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1. INTRODUCTION

The concept of reducibility introduced by Bordalo and Monjardet (Bordalo and Monjardet, 1996)
is well studied for some classes of lattices. They have proved that the classes of lattices such as
pseudocomplemented, upper semimodular, lower semimodular, upper locally distributive, lower
locally distributive and (meet) semidistributive are reducible. It is easy to see that the lattice L
depicted in Figure 1(a) has no deletable element with respect to the class of distributive lattices
and also with respect to the class of modular lattices. Therefore, the class of distributive lattices
as well as the class of modular lattices is not reducible.

Definition 1.1. [2] An element x of a lattice L satisfying a property p is deletable if L−x is
a lattice satisfying p. A class of lattices is reducible “if each lattice with at least two elements of
this class admits at least one deletable element.”

This very definition fits in if we replace the term lattice by the term poset (see Bordalo and
Monjardet (Bordalo and Monjardet, 1996), Kharat and Waphare (Kharat and Waphare, 2001)).
Equivalently, one can easily note that a class of lattices is reducible if and only if one can go from
any lattice in this class to trivial lattice by a sequence of lattices of the class obtained by deleting
one element at each step.

All the lattices considered here for studying deletability and reducibility are of finite length,
unless otherwise stated. Also, the study of deletable elements, say x, has been carried out in this
article essentially for x 6= 0, 1. However in general we also note that 0 is deletable only if 0 is
meet-irreducible and 1 is deletable only if 1 is join-irreducible.

Following definition of reducibility number is introduced by Kharat et al. (Kharat, Waphare,
and Thakare, 2007).

Definition 1.2 (Kharat et al., 2007). Let P be a class of posets and P ∈ P. We say that
a non-empty subset S of P is deletable if P − S ∈ P. A positive number r is called reducibility
number of P with respect to the class P, denoted by red(P,P), if there exists a deletable subset
S of P with |S| = r and no non-empty subset T of P with |T | < r is deletable.

Remark 1.3 (Kharat et al., 2007). A class P is a reducible class of posets if and only if
for any P ∈ P, red(P,P) = 1.
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It cab be observed from following three theorems that the reducibility number of a given lattice
may or may not be same with respect to different classes to which it belongs. In what follows,
the class of distributive, modular and boolean lattices is respectively denoted by D, M and B.

Theorem 1.4 (Kharat et al., 2007). For n > 2, red(2n,D) = 2n−2

Theorem 1.5 (Kharat et al., 2007). For n > 2, red(2n,M) = 2n−2

Theorem 1.6 (Kharat et al., 2007). For n > 1, red(2n,B) = 2n−1

Bordalo et al. (Bordalo and Monjardet, 1996) proved that the class of distributive and modular
lattices are not reducible. Hence we have the following.

Remark 1.7. If L is a distributive lattice, then red(L,D) > 1.
If L is a modular lattice, then red(L,M) > 1.

Remark 1.8. The deletable elements in chains, graded, complete, planar, algebraic, relatively
atomic and locally modular lattices are respectively denoted by CH-deletable, G-deletable, CO-
deletable, PL-deletable, AL-deletable, RAT -deletable and LM-deletable.

Remark 1.9. We consider the lattices with the least element 0 and the greatest element 1, if
finite or bounded. However, we assume that 0 is deletable only if 0 is meet-irreducible and 1 is
deletable only if 1 is join-irreducible (definitions are in the next section).

Remark 1.10. The class of finite atomic lattices as well as the relatively atomic lattices is
reducible since every element other then 0 and 1 is deletable in any lattice in these classes.

Definition 1.11. (Grätzer, 1998) A partially ordered set is relatively atomic (or strongly
atomic) if for all a < b there is an element c such that a ≺ c 6 b or, equivalently, if every interval
[a, b] is atomic. Every relatively atomic partially ordered set with a least element is atomic.

Definition 1.12. (Grätzer, 1998) A lattice L is called atomic if L has the least element 0
and the interval [0, a] contains an atom for each a > 0.

Following remark follows from Lemma 2.1. This notion, however, is different from the notion
of dismantlability for lattices (Rival (Rival, 1974)). The lattice depicted in Figure 1(a) is an
example which not dismantlable but reducible in the class of strong lattices.

1

q

p

0

L

(a)

1

q

0

L − p

(b)

We note that, dismantlable lattices are the ones which can be completely dismantled by deleting
one element at a time and resulting in a sublattice at each stage. As such, for a lattice L in the
class of dismantlable lattices, one can reach to the trivial lattice by a sequence of sublattices of
the class obtained by deleting one element at each step. Importantly, the lattices of the sequence
of sublattices have no reason to preserve the properties of the original lattice. However, the class
of dismantlable lattices is reducible.
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In this connection, we recall a very important characterization of dismantlable lattices, known
as Structure Theorem (see Thakare-Pawar-Waphare (Thakare, Pawar, and Waphare, 2002)).

Theorem 1.13. (Thakare et al., 2002) A finite lattice is dismantlable if and only if it is an
adjunct of chains.

Consider the lattice L depicted in Figure 1(a) which is an upper semimodular lattice. The
resulting lattice depicted in Figure 1 (b) is also an upper semimodular lattice and therefore the
element p is deletable . However, if we consider the lattice L depicted in Figure 1 (a) as a
distributive lattice then the element p is not deletable as the resulting lattice L − p depicted in
Figure 1 (b) is not distributive. Also, in the pseudocomplemented lattice depicted in Figure 1
(a), the element q is not deletable. In fact, the element x has no pseudocomplement in L− q (see
Figure 2). (see to Grätzer (Grätzer, 1998), Birkhoff (Birkhoff, 1973), Stern (Stern, 1999), V. S.
Kharat (Kharat, 2001))

1

p

0

L − q

2. CHARACTERIZATIONS OF DELETABLE ELEMENTS IN FINITE LATTICES

All the lattices in this section we assume are finite. The lattice theoretic definitions, concepts and
relevant details can be found in (Birkhoff, 1973), (Grätzer, 1998), (Stern, 1991), (Stern, 1999),etc.
An element x ∈ L is join-irreducible if x = a ∨ b implies x = a or x = b; it is meet-irreducible
if x = a ∧ b implies x = a or x = b. An element which is both join and meet-irreducible is
called doubly irreducible. The set J(L) (respectively M(L)) shall denote the set of all non zero
join-irreducible elements (non 1 meet-irreducible elements) of a given lattice L. Thus the set
J(L)

⋂
M(L) is the set of all doubly irreducible elements of L and the set J(L)

⋃
M(L) is the

set of all irreducible elements of L.
We also use the following notations for x ∈ L.

xg = {y ∈ L | x ≺ y} and
xf = {z ∈ L | z ≺ x}.

It is immediate that if x ∈ J(L) then xf is a singleton set and so also xg if x ∈ M(L) and
we shall denote these singleton sets simply by x− and x+ respectively. For x ∈ L, the depleted
lattice L − {x} is denoted by L − x and for a, b ∈ L − x, if a is covered by b in L − x in the
induced binary operations on L− x, we shall denote the same by a ≺x b.

Following result is a characterization of deletale elements in finite lattices.

Lemma 2.1. For an element x 6= 0, 1 of a finite lattice L, L−x is a lattice if and only if x ∈ L
satisfies one of the following conditions.

(1 ) x ∈ J −M
(2 ) x ∈M − J
(3 ) x ∈ J

⋂
M.
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Proof. Let L be a lattice and x ∈ L. Suppose that L− x is a lattice and x does not satisfy
any of the conditions (i), (ii), (iii). Then there exist elements x1, x2, x3, x4 different from x in
L with x1 ‖ x2 and x3 ‖ x4 such that x1 ∨ x2 = x = x3 ∧ x4 in L. As L − x is a lattice and
x1 ‖ x2, suppose w = g.l.b.{x3, x4} in L− x, and so in L w 6 x3, w 6 x4 and accordingly w < x.
Note that, in L − x, x1 6 x3, x4 which implies that x1 6 g.l.b.{x3, x4}, i.e., x1 6 w. Similarly,
x2 6 x3, x4 which implies that x2 6 g.l.b.{x3, x4}, i.e., x2 6 w and so in L, x1 6 w, x2 6 w
which implies that x1 ∨ x2 6 w, i.e., x 6 w. However, w < x and x 6 w cannot both hold and
consequently x must satisfy at least one of the conditions.

Conversely, suppose that x ∈ L satisfies (i), i.e., x ∈ J −M :
Note that, as x ∈ J , join of every pair is preserved in L − x. Now, consider a pair of elements
x1( 6= x), x2(6= x) such that x1 ∧ x2 = x in L and such pair exists because x /∈ M . In this case,
g.l.b.{x1, x2} = x− in L − x and meet of every pair other than such pairs will be preserved in
L− x. Hence in this case L− x is a lattice.
If x satisfies (ii), i.e., x ∈M − J , then the result follows from dual arguments of case (i).
And, if x satisfies (iii), i.e., x ∈ J ∩M , this case follows from either case (i) or case (ii).
Hence in each case, L− x forms a lattice.

Definition 2.2 (Maeda, 1974). A lattice L is called locally modular when there exists a
congruence relation θ in L satisfying the following three conditions: (θ1) If a 6= 1 in L then there
exists b ∈ L such that b > a and b ≡ a(θ), and if a 6= 0 then there exists b ∈ L such that b < a
and b ≡ a(θ). (θ2) lf a ≺ b then a ≡ b(θ). (θM ) For any a ∈ L, the sublattice [a] is modular.
L is called locally distributive (i.e. upper locally distributive) when, in the above definition, (θM )
is replaced by the following condition: (θD) For any a ∈ L, the sublattice [a] is distributive.
Evidently, any locally distributive lattice is locally modular.

Theorem 2.3 (Maeda, 1974). Any locally modular lattice L is both upper and lower semi-
modular in the sense of Birkhoff.

Definition of semimodular lattice in the above theorem and in the paper by Bordalo, et al.
(Bordalo and Monjardet, 1996) is same.

Theorem 2.4 (Bordalo and Monjardet, 1996). The class of upper locally distributive
lattices is reducible. Moreover an element of a locally modular lattices is ULD-deletable if and
only if it is USM-deletable.

Hence we have the following Corollary.

Corollary 2.5. The class of locally modular finite lattices is reducible. Moreover an element
of a locally modular lattices is LM-deletable if and only if it is USM-deletable.

As such, we have the following remark about the reducibility number of locally modular lattices.

Remark 2.6. If L is a locally modular lattice, then red(L,LM) = 1.

Bordalo et al. (Bordalo and Monjardet, 1996) also proved that the class of pseudocomple-
mented, lower (respectively, upper) semimodular and lower (respectively, upper) locally distribu-
tive lattices are reducible. Hence we have

Remark 2.7. If L is a pseudocomplemented lattice, then red(L,PC) = 1.
If L is a lower semimodular lattice, then red(L,LSM) = 1.
If L is a upper semimodular lattice, then red(L,USM) = 1.
If L is a lower locally distributive lattice, then red(L,LLD) = 1.
If L is a upper locally distributive lattice, then red(L,ULD) = 1.

Definition 2.8. (Grätzer, 1998) A lattice (L,6) is called graded, sometimes ranked (but see
Ranked poset for an alternative meaning), if it can be equipped with a rank function r from L
to N, sometimes to Z, compatible with the ordering (so r(x) < r(y) whenever x < y) such that
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whenever y covers x, then r(y) = r(x) + 1. The value of the rank function for an element is
called its rank.

Obviously, every chain is graded and so we have the following.

Remark 2.9. Every element in a chain is deletable and so the class of chains is reducible.

Remark 2.10. If L is a chain, then red(L, CH) = 1.

Following is a characterization of deletable elements in graded lattices that are not chains.

Theorem 2.11. Let L be a (finite) graded lattice (other than chains) and x(6= 0, 1) ∈ L. Then
x is G-deletable if and only if x ∈ J

⋃
M and there exists y( 6= x) ∈ L for every u ∈ xf and for

every v ∈ xg such that u ≺ y ≺ v.

Proof. Let L be a graded lattice and x ∈ L be G-deletable. By Lemma 2.1, x must be either
in J −M or M − J or J

⋂
M , otherwise L − x is not a lattice and consequently x ∈ J

⋃
M . If

there does not exist y for some u ∈ xf and for some v ∈ xg such that u ≺ y ≺ v, then r(u) is
not well defined and consequently L− x is not graded, a contradiction.

Conversely, suppose that x ∈ J
⋃
M and there exists y(6= x) ∈ L for every u ∈ xf and for

every v ∈ xg such that u ≺ y ≺ v. If x ∈ J −M or x ∈ M − J or x ∈ J
⋃
M , by Lemma 2.1

L− x is a lattice. Now the r(z),∀z ∈ L− x is same as r(z),∀z ∈ L, hence x is G-deletable.

Remark 2.12. Every element other than 0 and 1 of a Boolean lattice is deletable and accord-
ingly we have the following Theorem and remark.

Theorem 2.13. Let L = 2n, n > 2 then red(L,G) = 1.

Remark 2.14. If L is a graded lattice, then red(L,G) > 1.

Definition 2.15. A finite lattice is called planar if its diagram can be drawn in the plane with
non-intersecting lines.

Theorem 2.16. Let L be a planar lattice and x( 6= 0, 1) ∈ L. Then x is PL-deletable if and
only if x ∈ J

⋃
M.

Proof. Let L be a planar lattice and x ∈ L be CO-deletable. By Lemma 2.1, x must be
either in J−M or M −J or J

⋂
M , otherwise L−x is not a lattice and consequently x ∈ J

⋃
M .

Conversely, suppose that x ∈ J
⋃
M. If x ∈ J −M or x ∈ M − J or x ∈ J

⋃
M , by Lemma

2.1, L− x is a lattice, hence L− x is a planar lattice.

Remark 2.17. The class of planar lattices is reducible and so, if L is a planar lattice, then
red(L,PL) = 1.

It is also khown that the class of strong, dually strong, lower (respectively, upper) balanced
and join (respectively, meet) semidistributive lattices are reducible. Hence we have the following.

Remark 2.18. If L is a strong lattice, then red(L,S) = 1.
If L is a dually strong lattice, then red(L,DS) = 1.
If L is a lower balanced lattice, then red(L,LB) = 1.
If L is a upper balanced lattice, then red(L,UB) = 1.
If L is a join semidistributive lattice, then red(L,J SD) = 1.
If L is a meet semidistributive lattice, then red(L,MSD) = 1.

Also, the class of balanced, atomistic, AC, semidistributive, complemented, uniquely com-
plemented and relatively pseudocomplemented lattices are not reducible. Hence we have the
following.
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Remark 2.19. If L is a balanced lattice, then red(L,B) > 1.
If L is a atomistic lattice, then red(L,A) > 1.
If L is a AC lattice, then red(L,AC) > 1.
If L is a semidistributive lattice, then red(L,SD) > .1
If L is a complemented lattice, then red(L, C) > 1
If L is a uniquely complemented lattice, then red(L,UC) > 1.
If L is a relatively pseudocomplemented lattice, then red(L,RSC) > 1.

3. INFINITE LATTICES

Consider the lattices given below and we observe that if we delete x from either lattice then the
resultant poset is not a lattice.

x

(a)

x

(b)

Theorem 3.1. Let L be a lattice and x(6= 0, 1) ∈ L. Then L − x is a lattice if and only if x
satisfies one of the following conditions.

(i) x ∈ J
⋂
M

(ii) x ∈ J −M and xf 6= ∅
(iii) x ∈M − J and xg 6= ∅

x

(a)

x

(b)

Proof. Let L be a lattice and x( 6= 0, 1) ∈ L. Suppose that L − x is a lattice and x does
not satisfy any of the conditions stated in the statement. Then there exist distinct elements
x1, x2, x3, x4 distinct from x in L with x1 ‖ x2 and x3 ‖ x4 such that x1 ∨ x2 = x = x3 ∧ x4

in L. Now, x1, x2 6 x1 ∨ x2 = x3 ∧ x4 6 x3, x4 in L − x, and we have, x1 6 x3, x1 6 x4 and
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x2 6 x3, x2 6 x4 in L − x, i.e, x1, x2 are the lower bounds of x3, x4 and x3, x4 are the upper
bounds of x1, x2 in L. Since x1 ‖ x2, suppose w is the greatest lower bound for x3, x4. Therefore
w 6 x3, x4 but in L, x = x3 ∧ x4. Thus in L, x > w and x = x1 ∨ x2. However, L − x, w is
an upper bound for x1, x2 implies that in L, x 6 w, and a contradiction. Hence there does not
exist the greatest lower bound for x3, x4 and similarly x3 ‖ x4 implies that there does not exist
least upper bound for x1, x2. Thus L − x is not a lattice. Therefore x must satisfy one of the
conditions in the statement.

Conversely, suppose that x ∈ L satisfies one of the conditions (i), (ii) and (iii).

(i) x ∈ J ∩M :
In this case, x is not a join as well as not a meet of any two elements in L. For x1(6= x), x2(6=
x) ∈ L, if x1 ∧ x2 = x in L, then x1 ∧ x2 = x− in L − x and if x1 ∨ x2 = x in L, then
x1 ∨ x2 = x+ in L− x. All other meets and joins of any two elements in L are preserved in
L− x and so L− x is a lattice.

(ii) x ∈ J −M and xf 6= ∅:
Since x /∈ M , there exist x1(6= x), x2( 6= x) ∈ L with x1 ∧ x2 = x and x− ∈ L with x− ≺ x.
Thus in L−x, x1 ∧x2 = x− and so the meet of any two elements exists. Also, x is not a join
of any two elements, thus join of any two elements in L is preserved in L− x. Hence L− x
is a lattice.

(iii) x ∈M − J and xg 6= ∅ :
Since x /∈ J , there exist x1(6= x), x2(6= x) ∈ L with x1∨x2 = x in L and x+ ∈ L with x ≺ x+.
Therefore in L − x, x1 ∨ x2 = x+, hence x1 ∨ x2 exists in L − x . Also, meet of any two
elements in L is preserved in L− x. Thus L− x is a lattice.

Hence in each case, L− x forms a lattice.

Definition 3.2 (Grätzer, 1998). A partially ordered set (L,6) is a complete lattice if every
subset A of L has both a greatest lower bound (the infimum, also called the meet) and a least upper
bound (the supremum, also called the join) in (L,6).

Definition 3.3 (Grätzer, 1998). Let L be a complete lattice and let a be an element of L.
Then a is called compact if a 6

∨
X, for any X ⊆ L, implies that a 6

∨
X1 for some finite

X1 ⊆ X. A complete lattice is called algebraic if every element is the join of a (possibly infinite)
set of compact elements.

In the next Theorem, we provide a necessary and sufficient condition for deletable elements of
algebraic lattices.

Theorem 3.4. Let L be an algebraic lattice and x(6= 0, 1) ∈ L. Then x is AL-deletable if and
only if x satisfies one of the following conditions.

(i) x( 6= 1) ∈M − J with xg 6= ∅.
(ii) x( 6= 0) ∈ J −M with xf 6= ∅ and y /∈ J(L− x) for any y ∈ xg.

(iii) x ∈ J ∩M and y /∈ J(L− x) for any y ∈ xg.

Proof. Suppose that L is an algebraic lattice and an element x(6= 0, 1) ∈ L is AL-deletable.
We contend that x satisfies either of the conditions stated in the statement of the Theorem.
On the contrary, suppose that x does not satisfy any condition. Then by Lemma 2.1, x is
doubly reducible and consequently, L − x is not a lattice or equivalently x is not AL-deletable,
a contradiction to the assumption.

Conversely, suppose that x satisfies one of the conditions in the statement of the Theorem.
Now, we will prove that x is AL-deletable.

(i) x ∈M − J with xg 6= ∅
Since x /∈ J , there exist x1( 6= x), x2( 6= x) ∈ L with x1 ∨ x2 = x and x ≺ x+ in L. Therefore
in L− x, x1 ∨ x2 = x+ and also meet of any two elements in L is preserved in L− x. Thus
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L − x is a lattice and in fact, every element including x+ is the join of compact elements
contained in it and consequently, L− x is algebraic.

(ii) x ∈ J −M with xf 6= ∅ and y /∈ J(L− x) for any y ∈ xg

Since x /∈M , there exist x1( 6= x), x2(6= x) ∈ L with x1 ∧ x2 = x and x− ≺ x in L. In L− x,
x1 ∧ x2 = x−, x1 ∧ x2 exists in L − x and the elements of the set xg are not in J(L − x),
these are joins of compact elements in L− x. Hence L− x is algebraic.

(iii) x ∈ J ∩M and y /∈ J(L− x) for any y ∈ xg
By Case (ii), L− x is an algebraic lattice.

Thus in each case, L− x is an algebraic lattice. Hence x is AL-deletable.

Theorem 3.5. Let L be a lattice and x( 6= 0, 1) ∈ L. Then x is CO-deletable if and only if
x ∈ J

⋃
M .

Proof. Let L be a lattice and x ∈ L be CO-deletable. By Theorem 3.1, x is either in J −M
or M − J or J

⋂
M , otherwise L− x is not a lattice and consequently, x ∈ J

⋃
M .

Conversely, suppose that x ∈ J
⋃
M. If x ∈ J −M or x ∈ M − J or x ∈ J

⋂
M , by Lemma

2.1 L− x is a lattice.

Remark 3.6. The class of complete lattices is reducible.

As such, we have the following remark about the reducibility number of complete lattices.

Remark 3.7. If L is a Lattice, then red(L, CO) = 1.
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