems by generating all possible candidate
solutions and then each of the candidate is examined for best optimal solution but this strategy
suffers from major drawback leading to vast solution space which eventually results in polynomial
time (2n, n! or nn) search space. DNA computing offers a most convincing solution to overcome
these disadvantages owing to its inherent parallelism property.

The organization of this paper is as follows. Section 2 formally describes the proposed algorithm
to solve an instance of school timetable by implementing brute force approach in parallel mode.
Sub-section 2.1 discusses the theoretical implementation of the proposed algorithm at biochemical
level. In sub-section 2.2 the efficiency of the algorithm is investigated in terms of time complexity.

2. DNA ALGORITHM FOR TIMETABLE PROBLEM

A timetable problem is a classical NP-complete problem in which the task is to schedule or
allocate resources without any conflict to the given constraints. Every timetable problem has a
different set of constraints depending on the requirement, for e.g., an exam scheduling timetable
problem has different set of constraints as compared to a class scheduling timetable problem.

In this paper, a new non-deterministic algorithm has been proposed to solve the problem of
school timetable scheduling using the parallel processing capacity of DNA. Initially, a set of
information needed to be gathered relating to each teachers preference so that a known set is
formed. Later on, a set of constraints are formulated according to the requirement. For simplicity
of explaining, the authors have considered a special case of a school timetable where:

Information relating to each teachers preference is gathered initially:

(1) Subject interests of the teachers along with the classes or semesters they are interested in
teaching those subjects, i.e., if a teacher has a subject interest as science then he has to
mention the class he is interested in teaching (for e.g., Science of class XII)

(2) Preferred time slots of each teacher must be acquired in such a way that the total number
of preferred time slots is always greater or equal to the number of subjects needed to be
taught by each teacher (preferred time slots of each teacher > number of subjects needed to
be taught by each teacher).

Set of constraints for the proposed algorithm:

(1) Not more than one teacher should be allocated to the same class at the same time slot.

(2) All the subjects should be taught to each class exactly once every day.

(3) No class should remain unallocated at any time slot.

The problem is to allot time slots to each teacher according to their preferences without con-
flicting with the time slots of other teacher assigned to the same class. For e.g., if a teacher T1

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

64 · Kuntala Boruah et al.

has been assigned subjects S1 and S2 to be taught to class C1 and C3 respectively then, while
formulating the timetable care must be taken to ensure allotments in his preferred time slots and
to avoid any allotment in his unfavourable subjects or time slots.

The finite set of classes, teachers, subjects and time slots are represented as:

(1) ’n’ numbers of classes: C = {C1, C2, C3,, Cn}
(2) ’m’ number of teachers: T = {T1, T2, T3,, Tm}
(3) ’x’ number of subjects: S = {S1, S2, S3,, Sx}
(4) ’y’ numbers of time slots: t = {t1, t2, t3,, ty}

The proposed algorithm:
Step 1: Generate all possible random allotments for each class separately.
Step 2: Select those allotments that include 1st and last time slots.
Step 3: Extract allotments that have correct length.
Step 4: Keep all allocations that have all subjects and time slots at least once.
Step 5: Generate all possible random allotments for the entire time table.
Step 6: Select those allotments that start with 1st class and end with last class.
Step 7: Extract allotments that have correct length.
Step 8: Keep all allotments that have all subjects, time slots and class at least once.

The above-mentioned algorithm is represented in the form of a pseudocode with four pro-
cedures as shown below. DNATimeTable Main() (Algorithm 1) is the main procedure from
where EncodeInformation Strand() (Algorithm 2), EncodeSplint Strand1() (Algorithm 3), En-
codeSplint Strand2() (Algorithm 4) are called.

Biological operations: Merge(), Append(), PCR amplification(), Affinity purification() and
Extract() are used to construct the timetable solving problem which are derived from Adleman
- Lipton model (Adleman [1994], Lipton [1995]).

The Adleman-Lipton model is constructed upon the following biological operations:
Append (T, S): String S is ligated to the end of all DNA strands in test-tube T.
Copy (T, tt1, tt2, , ttn): Several replicas of DNA strands of test-tube T is created and placed
in test-tubes tt1 to ttn .
Merge (T, tt1, tt2, , ttn): The contents of test tubes tt1 to ttn are poured into tube T and
allow them to undergo biochemical reaction.
Extract (T, S, T+, T-): The operation produces two different test-tube T+ and T- depending
on the presence or absence of string S respectively.
Detect (T): Given a tube T, this operation returns true if there is at least one DNA strand in
T, otherwise it returns false.
Discard (T): Given a tube T, this operation ignores T.
Affinity purification(T, S, tt): In this operation magnetic beads attached with covalently
bonded DNA sequence are used to filter out all those DNAs in tube T that contain S sequence
at least once. The extracted sequences are stored in test-tube tt.

The algorithm returns output as either a non-empty set which signifies one or more feasible
scheduling schemes or as an empty set which means the corresponding timetable problem doesn’t
have any solution or valid schedule for the given constraints.

2.1 Biochemical implementation of the proposed algorithm

For simplicity in demonstrating the biochemical implementation of the proposed algorithm, an
instance of school timetable with three classes, four teachers, three time slots, and three subjects
are considered, which are represented by the notation as (C1, C2 and C3), (T1, T2, T3, T4), (t1,
t2, t3) and (S1, S2, S3) respectively. Table I show the outline of the desired timetable.

Information relating to each teachers preference:
The following dummy information relating to the subjects and class preferences (Figure 1) is

assumed to be collected from each teacher before the execution of the algorithm that is represented

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

DNA Computing Algorithm for a school Timetable Problem · 65

Algorithm 1: Pseudocode for solving the time table problem

DNATimeTable Main()
Begin
increment value = 1
Empty (ttinfo, ttsplint1, ttsplint2, ttinfo, tt1k, tt2k, tt3k, tt4k, ttresult, ttfinal result)
EncodeInformation Strand1()
EncodeInformation Strand2()
{
for (k ← 1 to n, increment value) do
{
Merge(tt1k, ttsplint1, ttinfo)
PCR amplification(tt1k, C̄n, C̄n)
Extract(tt1k, 170bp, tt2k)
for (i ← 1 to x, increment value) do
{
Affinity purification(tt2k, S̄x, tt3)
}

end for
for (j ← 1 to t, increment value) do
{
Affinity purification(tt3, t̄j, tt4)
}

end for
Merge(ttall, ttsplint2, tt4)
PCR amplification(ttall, C̄1, C̄n)
Extract(ttall, 510bp, ttresult)
for (k ← 1 to m, increment value) do
{
Affinity purification(ttresult, T̄m-̄ty, ttfinal result)
}

end for
}

end for
}
End

as Tm→ Sx(Cn) i.e. teacher Tm interested in teaching subject Sx to class Cn. Similarly, preference
of time slots is shown in Figure 2 which is represented as Tm → ty, i.e. Teacher Tm prefers to
teach in time slot ty.

. Figure 1: Subject preferences of each teacher (Tm → Sx(Cn)).

As the entire algorithm is conceptualized to realize in the wet lab, all inputs (collected infor-
mation and constraints) are translated in the form of strands of DNA. To attain this, each of
the notations such as C1, C2, C3, T1, T2, T3, T4, S1, S2, S3, t1, t2, and t3 are pre-assigned with

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

66 · Kuntala Boruah et al.

Algorithm 2: Procedure for encoding teacher information strand

EncodeInformation Strand()
Begin
for (j ← 1 to m, increment value) do
{
ligate(time slot)
Begin
if (time slot == first) then

ttinfo← 3'-Cn-ty-Cn-Sx-Tj-ty-5'

end if
if (time slot == last) then

ttinfo← 3'-ty-Cn-Sx-Tj-ty-Cn-5'

else
ttinfo← 3'-ty-Cn-Sx-Tj-ty-5'

end if
End
}

end for
End

Algorithm 3: Procedure for encoding splint strand for every class separately

EncodeSplint Strand1()
Begin
for (i ← 1 to y, increment value) do
{
ligate(tt splint1, t̄1, t̄i+1)
}

end for
End

Algorithm 4: Procedure for encoding splint strand for all the classes together (entire
time-table)

EncodeSplint Strand2()
Begin
for (i ← 1 to n, increment value) do
{
ligate(ttsplint2, C̄1, C̄i+1)
}

end for
End

Table I. Instance of a School Time Table
Class Time slot

(9-10 AM) t1 (10-11 AM) t2 01-02 PM) t3
C1

C2

C3

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

DNA Computing Algorithm for a school Timetable Problem · 67

. Figure 2: Time slots preferences of each teacher (Tm → ty).

Table II. Encoding of information strand for each teacher
Tm Information Strand

T1 t1(where y = 1) 3'-C1-t1-C1-S2-T1-t1-5'

3'-C2-t1-C2-S2-T1-t1-5'

3'-C3-t1-C3-S2-T1-t1-5'

t2(where y = 2) 3'-t2-C1-S2-T1-t2-5'

3'-t2-C2-S2-T1-t2-5'

3'-t2-C3-S1-T1-t2-5'

t3(where y = 3) 3'-t3-C1-S2-T1-t3-C1-5'

3'-t3-C2-S2-T1-t3-C1-5'

3'-t3-C3-S1-T1-t3-C1-5'

T2 t1(where y = 1) 3'-C1-t1-C1-S1-T2-t1-5'

3'-C2-t1-C2-S1-T2-t1-5'

t2(where y = 2) 3'-C2-C1-S1-T2-t2-5'

3'-t2-C1-S1-T2-t2-5'

T3 t1(where y = 1) 3'-C1-t1-C1-S3-T3-t1-5'

3'-C3-t1-C3-S3-T3-t1-5'

t3(where y = 3) 3'-t3-C1-S3-T3-t3-C1-5'

3'-t3-C3-S3-T3-t3-C3-5'

T4 t2(where y = 2) 3'-t2-C2-S3-T4-t2-5'

3'-t2-C3-S2-T4-t2-5'

t3(where y = 3) 3'-t3-C2-S3-T4-t3-C2-5'

3'-t3-C3-S2-T4-t3-C3-5'

fixed length 10-mer random but unique sequence of DNA. On execution of procedure Encode-
Information Strand(), the derived information of each teacher are translated to single strands
of DNA. Table II shows the encoded information of each teacher depending on the allocation of
time slots. The encoding at the 1st time slot has Cn at 3'end whereas the encoding at the last
time slot has Cn at 5'end. All the intermediate time slots do not have Cn at any of its extreme
ends.

The biochemical reaction corresponding to each class is executed in a separate test tube.
To generate all possible combinations, two sets of DNA sequences are used as splints, i.e.,

Splint1 and splint2; Splint1 is used to generate combinations of allotments corresponding to each
class (see Table III) whereas splint2 is used to generate all possible combinations of allotments
for the entire timetable (see Table IV).

Splint1 is obtained by ligating complements of ty and complement of ty+1 sequence i.e., 5'-̄ty-
t̄y+1-3'(see Table III). This 20-mer oligo sequence works as a splint to bring together the encoded
information strands based on simple hybridization reactions (shown in Figure 3).

Step 1 to step 4 dedicated to generate scheduling sequence for individual class (each test-tube

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

68 · Kuntala Boruah et al.

Table III. Encoding of splint1 strands
5'-̄ty–t̄y+1-3'

y = 1 5'-̄t1–t̄2-3'

y = 2 5'-̄t2–t̄3-3'

corresponds to single row of the timetable) where as step 5 to step 8 dedicated to generate
allocation for entire timetable (all the rows together).

Step 1: Generate all possible random allotments for each class separately:
Once the splint1 (shown in Table III) and the information strands (shown in Table II) are

encoded, the class-wise random combinations of allocations are generated when 50 pmol of infor-
mation strand related to a particular class is mixed with 50 pmol of splint strands 5'-̄ty–t̄y+1-3'in
a test-tube and let them hybridize and ligate to form a longer strand involving all or few allo-
cations (shown in Figure 3). For example to generate probable combinations for class C1, all
encoded information relating to class C1 along with splint sequences 5'-̄t1–t̄2-3'and 5'-̄t2–t̄3-3'are
allowed to hybridize. Figure 4 and Figure 5 depicts two of the several probable combinations
consisting of both valid and invalid combinations. A sequence is valid if it consists of all the
subjects along with all the time slots without repetition.

. Figure 3: Generation of possible combinations for class Cn with the help of splint 1.

. Figure 4: An instance of an invalid combination for class C1.

. Figure 5: An instance of a valid combination for class C1.

Similarly, there are three other test-tubes where trillions of random combinations related to
their corresponding classes such as for class2 and class3 are generated. The product of step 1
consists of both valid as well as invalid sequences.

Step 2: Select those allotments that include 1st and last time slots:
During step 2, only those sequences which includes allotment at time slot t1 at the beginning

and t3 at the ending are extracted and separated from the remaining sequences. To realize this
in a wet lab, polymer Chain Reaction (PCR) is carried out in each of the test tubes with C̄n as
primers. PCR is used to amplify a specific section of DNA with the help of primers that mark
the starting and the ending of the desired section. The reason behind choosing C̄n as primer
is because during information encoding (shown in Table I) the first time slot has Cn at 3'end

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

DNA Computing Algorithm for a school Timetable Problem · 69

whereas the last time slot has Cn at 5'end therefore any sequence with Cn at the beginning as well
as at the ending signifies that it is associated with allotments to time slots t1 and t3 respectively.
Thus, in test tube 1, only those combinations which have C1 at the beginning as well as at the
ending will only be amplified. Similarly, in test tube 2 and test tube 3, PCR is carried out with
C̄2 and C̄3 as primers respectively.

Step 3: Extract allotments that have correct length:
The DNA strands obtained after Step 2 in each of the test tubes are run through gel which

results in different bands corresponding to different lengths (gel electrophoresis). The estimated
length of sequences which have the allocation of all the time slots exactly once is 170 base pair
(bp) so after running through gel only the band associated to the desired length is separated for
further use.

Valid allotment sequence = |3'-Cn-ty-Cn-Sx-Tm-tyty-Cn-Sx-Tm-tyty-Cn-Sx-Tm-ty-Cn-5'|
Total length = 170 bp
The strand obtained during this step ensures the allocation to all the three time slots but the

possibility of any repetition is not checked during this step.
Step 4: Keep all allocations that have all subjects and time slots at least once:
Affinity purification is carried out to check the presence of all of the three subjects. During this

step the S̄x strand incubated magnetic bead is used to fish out the desired strand. Only those
sequences which contain Sx will anneal to the S̄x attached to magnetic bead and hence could be
easily extracted. To check for the presence of three subjects this process has to be repeated for
three time with S̄1, S̄2 and S̄3. Again the same process has to be executed with t̄y (y = 1 . . . 3)
incubated beads to check for all time slots in the sequences. The final fished out strands from
each test tubes are the class wise valid allocation schedule.

Step 5 to step 8 dedicated to generate scheduling sequence for all the classes together (entire
timetable).

Step 5: Generate all possible random allotments for the entire time table:
In step 5 the valid strands from each of the test tubes are mixed in a single test tube so that

random DNA sequences are generate for all the classes together (entire timetable). To implement
this, second set of splint sequences (shown in Table IV) i.e., splint2 is used to bring the sequences
of each class closer so that they can ligate to produce a longer strand. Splint2 strand are designed
with complements of Cn strand and Cn+1 strand i.e., Splint2 ← append (C̄n, C̄n+1).

Table IV. Encoding of splint2 strands
5'-C̄n–C̄n+1-3'

n = 1 5'-C̄1–C̄2-3'

n = 2 5'-C̄2–C̄3-3'

The splint strands bring the sequences of one class with sequence of another class and as a
result allocation sequences for all the classes are derived (shown in Figure 6). Figure 7 shows one
instance of such combinations although in reality several valid and invalid possible combinations
are generated.

. Figure 6: Generated allocation pattern for two classes C1 and C2.

Step 6: Select those allotments that start with 1st class and end with last class:

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

70 · Kuntala Boruah et al.

. Figure 7: An example of generated allocation pattern for classes C1, C2 and C3.

By the end of step 5 several sets of random combinations are generated consisting of both valid
as well as invalid strands. PCR reaction is carried out in the test tube with C̄1 and C̄n as primers
which result in strands starting with C1 and ending with C3.

Step 7: Extract allotments that have correct length:
Gel electrophoresis is carried out during this step and the band corresponding to length 510

bp is extracted. Length of valid assignment to all the three classes together = 3* (|C1| + |C2|
+ |C3|)= 3*170 = 510 bp. Sequences with length more or less than 510 bp are invalid as it
represents either repetition of certain allocation or incomplete allocation.

Step 8: Keep all allotments that have all subjects, time slots and class at least once:
Affinity purification is carried out on the extracted sequences to discard any conflict of al-

lotment. A conflict of allocation arises if a teacher is allocated to two different classes at the
same time slot. To implement this, affinity purification is carried out with 5'-T̄m-̄ty-3'sequences
conjugated to magnetic beads. If in any sequence there is more than one Tm-ty sequence then
that strand is discarded. The final end products of this step are those strands which represent a
valid feasible solution to the timetable problem.

2.2 Evaluating the algorithm in terms of time complexity

Unlike conventional computing, DNA computing involves manipulation of strands of DNA by
using relevant biochemical reactions in test tubes. A single test tube solution contains trillions of
nucleotide strands that undergo the same reaction at the same time. For e.g., when a hybridiza-
tion reaction is executed in a test tube, all of the trillion strands in the test tube undergo the
reaction at the same time. However, such computing is ineffective in solving tasks which require
excessive sequential operation. This property qualifies DNA computing an excellent candidate
for exhaustive search and brute force approach to solve NP complete problems in polynomial
time. There are several measures to evaluate an algorithm such as time complexity and space
complexity. Time complexity which is evaluated by counting the number of biological operations
of the algorithm by considering the complexity of every biological operation as O(1) as it is in-
dependent of input size i.e., the number of inputs in the form of DNA strands doesn’t matter.
The time complexity of an algorithm would be the sum of the time complexity of all steps. The
time complexity for each step of the proposed algorithm is given in Table V.

Table V. The time complexity for each step of the proposed algorithm
Steps of the algorithm Time complexity

Step 1 O(1)

Step 2 O(1)

Step 3 O(1)

Step 4 O(n2)

Step 5 O(1)

Step 6 O(1)

Step 7 O(1)

Step 8 O(n2)

Total time complexity of the proposed algorithm = O(1)+O(1)+O(1)+O(n2)+O(1)+O(1)+O(1)+O(n2)
= O(n2)

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

DNA Computing Algorithm for a school Timetable Problem · 71

3. CONCLUSION

In this paper an algorithm is proposed to solve an instance of time table problem. Due to the
parallelism property of DNA, the algorithm is quite effective in large scale input scenario. The
total number of steps is fixed and is not affected by the number of inputs therefore the overall
efficiency is independent of problem size. Time complexity of this algorithm is in polynomial
time i.e., O(n2), but space complexity eventually becomes a restrictive factor which marked an
upper bound to the instance of the experimentally solvable problem. The authors would like to
acknowledge that, though from a theoretical point of view this algorithm is implementable as
all the operations are doable; however experimental difficulty can’t be avoided due to inherent
reliability issues in wet lab experiments. In the near future it is expected that DNA timetable
scheduling algorithm finds its application in several other scheduling problems with necessary
modifications.

4. ACKNOWLEDGMENTS

Authors would like to thank School of Innovation and Technology, Assam Rajiv Gandhi Univer-
sity of Cooperative Management (ARGUCOM), Sivasagar, Assam, India for providing necessary
facilities.

References

Adleman, L. M. 1994. Molecular computation of solutions to combinatorial problems. Sci-
ence Vol.266, No.5187, pp.1021–1024.

Adleman, L. M. 1998. A sticker based model for dna computation. Journal of Computational
Biology Vol.5.

Aycan, E. and Ayav, T. 2009. Solving the course scheduling problem using simulated annealing.
In 2009 IEEE International Advance Computing Conference. IEEE, pp.462–466.

Bhaduri, A. 2009. University time table scheduling using genetic artificial immune network. In
2009 International Conference on Advances in Recent Technologies in Communication and
Computing. IEEE, pp.289–292.

Boruah, K. and Dutta, J. C. 2018. An improved generalized dna computing model to
simulate logic functions and combinational circuits. International Journal of Information
Technology Vol.10, No.3, pp.379–390.

Burke, E. K., Elliman, D. G., and Weare, R. 1994. A university timetabling system
based on graph colouring and constraint manipulation. Journal of research on computing
in education Vol.27, No.1, pp.1–18.

Chang, W. L., Lin, K. W., Chen, J. C., Wang, C. C., Lu, L. C., Guo, M., and Ho, M.
2012. Molecular solutions of the rsa public-key cryptosystem on a dna-based computer.
The Journal of Supercomputing Vol.61, No.3, pp.642–672.

Chang, W. L., Ren, T. T., and Feng, M. 2014. Quantum algorithms and mathematical
formulations of biomolecular solutions of the vertex cover problem in the finite-dimensional
hilbert space. IEEE transactions on nanobioscience Vol.14, No.1, pp.121–128.

Chen, R. M. and Shih, H. F. 2013. Solving university course timetabling problems using
constriction particle swarm optimization with local search. Algorithms Vol.6, No.2, pp.227–
244.

Cheng, Z., Chen, Z., Huang, Y., Zhang, X., and Xu, J. 2010. Implementation of the
timetable problem using self-assembly of dna tiles. International Journal of Computers
Communications & Control Vol.5, No.4, pp.490–505.

Chu, S. C., Chen, Y. T., and Ho, J. H. 2006. Timetable scheduling using particle swarm
optimization. In In First International Conference on Innovative Computing, Information
and Control-Volume I (ICICIC’06). Vol. 3. IEEE, pp.324–327.

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

72 · Kuntala Boruah et al.

Chu, S. C. and Fang, H. L. 1999. Genetic algorithms vs. tabu search in timetable schedul-
ing. In 1999 Third International Conference on Knowledge-Based Intelligent Information
Engineering Systems Proceedings. IEEE, pp.492–495.

Cowling, P., Kendall, G., and Han, L. 2002. An investigation of a hyperheuristic genetic
algorithm applied to a trainer scheduling problem. In Proceedings of the 2002 Congress on
Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). Vol. 2. IEEE, pp.1185–1190.

Even, S., Itai, A., and Shamir, A. 2002. On the complexity of time table and multi-commodity
flow problems. In 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
IEEE, pp.184–193.

Ganguli, R. and Roy, S. 2017. A study on course timetable scheduling using graph coloring
approach. International journal of computational and applied mathematics Vol.12, No.2,
pp.469–485.

Ghaemi, S., Vakili, M. T., and Aghagolzadeh, A. 2007. Using a genetic algorithm optimizer
tool to solve university timetable scheduling problem. In 2007 9th International Symposium
on Signal Processing and Its Applications. IEEE, pp.1–4.

Gotlieb, C. C. 1963. The construction of class-teacher timetables. In IFIP congress. Vol. 62.
pp.73–77.

Huisman, D. 2006. A column generation approach for the rail crew re-scheduling problem.
European Journal of Operational Research Vol.180, No.1, pp.163–173.

Li, W. X., Xioa, D. M., and He, L. 2006. Dna ternary addition. Applied mathematics and
computation Vol.182, No.2, pp.977–986.

Lipton, R. J. 1995. DNA solution of hard computational problems. Science Vol.268, No.5210,
pp.542–545.

Opera, M. 2007. MAS UP-UCT: A multi-agent system for university course timetable schedul-
ing. International Journal of Computers Communications & Control Vol.2, No.1, pp.94–
102.

Pezzella, F., Gianluca, M., and Giampiero, C. 2008. A genetic algorithm for the flexible
job-shop scheduling problem. Computers & Operations Research Vol.35, No.10, pp.3202–
3212.

Popov, I. Y., Vorobtova, A. V., and Blinova, I. V. 2014. Dna-algorithm for timetable
problem. International journal of bioinformatics research and applications Vol.10, No.2,
pp.145–156.

Quyang, Q., Kaplan, P. D., Liu, S., and Libchaber, A. 1997. A dna solution of the
maximal clique problem. International Journal of Computers Communications & Con-
trol Vol.278, No.5337, pp.446–449.

Redl, T. A. 2007. University timetabling via graph coloring: An alternative approach. Con-
gressus Numerantium Vol.187, pp.174.

Rowies, S., winfree, E., Burgoyne, R., Chelyapov, N. V., Goodman, M. F., Rother-
mund, P. W., and Adleman, L. M. 1998. A sticker-based model for dna computation.
Journal of Computational Biology Vol.5, No.4, pp.615–629.

Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,
and Hagiya, M. 2000. Molecular computation by dna hairpin formation. Sci-
ence Vol.288, No.5469, pp.1223–1226.

Sigl, B., Golub, M., and Mornar, V. 2003. Solving timetable scheduling problem using
genetic algorithms. In Proceedings of the 25th International Conference on Information
Technology Interfaces. IEEE, pp.519–524.

Smith, L. M., Corn, R. M., Condon, A. E., Lagally, M. G., Frutos, A. G., Liu,
Q., and Thiel, A. J. 1998. A surface-based approach to dna computation. Journal of
computational biology Vol.5, No.2, pp.255–267.

Wang, Z., Tan, J., Huang, D., Ren, Y., and Ji, Z. 2014. A biological algorithm to solve
the assignment problem based on dna molecules computation. Applied Mathematics and

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

DNA Computing Algorithm for a school Timetable Problem · 73

Computation Vol.244, pp.183–190.
Wang, Z. C., Huang, D. M., Meng, H. J., and Tang, C. P. 2013. A new fast algorithm for

solving the minimum spanning tree problem based on dna molecules computation. Biosys-
tems Vol.114, No.1, pp.1–7.

Wang, Z. C., Huang, D. M., Tan, J., Liu, T. G., Zhao, K., and Li, L. 2015. A par-
allel algorithm for solving the n-queens problem based on inspired computational model.
BioSystems Vol.131, pp.22–29.

Wang, Z. C., Zhang, Y. M., Zhou, W. H., and Liu, H. F. 2012. Solving traveling
salesman problem in the adleman-lipton model. Applied Mathematics and Computa-
tion Vol.219, No.4, pp.2267–2270.

Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C. 1998. Design and self-assembly
of two dimensional dna crystals. Nature Vol.394, No.6639, pp.539–544.

Wood, D. C. 1968. A system for computing university examination timetables. The Computer
Journal Vol.11, No.1, pp.41–47.

Xiao, D. M., Li, W. X., Yu, J., Zhang, X. D., Zhang, Z. Z., and He, L. 2006. Procedures
for a dynamical system on {0,1}n with dna molecules. BioSystems Vol.84, No.3, pp.207–
216.

Yin, Z. and Chen, M. 2010. Apply acryditetm gel separation to solve timetable problem.
Indonesian Journal of Electrical Engineering and Computer Science Vol.10, pp.1111–1116.

Zhang, Y., D’ariano, A., He, B., and Penq, Q. 2019. Microscopic optimization model
and algorithm for integrating train timetabling and track maintenance task scheduling.
Transportation Research Part B: Methodological Vol.127, pp.237–278.

Zhong, J. H., Shen, M., Zhang, J., Chung, H. S. H., Shi, Y. H., and Li, Y. 2012. A
differential evolution algorithm with dual populations for solving periodic railway timetable
scheduling problem. Transportation Research Part B: Methodological Vol.17, No.4, pp.512–
527.

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

74 · Kuntala Boruah et al.

Dr. Kuntala Boruah is an Assistant Professor in School of Innovation and Technology,
Assam Rajiv Gandhi University of Cooperative Management (ARGUCOM), Sivasagar,
Assam, India. She has done her Master of Computer Application (MCA) from Dibrugarh
University, Dibrugarh, Assam, India and has a Ph D degree in Electronics and Communi-
cation Engineering from Tezpur University (A Central University), Tezpur, Assam, India.
Her areas of interest includes: DNA Computing, Image Processing, IoT, etc.

Mr Manash Kapil Pathak is an Assistant Controller of Examination in Mahapurusha
Srimanta Sankaradeva Viswavidyalaya, Nagaon, Assam, India. He has done his Msater
of Computer Application (MCA) from Jorhat Engineering College, Jorhat, Assam, India.
His areas of interest includes: DNA Computing, IoT, etc.

Dr. Ranjan Sharma received Ph.D degree in computer science from Assam University,
Silchar, Assam, India in the year 2018. Currently he is working as an Assistant Professor
in the School of Innovation and Technology at Assam Rajiv Gandhi University of Coop-
erative Management, Sivasagar, Assam, India. His main research interests are Artificial
Intelligence, Bioinformatics and IoT.

International Journal of Next-Generation Computing, Vol. 12, No. 1, March 2021.

