
A Survey on Test Case Generation using UML
Diagrams and Feasibility Study to Generate
Combinatorial Logic Oriented Test Cases

Subhash B. Tatale

and

Dr. V. Chandra Prakash

Koneru Lakshmaiah Education Foundation, Vaddeswaram, India

Generating test cases automatically from the design specification of a system is the most challenging phase in
Software Development Life Cycle. UML diagrams are the industrial standard design modelling artifacts and

the same can also be used for automatic generation of test cases which can be subsequently used by the testers

to verify the functionality of the System under Test. In the present survey, authors have focused on automatic
generation of test cases using UML Sequence and Activity diagrams. Also, the authors have conducted a feasi-

bility study to know whether these diagrams can be made use of to generate combinatorial logic oriented test cases.

Keywords: Software Testing, Combinatorial Test Case Generation,UML Diagrams, Survey, Fea-
sibility Study, Activity Diagram, Sequence Diagram.

1. INTRODUCTION

Software testing is an important phase of Software Development Life Cycle (SDLC) which is
necessary to produce an effective, efficient and reliable system. For a complex system, a large
number of test cases are to be generated for effective and efficient testing. Generating and
validating a large number of test cases is a very laborious, time-consuming and costly task.
During manual test case generation, there is a scope to get erroneous or example, redundant test
cases can be generated; some requirements might get missed out; contradictory test cases may
be generated, etc. To avoid this error condition, an automatic test case generation is extremely
essential wherever possible. Moreover, automatic generation of test cases can reduce testing cost
by eliminating costly manual test case generation.

1.1 Automatic test case generation using UML Sequence and Activity diagrams

Unified Modeling Language (UML) has now become the de facto standard Hartmann et al. [2005]
for object-oriented modelling and design. UML diagrams are an essential source of information
for generating test cases. They can be used as an input to generate test cases, but, of course, the
generation of test cases from UML diagrams is one of the most challenging tasks. The process
of test case generation from UML diagrams will help a lot to identify problems early in the
software development process which significantly reduces the time and cost of testing. UML-
based automatic test case generation is a pragmatic approach to generate test cases Briand and
Labiche [2002] and it is receiving increasing attention from researchers.
A Sequence diagram captures the exchange of messages between objects during execution of a use
case Nebut et al. [2006]. It focuses on the order in which the messages are sent. It also represents
the flow of control among objects during interaction between objects. It also represents the
discrete behaviour of an object through sequence graph. Test cases generated from Sequence
diagram satisfy coverage criteria like message, message-sequence, path, etc.
An activity diagram is used to represent the workflow of activities and actions, in step by step
manner, which takes place in a system. It can represent both the sequential and concurrent control

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 255

flow of activities in the system. A test case model can be derived from an Activity diagram and
the test cases can be generated automatically from test case model. Generated test cases are
useful to test all possible flows of execution of an Activity diagram. Test cases generated using an
Activity diagram satisfies the coverage criteria like activity, transition, simple-path, concurrent-
path, etc.

1.2 Combinatorial Testing

There are many systems viz. Concession management subsystem of Railway reservation system,
College admission system, Tuition fee concession subsystem, etc. in which combinatorial logic
is extensively used. Combinatorial Testing (CT) is gaining high importance to test such type of
systems. Nowadays, Combinatorial Test Design Model (CTDM) is popularly used to generate
combinatorial logic oriented test cases in an automatic way. There is a great need to put more
focus on how to generate combinatorial logic oriented test cases while optimizing the size of the
test suites.
Chandraprakash and Kadiyala [2006], Kondhalkar and ChandraPrakash [2018], Prakash et al.
[2018], Bewoor et al. [2019], LakshmPrasad et al. [2019] used the different Heuristic algorithms viz.
Genetic Algorithm, Particle Swarm Optimization, etc. to generate optimized test cases through
combinatorial testing techniques. Ramgouda and Chandraprakash [2018] used a Neural Network
based approach to improve combinatorial coverage in the combinatorial testing approach. Gouda
and Chandraprakash [2019], Ramgouda and Chandraprakash [2019] used a multi-objective crow
search and fruit-fly optimization techniques to optimize combinatorial test cases in constraints
handling environment. Mudarakola et al. [2018], Prasad and J.K.R.Sastry [2018b], Prasad and
J.K.R.Sastry [2018a], SasiBhanu et al. [2018], SasiBhanu et al. [2019] published research articles
for testing embedded and distributed embedded systems using combinatorial methods.

1.3 Need for generating combinatorial logic oriented test cases using UML Sequence and Activity
diagrams

The So far, different methods and techniques are used to generate test cases automatically us-
ing UML Sequence and Activity diagrams by many researchers. There is a need to generate
combinatorial logic oriented test cases for those systems where combinatorial logic is essential.
These systems are modeled by using different UML diagrams. The same UML diagrams can be
used to generate combinatorial logic oriented test cases. The authors of this paper conducted a
feasibility study to know whether combinatorial logic oriented test cases can be generated using
UML Sequence and Activity diagrams.
The remaining paper is organized as follows. A survey on generation of test cases using Sequence
and Activity diagrams is discussed in section 2. Section 3gives feasibility study of combinatorial
logic oriented test cases from Sequence and Activity diagram. Section 4 concludes this paper and
provides the guidelines for future work.

2. SURVEY ON TEST CASE GENERATION TECHNIQUES USING SEQUENCE AND ACTIVITY
DIAGRAMS

This section deals with a survey on test case generation techniques using Sequence and Activity
diagrams. Shirole and Kumar [2013] have done a survey on test case generation from UML be-
havioral diagrams. Subsequently, many more research articles have been published in this area
till date. Hence, the authors of present paper are interested to conduct an extensive survey on
test case generation from Sequence and Activity diagrams.
The UML diagrams are transformed into intermediate model to generate test cases. The au-
thors have classified test case generation techniques basing on different approaches viz. For-
mal specification-based approach, Graphical representation approach, Heuristic approach, Direct
UML specification processing approach, Hybrid behavior model approach and Concurrent model
approach. These approaches are used to generate the test cases for functional testing of the
software systems. The present survey is conducted based on above mentioned approaches.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



256 · Subhash B Tatale and V Chandra Prakash

The purpose of coverage criteria is to measure how far generated test suites covers the require-
ments. A Sequence diagram has coverage criteria like message, message-sequence, path etc. An
Activity diagram has coverage criteria like activity, transition, simple-path, concurrent-path, etc.
The following Tables I to VI depict survey conducted depending on various approaches. In this
survey, we considered UML diagrams namely Sequence diagram, Activity Diagram, Class dia-
gram, etc. as an input diagram. The methods/techniques used for test case generation are given
in Method/Technique column. Furthermore, the intermediate model column in the table indi-
cates types of intermediate models namely Sequence Flow Graph, Activity Graph, Message Flow
Graph, etc.

2.1 Survey on test case generation based on Formal specification approach

The formal specification approach plays an important role in software testing. The formal spec-
ification of a system is used as a channel for designing functional tests for the system. The
tester considers formal specification in order to understand the functionality of the system. The
specifications are written followed by any standard formal notation like Z-notation, transition
systems, object constraints language, etc. Test cases are generated from the formal specification
which is useful to test SUT. When these test cases are used to test SUT, the test results indicate
whether the implementation maps to the specifications. The generation of test cases from formal
specification approach is a simple, structured, and more accurate.
Panthi and D.P.Mohapatra [2013] proposed Model Based Testing (MBT) approach. A function
minimization technique is used to generate the test cases. Depth First Search (DFS) technique
is used to select the associated predicates and to guess an initial dataset. Zhang et al. [2016]
proposed an approach which enables to improve correctness of test cases and reduce the com-
plexity of test cases generation process. Rhmann and Saxena [2016b] proposed a real case study
of cash withdrawal functionality of an Aadhaar card based ATM. Sequence Flow Graph (SFG) is
generated from Sequence diagram which is later used to generate the test cases for the proposed
case study. Dehimi and Mokhati [2019] proposed an agent based test case generation method
using a Sequence diagram. This method covers interactions between agents as well as possible
scenarios. These interactions can be performed in an inclusive or exclusive or parallel way.Mu
and Gu [2006] proposed a system test method in which formal specifications of the Activity
diagram and the definition of test coverage rules are applied. Chen et al. [2009] proposed an
approach to validate the consistency between the program execution traces and the behaviour of
Activity diagrams. Chen et al. [2010] proposed another approach to reduce the validation efforts
by reducing generation time of test cases as well as and required number of test cases. Due
to this, it is very easy to meet the functional coverage criteria. Teixeira et al. [2016] proposed
UML specification approach. The authors proposed “Easy Test “tool which is based on gray box
technique. Summary of survey on test case generation based on Formal specification approach is
shown in Table I.

2.2 Survey on test case generation based on Graphical representation approach

In this approach, UML diagrams are transformed into tree or graph representation. These rep-
resentations help for generating test cases from UML diagrams in many different ways. Different
graph traversal methods viz. Category Partition Method (CPM), Breadth-First Search (BFS),
Depth First Search (DFS) and modified versions of BFS or DFS, etc. are used to generate test
cases. The Graphical representation approach uses different types of intermediate models. For
example, an Activity diagram is transformed into Binary Extended Tree (BET), Activity Di-
agram Composition Tree (ADCT), Activity Graph (AG), Activity Flow Graph (AFG), Order
Relation Tree (ORT), Flow Dependency Graph (FDG), Model Flow Graph (MFG), Activity
Dependency Table (ADT), Activity Dependency Graph (ADG), Extended Activity Dependency
Graph (EADG), or Condition Classification Tree (CCT). A Sequence diagram is transformed
into a Variable Assignment Graph (VAG), Extended Variable Assignment Graph, scenario tree,
Sequence Diagram Graph (SDG), Message Dependency Graph (MDG).

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 257

Input Diagram Authors Method Intermediate Model Coverage Criteria

Sequence Diagram Panthi and

D.P.Mohapatra [2013]

Model checking Predicates Object, Message path,

Full predicate

Sequence Diagram Zhang et al. [2016] Formal specification Event deterministic fi-
nite automata

Basic and internal path

Sequence Diagram Rhmann and Saxena

[2016b]

Object Constraint

Language (OCL)

Sequence Flow Graph Message

Sequence Diagram Dehimi and Mokhati

[2019]

Agent based approach,

OCL

Sequence Dependency

Graph

Path

Activity Diagram Mu and Gu [2006] Formal specification Test coverage rules Specification

Activity Diagram Chen et al. [2009] Program execution

traces

- Program

Activity Diagram Chen et al. [2010] Model checking Formal method model,

Mapping rules

Function

Activity Diagram Teixeira et al. [2016] Grey Box XML Metadata Inter-
change (XMI)

Path

Table I: Summary of survey on test case generation based on Formal specification approach

Samuel and Mall [2009] proposed a dynamic slicing technique in which the FDG having specific
sets of nodes and edges is created. The slicing of these nodes is done and verified in FDG.
Test cases are generated with respect to each slice.Swain et al. [2014] proposed a novel test case
generation technique using Sequence diagrams. MDG is generated from a Sequence diagram
and conditional predicates are selected to traverse MDG. The slices that correspondent to each
conditional predicate are computed. The test cases are generated with respect to each slicing
criterion. This technique can be used for system and cluster level testing considering the object
message and condition information. The generated test cases are useful for detecting interactions
between the objects and operational faults. Dhineshkumar [2014] presented a novel approach
for test case generation from a Sequence diagram. In this approach, SDG is created using a
Sequence diagram to generate test cases. The traceability between the models is provided by
using Relational Definition Language.
Linzhang et al. [2004] proposed UMLTGF prototype tool which is developed by using a gray box
technique. In this approach, test scenarios are directly derived from an Activity diagram. All
the information, i.e. input/output sequence and parameters, the conditions and expected object
method sequence is extracted from each test scenario for test case generation. Swain and Moha-
patra [2010] generated MFG as intermediate model to generate test sequence using an Activity
diagram. The test cases were generated from test sequences satisfying test adequacy criteria.
Ray et al. [2009] proposed conditioned slicing method for test case generation. This method
builds FDG from an Activity diagram and applies conditioned slicing on each predicate node of
the graph to generate test cases.Samuel and Mall [2008] proposed dynamic slicing approach. In
this approach, nodes of an activity graph are used to generate dynamic slices by using an edge
marking method. With respect to each slice, test cases are generated. Mingsong et al. [2006] pro-
posed AGTCG prototype tool. Thistool is implemented in JAVA programming language using
improved DFS algorithm. This approach checks the consistency between specifications and cor-
responding programs. Boghdady et al. [2011] proposed a technique where each activity diagram
is transformed into an intermediate models likes Activity Dependency Table (ADT) and Activity
Dependency Graph (ADG). All possible test paths are generated by traversing ADG using DFS
technique. The test paths are updated in the ADT to generate the final test cases automatically.
Cyclomatic complexity is computed and used to validate the generated test cases. Tripathy and
Mitra [2013] proposed TCG-SYS method for test case generation using system graphs. Chouhan
et al. [2012] proposed a technique to generate test cases from an Activity diagram. A case study
of navigation of mobile application is presented. In this proposed technique, Activity Depen-
dency Table (ADT) is created from an Activity diagram. Finally, Activity Dependency Graph
is generated from ADT to generate test cases. Swain et al. [2013] proposed a method for test

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



258 · Subhash B Tatale and V Chandra Prakash

case generation from an Activity diagram. AFG is generated from an Activity diagram. All the
required information like branches, conditions, executions and loop statements is extracted from
AFG. The DFS technique is used to traversing an AFG. Monim and Nor [2018] presented MBT
approach for the entire process. The authors proposed a model to extract, utilize, and prepare
the data from Activity diagram into test case generation. A case study of ATM cash withdrawal
system is taken for demonstration. The automated generated test cases are compared manually
test case generating techniques. The authors found that there is no difference between manually
written test cases and automatically generated test cases. Heinecke et al. [2010] considered Inputs
and Outputs that are depicted through an Activity diagram and generated an Interaction Flow
Diagram (IFD).This IFD represents the control flow of given an activity diagram. An IFD is
mapped with the interaction flow graph which is having nodes and edges. This IFD is used to
generate test cases. Thanakorncharuwit et al. [2016] proposed a model for test case generation
based on business flow constraints. Test cases are generated from the Activity graph and vali-
dated with test coverage criteria. The different sets of rules are applied for loops structures as
well as forks and joins. Mahali et al. [2016] presented an Input/Output Activity Diagram (IOAD)
which is constructed from Activity diagram. The intermediate Activity graph is traversed using
BFS to generate the test cases.
Boghdady et al. [2011] proposed an enhanced approach of converting Activity diagram to XMI.
Further, this XMI is converted to ADT consisting of different nodes, forks, joins etc. ADG is
generated using ADT. Test cases are generated from this ADG for every condition by using DFS
Algorithm. The Cyclomatic complexity is used to validate the generated test cases. Hashim
and Salman [2011] proposed an improved algorithm to generate test cases from Activity diagram
using an Activity graph. These generated test cases are compared with manually generated test
cases to evaluate usability and reliability of algorithm. Pechtanun and Kansomkeat [2012] used
Activity Convert grammar to generate test cases from an Activity diagram. Tiwari and Gupta
[2013] proposed an approach to generate safety validation test cases. Software Fault Tree (SFT)
and Software Success Tree (SST) are generated from an Activity diagram to generate test cases.
SST is used to test the normal behaviour of the system. SFT is used to test an exceptional be-
haviour of the system. SST and SFT are analyzed to generate the minimum cut sets to generate
the test cases. Hettab et al. [2013] used graph transformation approach of inputs and outputs of
diagrams. The authors proposed grammars for transformation of graph. This grammar is used
to transform Activity diagrams into ORT Models and generate paths from ORT. Hettab et al.
[2015] proposed two graph grammars. In first graph grammar, an activity diagram is transformed
into an intermediate model called Extended Activity Dependency Graph (EADG). The EADG
model captures information from an Activity diagram which is relevant to the generation of test
cases. In second graph grammar, test cases are generated from EADG by traversing path. Li
et al. [2013] proposed a simple approach of generating test cases from the Euler circuit. Test cases
are minimized that satisfies activity state coverage criteria.Dalal and Hooda [2017] proposed a
technique for test case generation of aspect-oriented programs based upon an Activity diagram.
In this technique, the test cases are generated corresponding to decision-to-decision-graph and
faults are verified to obtain coverage criteria. Summary of survey on test case generation based
on Graphical representation approach is shown in Table II.

2.3 Survey on test case generation based on Heuristic approach

In this approach, In order to generate optimized test cases, several meta-heuristic techniques viz.
Hill-climbing, Simulated annealing, Tabu search, Genetic algorithm, Particle swarm optimiza-
tion, etc. can be used.
Jena et al. [2015] proposed an approach to generate test cases from a Sequence diagram. A
sequence flow chart is generated from a Sequence diagram and a Message Control Flow Graph
(MCFG) is generated from a sequence flow chart. The test paths are generated by traversing
MCGF. The test cases for these paths are generated by using Genetic algorithm. In this ap-
proach, message, sequence and path coverage criteria is achieved. Biswal et al. [2010] proposed

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 259

Input Diagram Authors Method Intermediate
Model

Coverage Crite-
ria

Sequence diagram Samuel and Mall [2009] Dynamic slicing MDG Slice

Sequence diagram Swain et al. [2014] Slicing technique MDG Slice, Path, Full
predicate

Sequence diagram Dhineshkumar [2014] Iterative deepening

DFS

Tree, Graph Path

Activity diagram Linzhang et al. [2004] CPM Constraint condi-

tions

Condition

Activity diagram Swain and Mohapatra

[2010]

CPM MFG Message, Path

Activity diagram Ray et al. [2009] Conditioned slicing FDG Path

Activity diagram Samuel and Mall [2008] Dynamic slicing FDG Path, Full predi-

cate

Activity diagram Mingsong et al. [2006] DFS Test adequacy cri-
teria

Path

Activity diagram Boghdady et al. [2011] DFS ADT, ADG Branch, Predicate,

Path

Activity diagram Tripathy and Mitra [2013] DFS System Graph Path

Activity diagram Chouhan et al. [2012] DFS ADT, ADG Branch, Full predi-

cate, Path

Activity diagram Swain et al. [2013] DFS AFG Path

Activity diagram Monim and Nor [2018] DFS AFG Path

Activity diagram Heinecke et al. [2010] Modified DFS Interaction Flow

Diagram

Path

Activity diagram Thanakorncharuwit et al.

[2016]

Modified DFS Activity Graph Activity, Path,

Transition

Activity diagram Mahali et al. [2016] BFS I/O Activity Dia-

gram

Path

Activity diagram Boghdady et al. [2011] XML Based ap-
proach

ADT, ADG Branch, Predicate,
Path

Activity diagram Hashim and Salman [2011] AG - Path

Activity diagram Pechtanun and Kan-
somkeat [2012]

ACG - Path

Activity diagram Tiwari and Gupta [2013] FTA Software Success

and Fault Tree

Path

Activity diagram Hettab et al. [2013] Graph Transforma-

tion

ORT Path

Activity diagram Hettab et al. [2015] Graph Transforma-

tion

Extended ADG Path

Activity diagram Li et al. [2013] Euler Circuit Algo-
rithm

- Activity,
State,Transition

Activity diagram Dalal and Hooda [2017] Aspect Oriented
Programming

CFG Transition

Table II: Summary of survey on test case generation based on Graphical representation approach

an approach in which an Activity diagram and constrained based Genetic algorithm technique
to generate optimal test cases. Shanthi and MohanKumar [2012] applied Genetic algorithm to
generate, optimize, validate and prioritize the test cases. The test cases generated using this
approaches are useful to detect more faults like synchronization faults, loop faults. Jena et al.
[2014] proposed an approach to generate an Activity Flow Table (AFT) from an Activity dia-
gram and to generate AFG from AFT. Test paths are generated by traversing AFG to achieve
activity coverage criterion. Test cases are generated by using Genetic algorithm. Sumalatha and
Raju [2012] proposed a Greedy heuristic method to generate test cases from an Activity diagram.
These test cases are optimized using Genetic algorithm. Singla [2015] proposed an approach in
which ADG is generated from an Activity diagram. Test suites are generated using the DFS
algorithm by traversing the ADG. Optimized test cases are generated from the test suites by

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



260 · Subhash B Tatale and V Chandra Prakash

using Genetic algorithm.
Nanda et al. [2008] used a heuristic approach to find the best test case from an existing path
coverage set. An Activity diagram is parsed and then heuristic rule is applied to path coverage
set. The test cases are analyzed and evaluated based on their coverage criterion. Test cases
having the same paths are identified using heuristic approach. Shanthi and Kumar [2012] ap-
plied Tabu search algorithm to generate, optimize, validate and prioritize the test cases from
an Activity diagram. Rhmann and Saxena [2016a] proposed an approach to generate optimized
test path from an Activity diagram using Firefly algorithm. An Information Flow Metric is used
to calculate adjacency metric of Activity graph. Cyclomatic complexity and Information Flow
Metric are used for prioritization of generated test paths. The proposed approach is suitable
for earlier identification of the faults in the system. Arora et al. [2017] generated concurrent
test scenarios from an Activity diagram using a bio-inspired approach called as an Amoeboid
Organism Algorithm. The authors found that the proposed algorithm is better than the existing
Ant colony optimization and Genetic algorithm in terms of number of feasible test scenarios gen-
erated. Summary of survey on test case generation based on Heuristic based approach is shown
in Table III.

Input Diagram Authors Method Intermediate

Model

Coverage

Criteria

Sequence Diagram Jena et al. [2015] Genetic algorithm Message Control

Flow Graph

Message

Activity diagram Biswal et al. [2010] Genetic Algorithm Event generator Transition

Activity diagram Shanthi and Mo-

hanKumar [2012]

Genetic Algorithm Activity Depen-

dency Table

Path

Activity diagram Jena et al. [2014] Genetic Algorithm Activity Flow Ta-

ble

Activity

Activity diagram Sumalatha and Raju
[2012]

Genetic Algorithm,
Greedy Heuristic

- Path

Activity diagram Singla [2015] Genetic algorithm Activity Depen-
dency Graph

Path

Activity diagram Nanda et al. [2008] Heuristic method Parsing Path

Activity diagram Shanthi and Kumar

[2012]

Tabu Search Activity Depen-

dency Table

Path

Activity diagram Rhmann and Saxena

[2016a]

Firefly algorithm Control Flow Path

Activity diagram Arora et al. [2017] Amoeboid Organism

Algorithm

XML Metadata In-

terchange

Scenario

Table III: Summary of survey on test case generation based on Heuristic based approach

2.4 Survey on test case generation based on Direct UML specification processing approach

In Direct UML specification approach, test cases are generated without generating any intermedi-
ate model. Object Management Group (OMG) defined a standard process called XML Metadata
Interchange (XMI) to exchange metadata information. Direct processing of UML models has be-
come simple by using XMI representation of UML models, parserslike Document Object Model
(DOM) and Simple API of XML (SAX).
Zhen [2003] proposed a Markov Chain Usage Model to generate test cases from Sequence diagram.
This model is a combination of statistical usage testing and specification-based testing. Costa
et al. [2014] proposed MBT technique to derive structural test cases from a Sequence diagram.
In this technique, four steps namely Parser, Test Case Generator, Script Generator and Executor
are considered. The automation tools namely PletsCoverageJabuti and PletsCoverageEmma are
derived from this technique.
Oluwagbemi and Asmuni [2015] proposed a method that is useful to generate test cases from
an Activity diagram. Activity Flow Tree (AFT) is constructed from an Activity diagram. A

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 261

parser is used to extract information from AFT.Test cases are generated based on the activity
sequences, associated descriptions and conditions of the constructed tree. The authors presented
a case study of ATM withdrawal operation. Xu and Wu [2019] proposed an automatic test case
generation method using System Modelling Language Activity diagram but not UML Activity
diagram. This method generates test cases from an Activity diagram with a complex structure
to meet the test adequacy criteria. Summary of survey on test case generation based on Direct
UML specification processing approach is shown in Table IV.

Input Diagram Authors Method/Model Coverage Criteria

Sequence diagram Zhen [2003] Markov Chain Usage Model Message

Sequence diagram Costa et al. [2014] Parsing Message

Activity Diagram Oluwagbemi and Asmuni

[2015]

UML specification Path, Branch, Condi-

tion

Activity Diagram Xu and Wu [2019] Depth First Search Path

Table IV: Summary of survey on test case generation based on Direct UML specification processing approach

2.5 Survey on test case generation based on Hybrid behavior model approach

Sometimes, generation of complete test suite may not be possible when we consider only one type
of UML diagram. As each UML diagrams represent a system from different perspective, test case
generation techniques from different UML diagrams should be considered. In Hybrid behavior
model approach, test cases are generated from different UML diagrams. In this approach, at
first, an UML diagram may be considered to get important information and next another UML
diagram may be also considered for some more information so that generated test cases will be
complete. For example, an Activity diagram may enhance test specific details from combined
fragments of a Sequence diagram. A test case generation technique can take first input from an
UML diagram and then validates test cases using another UML diagram.
Khurana et al. [2016] presented a novel approach for generation of test cases from Sequence,
Activity and Use case diagrams. In this approach, Sequence Diagram Graph (SDG), Activity
Diagram Graph (ADG) and Use case Diagram Graph (UDG) are generated Sequence, Activity
and Use case diagrams respectively. A System Testing Graph (SYTG) is generated by integrating
SDG, ADG and UDG. The test cases are generated by traversing System Testing Graph. These
test cases are optimized using Genetic algorithm. The generated test cases are suitable to detect
maximum number of faults like use case dependency, interaction, scenario, pre-post condition
faults and error handling. Shah et al. [2016] presented a tool that generates automated test cases
using Sequence and Class diagram without creating any intermediate model. Sequence diagram
is generated from Class diagram that includes class name, methods, attributes and relationship
between classes.
Khurana and Chillar [2015] proposed a technique for generating test cases using Sequence diagram
and State chart diagram. In this approach, Sequence Graph and State chart Graph are generated
from Sequence and State chart diagrams respectively. Finally, System Testing Graph (SYTG) is
generated by integrating these two Graphs. After integrating these two graphs, appropriate test
cases are generated for system testing. These test cases are useful to detect errors, correctness of
the system, and different faults like pre and post conditions, interactions, message sequences and
scenarios. State chart is useful to identify unit level faults whereas sequence diagram is useful
to identify integration level faults. Finally, test cases are optimized using Genetic algorithm.
Efendi and Asmuni [Efendi and Asmuni]] proposed technique to generate and validate the test
cases using the automated tool named UML Sequence and State chart Test Case Generation
(USSTCG). Vu et al. [2017] proposed an automated test case generation method using Sequence
and Class diagrams with string constraints. Septian et al. [2017] presented a hybrid behavioral
model and heuristic approach to generate and optimize test cases. Genetic algorithm is used for
optimization of test cases. Arora and Bhatia [2018] proposed Agent based test case generation

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



262 · Subhash B Tatale and V Chandra Prakash

approach using Class, Use cases and Activity diagrams. It is found that the use of UML diagrams
results in better identification of changes in code and hence it leads to efficient test case generation.
Biswal et al. [2008] presented TC-ASEC (Test Case-Activity, Sequence, Class) model to generate
test cases from Activity, Sequence and Class diagrams. This model gives full coverage criteria
with reuse of the UML diagrams by applying gray box testing technique. The proposed approach
handles complex nested fork-joins by giving as high priority in activity state. Summary of survey
on test case generation based on Hybrid behaviour model approach is shown in Table V.

Input Diagram Authors Method Intermediate
Model

Coverage Crite-
ria

Sequence, Activity
and Use case dia-

gram

Khurana et al. [2016] Genetic algorithm System Testing
Graph

Path

Sequence and Class

diagram

Shah et al. [2016] Parsing XML Metadata In-

terchange

Object, Parameter

Sequence and State
chart diagram

Khurana and Chillar
[2015]

Genetic algorithm System Testing
Graph

Path

Sequence and State
chart diagram

Efendi and Asmuni
[Efendi and Asmuni]

UML specification
approach

Sequence and State
chart Control Flow

Graph

Path, State

Sequence and Class

diagram

Vu et al. [2017] Pre-processing

rules

Control Flow

Graph

Path

Sequence and Ac-
tivity diagram

Septian et al. [2017] Modified DFS System testing
Graph

Path

Activity, Class and
Use case diagram

Arora and Bhatia
[2018]

Agent based ap-
proach

XML Metadata In-
terchange

Specification

Activity, Sequence

and Class diagram

Biswal et al. [2008] Gray box tech-

nique

Fork-Join Full coverage

Table V: Summary of survey on test case generation based on Hybrid behaviour model approach

2.6 Survey on test case generation based on Concurrent model approach

The concurrent models are generally used in the Mission-critical systems. In this approach, the
main focus is to generate test suites that meet concurrency coverage criteria. UML provides con-
current execution behavior in Sequence and Activity diagrams by using concurrent asynchronous
messages and fork-join constructs respectively.
Khandai et al. [2011] presented an approach for generating test cases for concurrent systems. In
this approach, a Concurrent Composite Graph (CCG) is generated from a Sequence diagram.
The CCG is traversed using BFS and DFS techniques to generate the test cases for a concurrent
system. This approach achieves message, sequence, and path coverage criteria. The authors
found that proposed approach is very effective in handling the test case explosion problem. The
generated test cases are useful to detect scenario, interaction and operational faults of concurrent
systems.
Mani and Prasanna [2017] proposed an approach to generate efficient test cases from Sequence
diagram. This approach uses stack array and boundary value techniques for embedded system.
Yimman et al. [2017] proposed a dynamic programming approach. An Activity graph is generated
from An Activity diagram by focusing on the concurrency problem. Then, dynamic programming
technique is applied to generate all the paths from concurrent test cases. Kamonsantiroj et al.
[2019] proposed a dynamic programming technique to generate test cases from the concurrent
activities of Activity diagram. The authors proposed a Memoized- ConstPath algorithm to gen-
erate all activity paths. This approach fulfills concurrency coverage criteria. The result of the
proposed technique is claimed to be more efficient than DFS and BFS techniques. Summary of
survey on test case generation based on Concurrent model approach is shown in Table VI.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 263

Input Diagram Authors Method Intermediate
Model

Coverage Crite-
ria

Sequence Diagram Khandai et al. [2011] BFS, DFS Concurrent com-

posite graph

Message, Se-

quence,Path

Sequence Diagram Mani and Prasanna

[2017]

Stack array and

boundary value

Stimulus linking

table

Message, Path

Activity Diagram Yimman et al. [2017] Dynamic Program-

ming

Activity graph Complete path Ac-

tivity, Transition

Activity Diagram Kamonsantiroj et al.
[2019]

Dynamic Program-
ming

Activity paths Activity and
Causal ordering

Table VI: Summary of survey on test case generation based on Concurrent model approach

3. FEASIBILITY STUDY TO GENERATE COMBINATORIAL LOGIC ORIENTED TEST CASES
USING SEQUENCE AND ACTIVITY DIAGRAMS

This section provides a feasibility study to generate combinatorial logic oriented test cases using
Sequence and Activity diagrams. The basic elements like parameters, their values, interactions
among parameters and constraints are very essential to generate combinatorial logic oriented test
cases. Modeling is one of the most important steps of combinatorial testing because the sub-
sequent steps are highly dependent on it. Combinatorial Test Design Model (CTDM) consists
of these basic elements. Hence, it is necessary to derive CTDM using Sequence and Activity
diagrams to generate combinatorial test cases. Nowadays, the test designers derive CTDM by
looking into the requirements based on their knowledge and experience. Satish and Rangarajan
[2016] proposed a method to generate CTDM which can be used for generating combinatorial
logic oriented test cases.
An automatic extraction of parameters and their values from UML diagrams is a very impor-
tant task in generation of combinatorial logic oriented test cases. Some researchers have used
semi-automatic method for extraction of parameters and values from UML diagrams. Satish
et al. [2013]Satish et al. [2014]Satish et al. [2017] have presented a rule based approach to extract
parameters and values from UML Sequence, Activity and Use case diagrams. Since this process
is semi-automatic, manual refinement of the model is necessary. Esfandyari and Rafe [2020] used
model checking techniques to extract parameters and values. In model checking technique, all
reachable states of a given system are transformed into a directed graph. The model checker
traverses the state space completely to generate test paths.
As mentioned earlier, CTDM is very much useful to generate the test cases. After the survey,
the authors opine that there is a scope to extend CTDM so that it is useful to generate Com-
binatorial Logic Oriented Test cases. Various components in Software Development Life Cycle
viz. software requirements specifications, UML design artifacts, source code, test scenarios, etc.
are to be considered while designing CTDM. In case, if the customer provides Acceptance test
cases, then it may be possible to generate Combinatorial logic oriented acceptance test cases by
further extending CTDM. While generating combinatorial logic oriented test cases, the following
challenges are to be tackled.

(1) To extract parameters, values of parameters, interaction among parameters and constraints
from Sequence and Activity diagrams. In most of the existing approaches, this information
is given as an input to the system manually which may be an error prone task.

(2) To handle the situation in which the size of extracted information from Sequence and Activity
diagrams is too large.

There is scope to extract these parameters, values and constraints in an automatic manner using
new techniques. We conducted a feasibility study in order to know whether UML diagrams can
be used to generate combinatorial logic oriented test cases and our finding is that” it is feasible”.

The following steps may be adapted to generate combinatorial logic oriented test cases.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



264 · Subhash B Tatale and V Chandra Prakash

(1) The necessary UML diagrams are to be given as input to the test case generator.

(2) The parameters, values and constraints can be extracted automatically from UML diagrams
by using new techniques.

(3) Efficient algorithms including evolutionary algorithms have to be designed to generate combi-
natorial logic oriented test cases by using extracted input parameters, values and constraints.

4. CONCLUSION AND FUTURE SCOPE

This paper provides a systematic survey on automatic test case generation from Sequence and
Activity diagrams. The survey covers 80 research papers. Various researchers generated test
cases from Sequence and Activity diagrams by using different techniques and methods.
The outcome of feasibility study indicates that it is possible to generate combinatorial logic ori-
ented test cases using UML Sequence and Activity diagrams. As the feasibility study is positive,
in future, the research work can be carried to realize the aforesaid generation of combinatorial
logic oriented test cases using UML Sequence and Activity diagrams.

References

Arora, P. and Bhatia, R. 2018. Agent-based regression test case generation using class
diagram, use cases and activity diagram. Procedia Computer Science Vol.125, No, pp. 747–
753.

Arora, V., Bhatia, R., and Singh, M. 2017. Synthesizing test scenarios in uml activity
diagram using a bio-inspired approach. Computer Languages, Systems Structures Vol.50, No,
pp. 1–19.

Bewoor, L. A., Chandraprakash, V., and Sapkal, S. 2019. Evolutionary hybrid particle
swarm optimization algorithm to minimize makespan to schedule a flow shop with no wait.
Journal of Engineering Science and Technology Vol.14, No 2, pp.609–628.

Biswal, B., Nanda, P., and Mohapatra, D. 2008. A novel approach for scenario-based test
case generation. IEEE Vol., No, pp. 244–247.

Biswal, B., Nanda, P., and Mohapatra, D. 2010. A novel approach for optimized test
case generation using activity and collaboration diagram. International Journal of Computer
Applications Vol.1, No 14, pp. 67–71.

Boghdady, P., Badr, N., Hashemand, M., and Tolba, M. 2011. A proposed test case
generation technique based on activity diagram. International Journal of Engineering Tech-
nology Vol.11, No 3, pp.1–21.

Boghdady, P., Badr, N., Hashim, M., and Tolba, M. 2011. An enhanced test case gener-
ation technique based on activity diagrams. IEEE Vol., No, pp.289–294.

Briand, L. and Labiche. 2002. A uml-based approach to system testing. Software and Systems
Modeling Vol.1, No.1, pp.10–42.

Chandraprakash, V. and Kadiyala, P. 2006. Automatic test generation: A use case driven
approach. IEEE Transactions on Software Engineering Vol.32, No.3, pp.140–155.

Chen, M., Mishra, P., and Kalita, D. 2010. Efficient test case generation for validation of
uml activity diagrams. Design Automation for embedded systems Vol.14, No.2, pp.105–130.

Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., and Li, X. 2009. Uml activity diagram-
based automatic test case generation for java programs. The Computer Journal Vol.52, No.5,
pp.545–556.

Chouhan, C., Shrivastava, V., and P.S.Sodhi. 2012. Test case generation based on activity
diagram for mobile application. International Journal of Computer Applications Vol.57, No
23, pp.

Costa, L., Zorzo, A., Rodrigues, E., Silveira, M., and Oliveira, F. 2014. Structural test
case generation based on system models. International Conference on Software Engineering
Advances Vol., No, pp. 276–281.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 265

Dalal, S. and Hooda, S. 2017. Automated test sequence generation of aspect-oriented pro-
grams based upon uml activity diagram. International Journal of Engineering and Technol-
ogy Vol.9, No 2, pp.

Dehimi, N. and Mokhati, F. 2019. Novel test case generation approach based on auml sequence
diagram. IEEE Vol., No.

Dhineshkumar, M. 2014. An approach to generate test cases from sequence diagram.
IEEE Vol.8, No 6, pp.345–349.

Efendi, N. and Asmuni, H. Exhaustive search for test case generation from uml sequence
diagram and statechart diagram. Vol., No, pp.

Esfandyari, S. and Rafe, V. 2020. Extracting combinatorial test parameters and their values
using model checking and evolutionary algorithms. Applied Soft Computing Vol., No, pp.

Gouda, R. and Chandraprakash, V. 2019. Optimization driven constraints handling in
combinatorial interaction testing. International Journal of Open Source Software and Pro-
cesses Vol.10, No 3, pp.19–37.

Hartmann, J., Vieira, M., H.Foster, and Ruder. 2005. A uml-based approach to system
testing. Innovations in Systems and Software Engineering Vol.1, No.1.

Hashim, N. and Salman, Y. 2011. An improved algorithm in test case generation from uml
activity diagram using activity path. Vol., No, pp.

Heinecke, A., Brückmann, T., Griebe, T., and Gruhn, V. 2010. Generating test plans for
acceptance tests from uml activity diagrams. IEEE Vol., No, pp.57–66.

Hettab, A., Chaoui, A., and Aldahoud, A. 2013. Automatic test cases generation from uml
activity diagrams using graph transformation. ICIT Vol., No, pp.

Hettab, A., Kerkouche, E., and Chaoui, A. 2015. A graph transformation approach for
automatic test cases generation from uml activity diagrams. International Conference on
Computer Science Software Engineering Vol., No, pp.88–97.

Jena, A., Swain, S., and Mohapatra, D. 2014. A novel approach for test case generation
from uml activity diagram. IEEE Vol., No, pp.621–629.

Jena, A., Swain, S., and Mohapatra, D. 2015. Test case creation from uml sequence diagram:
a soft computing approach. Springer Vol., No, pp. 117–126.

Kamonsantiroj, S., Pipanmaekaporn, L., and Lorpunmanee, S. 2019. A memorization
approach for test case generation in concurrent uml activity diagram. International Conference
on Geoinformatics and Data Analysis Vol., No, pp. 20–25.

Khandai, M., Acharya, A., and Mohapatra, D. 2011. A novel approach of test case gener-
ation for concurrent systems using uml sequence diagram. IEEE Vol. 1, No, pp.157–161.

Khurana, N., Chhillar, R., and Chhillar, U. 2016. A novel technique for generation and
optimization of test cases using use case, sequence, activity diagram and genetic algorithm.
Journal of Software Engineering Vol.11, No 3, pp. 242–250.

Khurana, N. and Chillar, R. 2015. Test case generation and optimization using uml models
and genetic algorithm. Procedia Computer Science Vol.57, No, pp.996–1004.

Kondhalkar, V. and ChandraPrakash, V. 2018. Automated generation of test cases for
conducting pairwise plus testing. Journal of Advanced Research in Dynamical and Control
Systems Vol., No, pp.1484–1492.

LakshmPrasad, M., Reddy, A. R. S., and Sastry., J. 2019. Gapso: Optimal test set
generator for pairwise testing. International Journal of Engineering and Advanced Technol-
ogy Vol.8, No 6, pp.

Li, L., Li, X., He, T., and Xiong, J. 2013. Extenics-based test case generation for uml activity
diagram. Procedia Computer Science Vol.17, No, pp.1186–1193.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



266 · Subhash B Tatale and V Chandra Prakash

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., and Guoliang,
Z. 2004. Generating test cases from uml activity diagram based on gray-box method.
IEEE Vol., No, pp.284–291.

Mahali, P., Arabinda, S., Acharya, A., and Mohapatra, D. 2016. Test case generation
for concurrent systems using uml activity diagram. IEEE Vol., No, pp. 428–435.

Mani, P. and Prasanna, M. 2017. Test case generation for embedded system software using
uml interaction diagram. Journal of Engineering Science and Technology Vol.12, No 4, pp.860–
874.

Mingsong, C., Xiaokang, Q., and Xuandong, L. 2006. Automatic test case generation
for uml activity diagrams. international workshop on Automation of software test Vol., No,
pp.2–8.

Monim, M. and Nor, R. 2018. An automated test case generating tool using uml activity
diagram. International Journal of Engineering Technology Vol.7, No 4, pp.58–63.

Mu, K. and Gu, M. 2006. Research on automatic generating test case method based on uml
activity diagram. Journal of Computer Applications Vol.4, No.

Mudarakola, L. P., Sastry, J. K., and Prakash, V. C. 2018. Testing embedded sys-
tems using test cases generated through combinatorial techniques. International Journal of
Engineering Technology Vol.7, No 2, pp.146–158.

Nanda, P., Biswal, B., and Mohapatra, D. 2008. A novel approach for test case generation
using activity diagram. ICIT Vol.1, No 1, pp.60–63.

Nebut, C., F., F., Y., L. T., and J.M., J. 2006. Automatic test generation: A use case driven
approach. IEEE Transactions on Software Engineering Vol.32, No.3, pp.140–155.

Oluwagbemi, O. and Asmuni, H. 2015. Automatic generation of test cases from activity
diagrams for uml based testing (ubt). Jurnal Teknologi Vol.77, No 13, pp.

Panthi, V. and D.P.Mohapatra. 2013. Automatic test case generation using sequence dia-
gram. Springer Vol., No, pp.277–284.

Pechtanun, K. and Kansomkeat, S. 2012. Generation test case from uml activity diagram
based on ac grammar. IEEE Vol., No, pp. 895–899.

Prakash, V., S.Tatale, V.Kondhalkar, and L.Bewoor. 2018. A critical review on au-
tomated test case generation for conducting combinatorial testing using particle swarm opti-
mization. Int. J. Eng. Technol. Vol.7, No 3, pp.

Prasad, M. and J.K.R.Sastry. 2018a. Building test cases by particle swarm optimization
(pso) for multi output domain embedded systems using combinatorial techniques. Journal of
Advanced Research in Dynamical and Control System Vol.6, No, pp.1221–1229.

Prasad, M. and J.K.R.Sastry. 2018b. A graph based strategy (gbs) for generating test cases
meant for testing embedded systems using combinatorial approaches. Journal of Advanced
Research in Dynamical and Control System Vol.10, No 1, pp.314–324.

Ramgouda, P. and Chandraprakash, V. 2018. Neural network based approach for improving
combinatorial coverage in combinatorial testing approach. Journal of Theoretical and Applied
Information Technology Vol.20, No 96, pp.6677–6687.

Ramgouda, P. and Chandraprakash, V. 2019. Constraints handling in combinatorial in-
teraction testing using multi-objective crow search and fruitfly optimization. Soft Comput-
ing Vol.23, No 8, pp.2713–2726.

Ray, M., Barpanda, S., and Mohapatra, D. 2009. Test case design using conditioned slicing
of activity diagram. International Journal of Recent Trends in Engineering Vol.1, No 2, pp.117.

Rhmann, W. and Saxena, V. 2016a. Optimized and prioritized test paths generation from
uml activity diagram using firefly algorithm. International Journal of Computer Applica-
tions Vol.145, No 6, pp.16–22.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 267

Rhmann, W. and Saxena, V. 2016b. Test case generation from uml sequence diagram for
aadhaar card number based atm system. System Vol.11, No 4, pp.1221–1229.

Samuel, P. and Mall, R. 2008. A novel test case design technique using dynamic slicing of
uml sequence diagrams. e-Informatica Vol.2, No 1, pp.71–92.

Samuel, P. and Mall, R. 2009. Slicing-based test case generation from uml activity diagrams.
ACM SIGSOFT Software Engineering Notes Vol.34, No 6, pp.1–14.

SasiBhanu, J., D.Baswaraj, Bigul, S. D., and Sastry, J. 2019. Generating test cases for
testing embedded systems using combinatorial techniques and neural networks based learn-
ing model. International Journal of Emerging Trends in Engineering Research Vol.7, No 11,
pp.417–429.

SasiBhanu, J., LakshmiPrasad, M., and Sastry, D. J. 2018. A combinatorial particle
swarm optimization (pso) technique for testing an embedded system. Journal of Advanced
Research in Dynamical and Control System Vol.10, No 7, pp.321–336.

Satish, P., Milind, B., Narayan, M., and Rangarajan, K. 2017. Building combinatorial
test input model from use case artefacts. IEEE Vol., No, pp. 220–228.

Satish, P., Paul, A., and Rangarajan, K. 2014. Extracting the combinatorial test parame-
ters and values from uml sequence diagrams. IEEE Vol., No, pp.88–97.

Satish, P. and Rangarajan, K. 2016. A preliminary survey of combinatorial test design
modeling methods. International Journal Of Scientific Engineering Research Vol.7, No 7,
pp.1455–1459.

Satish, P., Sheeba, K., and Rangarajan, K. 2013. Deriving combinatorial test design model
from uml activity diagram. IEEE Vol., No, pp.331–337.

Septian, I., Alianto, R., and Gaol, F. 2017. Automated test case generation from uml
activity diagram and sequence diagram using depth first search algorithm. Procedia computer
science Vol.116, No, pp. 629–637.

Shah, S., Shahzad, R., Bukhari, S., and Humayun, M. 2016. Automated test case gen-
eration using uml class sequence diagram. Current Journal of Applied Science and Technol-
ogy Vol., No, pp. 1–12.

Shanthi, A. and Kumar, G. 2012. A heuristic technique for automated test cases generation
from uml activity diagram. i-Manager’s Journal on Software Engineering Vol.6, No 3, pp.

Shanthi, A. andMohanKumar, G. 2012. A novel approach for automated test path generation
using tabu search algorithm. International Journal of Computer Applications Vol.48, No 13,
pp.28–34.

Shirole, M. and Kumar, R. 2013. Uml behavioral model based test case generation: a survey.
ACM SIGSOFT Software Engineering Notes Vol.38, No 4, pp.1–13.

Singla, I. 2015. A semantic approach for the generation of test cases from activity diagram.
International Journal of Computer Applications Vol.116, No 10, pp.

Sumalatha, V. and Raju, G. 2012. Uml based automated test case generation technique using
activity-sequence diagram. International Journal of Computer Science Applications Vol.1, No
9, pp.

Swain, R., Panthi, V., and Behera, P. 2013. Generation of test cases using activity diagram.
International journal of computer science and informatics Vol.3, No 2, pp.1–10.

Swain, R., Panthi, V., Behera, P., and Mohapatra, D. 2014. Slicing-based test case gen-
eration using uml 2.0 sequence diagram. International Journal of Computational Intelligence
Studies Vol.3, No 2, pp.221–250.

Swain, S. and Mohapatra, D. 2010. Test case generation from behavioral uml models. Inter-
national Journal of computer applications Vol.6, No 8, pp.5–11.

Teixeira, Diniz, F. A., and e Silva, G. B. 2016. Easytest: an approach for automatic test
cases generation from uml activity diagrams. Springer Vol., No., pp.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



268 · Subhash B Tatale and V Chandra Prakash

Thanakorncharuwit, W., Kamonsantiroj, S., and Pipanmaekaporn, L. 2016. Gener-
ating test cases from uml activity diagram based on business flow constraints. International
Conference on Network, Communication and Computing Vol., No, pp.155–160.

Tiwari, S. and Gupta, A. 2013. An approach to generate safety validation test cases from uml
activity diagram. IEEE Vol., No, pp. 189–198.

Tripathy, A. and Mitra, A. 2013. Test case generation using activity diagram and sequence
diagram. Springer Vol.10, No 7, pp. 121–129.

Vu, T., Hung, P., and Nguyen, V. 2017. A method for automated test cases generation from
uml models with string constraints. Springer Vol., No, pp.525–536.

Xu, Y. and Wu, L. 2019. An automatic test case generation method based on sysml activity
diagram. Materials Science and Engineering Vol.563, No 5, pp.

Yimman, S., Kamonsantiroj, S., and Pipanmaekaporn, L. 2017. Concurrent test case gen-
eration from uml activity diagram based on dynamic programming. International Conference
on Software and Computer Applications Vol., No, pp. 33–38.

Zhang, C., Duan, Z., Yu, B., Tian, C., and Ding, M. 2016. A test case generation approach
based on sequence diagram and automata models. Chinese Journal of Electronics Vol.25, No
2, pp.234–240.

Zhen, F. 2003. Automated ttcn-3 test case generation by means of uml sequence diagrams and
markov chains. Test Symposium Vol., No, pp. 102–105.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.



A Survey on Test Case Generation using UML Diagrams... · 269

Subhash B. Tatale has completed BE (Computer), (M.Tech. Information Technology). 
Currently, he is pursuing Ph.D. in Computer Science and Engineering at Koneru Laksh-
maiah Education Foundation, Vaddeswaram, India. He is having 13 years of experience in 
teaching and software industry. His research area includes Software Engineering, Unified 
Modeling Language and Artificial Intelligence. He has published research papers in na-
tional and international conferences and journals. He has the membership of International 
Association of Engineers (IAENG).

Dr. V. Chandra Prakash has been working as professor in Computer Science and En-
gineering at Koneru Lakshmaiah Education Foundation, Vaddeswaram, India for the past 
35 years. He also has 10 years of experience in software industry. His research interests in-
clude Artificial Intelligence, Machine Learning, Cognitive Science, Cognitive Computing 
and Software Engineering. He has published research papers in reputed journals having 
indexing like Scopus, Web of Science etc.

International Journal of Next-Generation Computing - Special Issue, Vol. 12, No. 2, April 2021.


