
A Hierarchical Hybrid Evolutionary
Computation for Continuous Function
Optimization

SAID MOHAMED SAID

SENLIN GUAN

MORIKAZU NAKAMURA

University of the Ryukyus

In this paper, we propose a hybrid master/slave approach to optimization problems on the basis of estimation

of distribution algorithms (EDAs) and genetic algorithms (GAs). The master process estimates the probability
distribution of the search space on the basis of the non-dependency model at each iteration and sends probability
vectors to the slaves. The slaves use the vectors to generate a new initial population for their GA operations. We
employ the simplest probability models and we compensate for the reduced accuracy problems by applying GAs to

the solutions sampled using the simplest model. Moreover, our method can be incorporated with strategy research,
and it easily can be parallelized. Lastly, we conduct experiments to verify the effectiveness of our method.

Keywords: Evolutionary computation, Genetic algorithms, estimation of distribution algorithms,
parallel processing

1. INTRODUCTION

Optimization problems have been classically investigated, mainly in the fields of computer science
and the operations research. Efficient algorithms have been developed for numerous real-life
applications. However, modern optimization problems are quite large and complicated. Thus,
new algorithms are required to solve such problems efficiently. Population-based methods have
been widely adopted to solve such optimization problems, and in many cases, they yield promising
results. Genetic algorithms (GAs) are well known techniques for solving optimization problems;
they enable us to easily design programs and efficiently obtain high quality solutions when we set
proper parameters [Holland 1972]. They have already shown effectiveness in variety of problem
domains (see [Davis 1991] for examples). They became robust, easy to use and applicable in
diverse areas, such as machine learning, combinatorial problems, VLSI design and numerical
optimization [Salomon 1996].
Recently, several efficient optimization techniques such as ant colony optimization (ACO)

[Dorigo 1996]; [J. Zhang et al. 2006] and particle swarm optimization (PSO) [Eberhart and
Shi 2001]; [Hu 2004] have been developed on the basis of natural phenomena. Estimation of
distribution algorithms (EDAs) were introduced as novel evolutionary computation techniques
[Mühlenbein and Paaß 1996], and several researchers have investigated this interesting method-
ology [Larrañaga and Lozano 2002].
An EDA estimates the probability distribution of the search space in each iteration on the

basis of a certain probabilistic model. The simplest model lacks dependency, that is, we as-
sume that there is no dependency between any pair of variables. Useful algorithms such as the
univariate marginal distribution algorithm (UMDA) [Mühlenbein 1998], population-based incre-
mental learning (PBIL) [Baluja 1994], and the compact genetic algorithm (cGA) [Harik et al.
1998] have been developed for combinatorial optimization. Furthermore, algorithms such as the
UMDA of the continuous domains (UMDAc) and the PBIL for continuous search spaces (PBILc)
[Sebag and Ducoulombier 1998] have been proposed for continuous function optimization. A

Author’s address: S. Mohamed Said, S. Guan, and M. Nakamura, Faculty of Information Engineering, University
of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 JAPAN.

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

14 · Said Mohamed Said et al.

more complicated model for both combinatorial and continuous function optimization involves
bivariate dependence, where we assume dependency between two variables, and the most com-
plicated model involves multiple dependency ([Perikan et al. 1999]; [Bosman and Thierens 2000];
[Gallagher et al. 1999]). Although more complicated model seems to be more precise, it requires
intensive computation.
[Ocenasek 2002] and [Mendiburu-Alberro 2006] proposed parallel processing schemes in order

to reduce the computation time. However, further reduction in the computation time is required
for large-scale complicated problems. In this paper we propose a hybrid master/slave approach
on the basis of the simplest EDA and GAs. This paper is an extended version of approach we
proposed in [Said and Nakamura 2010]. The master process estimates the probability distribution
of the search space on the basis of the mixture model with non-dependency at each iteration,
and it sends probability vectors to the slaves. The slaves use the vectors to generate a new initial
population. Note that in EDAs, the vectors are used for sampling, whereas in our approach, they
are used for generating the initial population. We employ a simple model of the EDA, and we
compensate for the reduced accuracy by applying GAs to the solutions sampled using the simple
model. Subsequently, all the slaves send the obtained solutions to the master.
Our method has two advantages. First, slave computation can be performed in parallel as

an island model of evolutionary computation [Alba 2005]. Recent technological innovations in
computer systems have yielded several useful platforms for parallel processing, such as PC-clusters
and many-cores processors. We can easily develop parallel programs for our method. Second,
our method can be easily incorporated with some strategies for controlling the diversity and
concentration of searching.
We evaluate the performance of our hybrid approach by solving fifteen well-known function

optimization problems. Experimental results verify the effectiveness of our method, as compared
to GAs, PBIL and PSO. In addition, the experiments indicate that a strategic approach affects
the searching performance.
The remainder of this paper is organized as follows. In Section 2, we briefly explains GAs, and

EDAs, and we state some mathematical notations. In Section 3, we present our hybrid method,
and in Section 4 we describe experiments conducted to evaluate the proposed method. Finally,
in Section 5, we conclude the paper with some remarks.

2. PRELIMINARIES

2.1 Evolutionary Computation

GAs are computational models that simulate the process of genetic selection and natural elimi-
nation in biological evolution. Pioneering work in this field was conducted by Holland [Holland
1972]. As highly efficient search strategies for global optimization, GAs demonstrate favorable
performance in solving combinatorial optimization problems. Figure 1 shows a pseudo code for
GAs.
EDAs ([Mühlenbein and Paaß 1996]; [Larrañaga and Lozano 2002]) have a theoretical foun-

dation in probability theory, and they do not use any recombination operators. First, EDAs
generate an initial population P of solutions. Then, the following steps are iterated until the
termination conditions are met. Good solutions in P are selected, and from the selected solu-
tions, a probability distribution of the good solutions is estimated for representing the potential
space. The probability distribution is used for producing new solutions by sampling based on the
distribution. Figure 2 shows a pseudo code for EDAs.

2.2 Mathematical Notation

We use Xi to denote a random variable. An instance of Xi is denoted by xi. X = (X1, X2, ..., Xn)
denotes an n-dimensional random variable, and x = (x1, x2, ..., xn) is one of its instances. If
variable Xi is continuous, we denote the density function of Xi by f(Xi). If all the variables
in X are continuous, we denote the joint density function by f(x). If Xi is discrete, the mass
probability for Xi is denoted by p(Xi). If all the variables in X are discrete, p(x) denotes the

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization · 15

1: P ← GenerateInitialPopulation();

2: Evaluate(P);
3: while termination condition is not met do
4: P ′ ← Recombine(P);
5: P ′′ ← Mutate(P ′);
6: Evaluate(P ′′);
7: P ← Select(P, P ′′);
8: end while
9: Output the best solution found;

Figure 1: Pseudo code for GAs

1: P ← GenerateInitialPopulation();
2: Evaluate(P);
3: while termination condition is not met do

4: Psel ← ChooseFrom(P);
5: p(x)← EstimateProbabilityDistribution(Psel);
6: P ← SampleBasedOn(p(x));
7: end while

8: Output the best solution found;

Figure 2:Pseudo code for EDAs

joint probability mass.

3. HYBRID APPROACH ON THE BASIS OF MASTER-SLAVE COOPERATION

In this section, we propose a novel hybrid scheme for the EDA and GAs.

3.1 Hybrid Method

The proposed method is based on master-slave formulation, in which the master manages the
set of local optimal solutions obtained by the slaves, estimates the probability distribution of the
potential search space, and indirectly controls the searching of the slaves.
The master achieves this indirect control by specifying a probability vector for each slave to

generate its initial population. The probability vector is constructed by the master according
to a strategy. Although traditional GAs initiate their evolution from a uniformly distributed
initial population, at some points our method starts from a strategically biased initial population
generated by the probability vector. Moreover, our method is iterative, and each iteration cor-
responds to one execution of evolutionary computation. Thus, in our method, the slaves iterate
optimization on the basis of evolutionary computation, and they send the best solution, i.e., the
conversed solution, of each iteration to the master. The master receives the solutions, stores
them in a database DB, and generates the probabilistic vectors by using the solutions in DB for
the next iteration. Figure 3 shows the outline of the master-slave model.
The strategy can affect searching performance, and it comprises tactics such as wide-range

searching, outside cluster focusing, cumulative clustering and best cluster focusing. These tac-
tics are implemented by the slaves while searching, where the slaves initiate their evolutionary
computation from the biased initial population generated by the probability vectors, as described
above.
The slaves perform parallel evolutionary computation of the well-known island model in iso-

lation, i.e., no communication occurs between the slaves. All the slaves (islands) iterate their
evolutionary computations independently, and on completion, they return their local optimal
solutions to the master. The master stores all the local optimal solutions sent from the slaves in
its database, calculates probability vectors, and then returns a vector to each slave so that it can
initiate the next evolutionary computation.
Note that the role of the master is analogous to that of an EDA because the master generates

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

16 · Said Mohamed Said et al.

probability vectors on the basis of solutions already obtained for the next iteration. However,
our method is different from EDAs in that it incorporates the strategic searching and parallel
evolutionary computation instead of simple solution sampling as in the case of traditional EDAs.
Although GAs are used as searching algorithms by the slaves in our method, other algorithms
are also applicable.

Master

p(x) Best Solutions

DB

Slave1 Slave2 Slave3 Slave k

Strategy

Evolutionary Computation at each Slave

Estimation of Search Space based on DB

Generation of p(x)

Figure 3:Hybrid Model based on Master-Slave Cooperation

Regarding the Master-Slave model, some limitations are mentioned in [Gagne and Parizeau
2003], but our present approach takes the limitations in favor of accuracy and performance(solution
quality). For the Master process being the backbone of the architecture, it enables better control
of probabilistic estimation for slaves initialization process, and in case of failure the slaves will
assume random initialization. According to previous studies creating network of slaves (migra-
tion of chromosomes) helps to boost searching performance [Gong and Nakamura 2008], but we
tried to reduce algorithm complexity as well as communication overheads by completely cutting
inter-slaves communication.
Pseudo codes for the master and the slave are shown in Figures 4 and 5, respectively.

1: while termination condition is not met do
2: Recieve(p(x)) from Master;
3: P ← GenerateInitialPopulation(p(x));

4: Evaluate(P);
5: for i = 0... MAXGENERATION do
6: P ′ ← Recombine(P);
7: P ′′ ← Mutate(P ′);
8: Evaluate(P ′′);
9: P ← Select(P, P ′′);
10: end for
11: Send the best solution to Master;

12: end while

Figure 4: Pseudo code for Slaves

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization · 17

1: Initialize(DB);

2: for i = 0...k − 1 do
3: T ← WS;
4: pi(x) ← GenerateProbabilityVector(T,DB);
5: Send pi(x) to Slave i;

6: end for
7: while termination condition is not met do
8: ReceiveSolutionFromSlave(DB, i);
9: EstimationOfDistribution(DB);

10: T ← Strategy();
11: pi(x) ← GenerateProbabilityVector(T,DB);
12: Send pi(x) to Slave i;
13: end while

Figure 5: Pseudo code for Master

3.2 Estimation based on Mixture Model without Dependency

Several models for the estimation of distribution have been reported in the literature on EDAs
[Larrañaga and Lozano 2002]. For simple approaches to efficient computation, univariate mod-
els are used. Such models assume an n-dimensional joint probability distribution function as
a product of n univariate and independent probability distributions. For more precise estima-
tion, multiple dependency models are used. These models exhibit good performance for target
problems with a complicated landscape. However, their computational costs are very high.

In our approach, the EDA plays the role of the master for efficient control of searching of
the slaves. More accurate estimation leads to more efficient control. We can avoid the high
computation costs for the role of the master because the evolutionary computation performed by
the slaves can compensate for the inaccuracy of the estimation.

For the master’s EDA, we focus on the mixture model of the Gaussian distribution. The master
estimates the distribution of good solutions in the search space as a set of clusters and assumes
that the good solutions in each cluster are normally distributed (Gaussian distribution). This
model is very simple and efficient; it is more adaptable for a complicated search space than simple
univariate models. Another advantage is its suitability for parallel searching. The master can
assign the search space cluster-wise. That is, clusters with high potential are assigned to the
slaves.

We consider the joint Gaussian probabilistic density function

fl(X) =
n∏

i=1

fl(xi) (1)

as the probabilistic model, where fl(xi) is denoted by the sum of component distributions at the
l-th iteration,

fl(xi) =

Kl∑
j=1

πl,jfl(xi|j), (2)

whereKl is the number of mixture components and πl,j is the coefficient of mixing of the j-th com-

ponent. Because we do not assume any dependency among variables, fl(xi|j) ≡ N (xi;µ
l
i,j , σ

2,l
i,j),

that is, the univariant Gaussian density function corresponding to the j-th component.

The EDA, i.e., the role of the master process, starts with a clustering algorithm that classifies
solutions sent from the slaves into Kl clusters. After clustering, the master calculates the mean

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

18 · Said Mohamed Said et al.

vector for each group. Let us denote the mean vector by

µl
j = (µl

1,j , µ
l
2,j , ..., µ

l
n,j), (3)

µl
i,j =

1

ml
j

ml
j∑

k=1

xl,k
i,j , (4)

where ml
j is the total number of solutions in the j-th cluster, and xl,k

i,j is the k-th component of
the i-th solution in the j-th cluster at the l-th iteration.
For discrete optimization problems, we can have similar definitions. The joint probability mass

is represented by a product of independent univariate distributions

pI(X) =
n∏

i=1

pl(xi), (5)

where pl(xi) is denoted by the sum of component distributions at the l-th iteration

pI(xi) =

Kl∑
j=1

πl,jpl(xi|j), (6)

where Kl is the number of mixture components, πl.j is the coefficient of mixing of the j-th

component, and pl(xi|j) ≡ 1
ml

j

∑ml
j

k=1 δj(Xi = xl,k
i,j) is the univariant marginal frequency of the

j-th component.

3.3 Strategic Search Control

As described above, the control is achieved through the probability vector for indicating the
biased area of the initial population. A slave generates the initial population by sampling based
on the Gaussian distribution with variance 1 and the probability vector as the mean vector.
Search control is achieved via the following population initialization tactics.

—Wide-Ranging Searching (WRS) This tactic involves behavior similar to that of the tradi-
tional GA. Slaves generate their initial populations uniformly and randomly. The objective is
to collect good solutions from a wider area of the search space. This tactic is used during the
early stages of searching. For this purpose, the master sends the probability vectors generated
randomly with the message ”UNIFORM” to the slaves.

—Outside Clusters Searching (OCS) For robust searching, we need to carefully search the
unsearched area. For this purpose, this tactic starts by clustering the local optimal solu-
tions obtained in the previous iterations. Then, areas that are not in the same cluster are
assigned by the master to the slaves. Let pi = (pi,1, pi,2, ..., pi,n) be the mean vector of the
i-th cluster. The master generates their complementary vectors (for 0-1 integer optimization,
p̄i = (1− pi,1, 1− pi,2, ..., 1− pi,n)) and sends them to slave i.

—Cumulative Clustering (CC) For more detailed searching, we try to explore the clusters.
That is, we gradually increase the number of good solutions in the clusters. At this stage, the
mean vector of each cluster, pi = (pi,1, pi,2, ..., pi,n), is sent to slave i to initialize the population
for the next iteration.

—Best Cluster Focusing (BCF) Having explored the wider area of the search space, we
need to concentrate only on the area with better feedback. To do so, the master deter-
mines the cluster that yields good results, as compared to other clusters and assigns its vector
pi = (pi,1, pi,2, ..., pi,n) to all the slaves for them to focus their searching.

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization · 19

By combining the tactics described above, various strategies can be constructed. Table I lists
some strategies. Strategy 0 includes only WRS. The hybrid approach with Strategy 0 behaves like
the isolated island model of GAs, that is, an independent GA processes search solutions. Strategy
1 comprises two tactics: WRS and BCF. That is, the diversity of searching can be implemented
by WRS, and the concentration, by BCF. Strategy 2 comprises four tactics. The first phase,
WRC, implements the diversity of searching, and the second phase tries to explore areas where
less solutions were found in the first phase. The third phase implements the concentration for
multiple clusters. We focus on the best cluster in the final phase. For experimental analysis, we
also employed Strategies 3, 4, and 5. These strategies were employed to compare the influence
of different combinations of tactics while exploring the search space. In this paper, we consider
only a static strategy, even though we are investigating a dynamic one. In a dynamic strategy,
the hybrid method can adaptively employ tactics.

Table I: Examples of Strategies

Strategy 0 Strategy 1 Strategy 2

Phase Tactic Phase Tactic Phase Tactic
1 WRS

1 WRS
2 OCS

1 WRS
3 CC

2 BCF
4 BCF

4. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of our strategic approach, we implemented our method
using the C programming language with the POSIX Threads (Pthreads) library on a Mac Pro
(Intel Dual Quad Core, i.e., 8 cores in total; 3.0 GHz; 12 GB RAM). The algorithm can also be
implemented using OpenMP as a shared memory parallelism. However in distributed memory
environment of multicomputer system, message passing library (MPI) might as well be used for
parallelization. All the libraries are available in C/C++ and Fortran programming languages.
In this paper, we have solved some well-known benchmark continuous function optimization
problems.

4.1 Target Problems

In this experiment, we evaluated our approach by solving fifteen continuous function optimization
problems. Table II lists the functions, some of them are treated by [J. Zhang et al. 2006]. F1 to F5

are unimodal functions, whereas F6 to F15 are multimodal functions. In the table, D denotes the
dimension and the values within brackets indicate search space; its value varies among functions.
We set D as 30 for F1 − F4 and F6 − F8, 10 for F5 and F9, 2 for F12, F13 and F15, 5 for F10,
F11, and 40 for F14. These values of D and search space were used to suit the pre-determined
standard PSO parameters for fair comparison.

4.2 Effects of Strategic Approaches

Table III lists five strategies used in the experiment: three strategies, Strategies 0, 1, and 2, from
Table I, and two additional strategies, Strategies 4 and 5. The tactic (TC) is one of WRS, OCS,
CC, and BCF.
Strategy 0 comprises no tactics, that is, the slaves generate the initial population uniformly

and randomly at every iteration. Strategy 1 uses only two tactics, WRS in the first phase and
BCF in the second phase, whereas Strategy 2 employs four tactics in the four phases, WRS,

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

20 · Said Mohamed Said et al.

Table II: Test Functions

Test Function Range

F1(x) =
∑D

i=1 x
2
i [−100, 100]D

F2(x) =
∑D

i=1(
∑i

j=1 x
2
j)

2 [−100, 100]D

F3(x) = maxi(|xi|, 1 ≤ i ≤ D) [−100, 100]D

F4(x) =
∑D−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2 [−30, 30]D

F5(x) =
∑D

i=1⌊xi + 0.5⌋)2 [−100, 100]D

F6(x) =
∑D

i=1[x
2
i − 10 cos(2πxi) + 10] [−100, 100]D

F7(x) =
1

4000

∑D
i=1 x

2
i −ΠD

i=1 cos
xi√
i
+ 1 [−600, 600]D

F8(x) = −20 exp(−0.2
√

1
D

∑D
i=1 x

2
i)

− exp(1
D

∑D
i=1 cos 2πxi) + 20 + exp(1) [−32, 32]D

F9(x) = −
∑D

i=1 sinxi[sin((i+ 1)
x2
i
π
)]20 [0, π]D

F10 =
∑D

k=1[
∑D

i=1(i
k + β)((xi/i)

k − 1)]2 [−5, 5]D
F11 = [1

6.931)
− x0x1

x2x3
]2 [12, 60]D

F12 = p(x2)(1 + p(x1)) + |x1 + 50p(x2)(1− 2p(x1))|
+|x2 + 50(1− 2p(x2))| [−100, 100]D

p(x) = 1, if x ≤ 0, p(x) = 0 if x < 0.

F13 = 0.5 +
sin2

√
x2
1+x2

2−0.5

[1+0.001(x2
1+x2

2]
2 [−100, 100]D

F14 =
∑D

i=1[(xi − 1)2] + 1 +
∑D

i=2[xi(xi−1)] [−1600, 1600]D
F15 = (1 + (x1 + x2 + 1)2(19− 14x1 + 13x2

1

−14x2 + 6x1x2 + 3x2
2)) ∗ (30 + 2x1 − 3x2)2 [−100, 100]D

(18− 32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2

2))

OCS, CC, and BCF. We add Strategy 3, 4 , and 5 for comparison. Input parameters used in all
strategies are the same as those of Hybrid approach explained in subsection 4.3 below.
For clustering in the tactics, we employ the well-known k-means algorithm. For simplicity we

set k, the number of slaves, as eight.

Table III: Strategies in the Experiment

Strategy 0 Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

PS TC PS TC PS TC PS TC PS TC PS TC
1 WRS

1 WRS
2 OCS

1 WRS 1 WRS

1 WRS
3 CC 2 OCS

1 BCF

2 BCF
4 BCF

2 OCS
3 CC

Tables IV and V list the values of the final solution. MEAN denotes the average value, MIN,
the minimum value among thirty executions, and STDEV, the standard deviation. Note that
zero is the global minima for all functions, except for F9 and F15, which have optimum solutions
-10 and 3, respectively. From the tables, we observed that Strategy 2 was the best strategy
in terms of both MEAN and MIN values for most functions, even though the other strategies
were slightly better for a few functions. We also observed that Strategies 4 and 5 have good
solutions in most cases owing to the fact that they incorporate the final tactics of Strategy 2. In
the case of Strategy 5, the solution is always close to the best values, which implies that BCF
is the tactic that yields the best solutions, mostly in Strategy 2. Strategy 0, the isolated island
model, exhibited the worst performance for most of the functions. The computation time for one
execution was just a few seconds. Among the six strategies, Strategy 2 found the final solution
at an earlier generation on average.

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization · 21

Table IV: Solution Quality (F6 − F10)

F MEAN 1 STDEV MIN

Strategy 0 1.894761E+02 15.839868 1.394067E+02
Strategy 1 4.612843E-01 1.323513 1.335374E-05

F6 Strategy 2 2.999541E-01 0.816529 1.760697E-07
Strategy 3 1.024819E+02 22.46609 3.663270E+01

Strategy 4 9.979855E+00 6.243674 1.035758E+00
Strategy 5 4.896217E-01 1.222234 1.687662E-04

Strategy 0 3.037367E+01 4.533935 2.003931E+01
Strategy 1 2.300298E-01 0.576456 1.149834E-03

F7 Strategy 2 2.320089E-01 0.419868 9.176119E-04
Strategy 3 2.767637E+01 12.56069 5.684698E+00
Strategy 4 1.179731E+00 0.07433739 7.433739E-02
Strategy 5 1.620464E-01 0.3743754 1.989410E-03

Strategy 0 1.256719E+01 0.5572259 1.172345E+01
Strategy 1 1.256019E-02 0.009977694 1.332268E-15

F8 Strategy 2 1.332268E-15 0.000000 1.332268E-15
Strategy 3 1.332268E-15 6.017600E-31 1.332268E-15

Strategy 4 2.251204E-01 0.6912618 1.332268E-15
Strategy 5 8.448955E-03 0.007588 1.332268E-15

Strategy 0 -4.579745E+00 0.274385 -5.154176E+00
Strategy 1 -4.406482E+00 0.345473 -5.637859E+00

F9 Strategy 2 -4.216858E+00 0.448879 -5.366555E+00

Strategy 3 -4.132271E+00 0.332019 -5.266340E+00
Strategy 4 -4.298698E+00 0.523935 -5.764212E+00
Strategy 5 -2.358188E+00 1.341437 -4.113095E+00

Strategy 0 5.285506E+02 307.989852 1.040280E+02

Strategy 1 1.106116E+03 1196.894877 2.883050E+02
F10 Strategy 2 8.094983E+02 387.685231 2.415661E+02

Strategy 3 1.607404E+03 916.306200 2.358568E+02
Strategy 4 2.183783E+03 992145500 3.748262E+02

Strategy 5 6.616938E+04 93167.270000 4.319299E+02

Figure 6 compares the ability of three strategies to improve (minimize) solutions evaluated
using the Schaffer function (F13) over a number of evolutionary generations; F13 is a multimodal
function with a global optimum at 0. Strategy 0 is the worst performer among the three. With
the application of some more tactics that introduce hybridization and partition effects, further
improvements are observed with Strategy 1 and 2. Owing to advancements in the statistical
exploration of the search space, Strategy 2 is observed to be far better than the other strategies.

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

22 · Said Mohamed Said et al.

Table V: Solution Quality (F11 − F15)

F MEAN 1 STDEV MIN

Strategy 0 6.298387e-16 1.911565e-15 8.721350e-26
Strategy 1 7.719056E-13 0.000000 2.545271E-26

F11 Strategy 2 4.671965e-16 2.109362e-15 1.745478e-28
Strategy 3 4.969175E-10 1.287356E-09 1.566654E-18

Strategy 4 1.505645E-08 5.459028E-08 2.227331E-14
Strategy 5 1.574747E-08 8.592779E-08 1.961375E-24

Strategy 0 4.579862E-02 0.062411 2.655849E-04
Strategy 1 1.049913E-01 0.192152 1.429740E-05

F12 Strategy 2 5.948715E-02 0.137409 2.032152E-12
Strategy 3 1.269969E+00 0.9704151 3.315504E-02
Strategy 4 9.740593E-01 0.7914018 1.713301E-03
Strategy 5 1.855347E+00 1.860671 1.416840E-04

Strategy 0 7.804370E-03 0.003141 4.798975E-04
Strategy 1 1.211043E-11 4.172366E-11 1.054712E-15

F13 Strategy 2 5.532964E-13 0.000000 4.996004E-16
Strategy 3 7.103085E-09 2.124199E-08 4.872991E-12

Strategy 4 4.150992E-12 7.877735E-12 3.330669E-16
Strategy 5 2.973029E-13 8.774498E-13 5.551115E-16

Strategy 0 4.505036E+05 7.146276E+04 3.128791E+05
Strategy 1 3.848346E+01 2.732852 3.445721E+01

F14 Strategy 2 3.819127E+01 4.019584 2.504938E+01

Strategy 3 4.100000E+01 0.000000 4.100000E+01
Strategy 4 5.972326E+01 102.5515 4.100000E+01
Strategy 5 3.666976E+01 4.998478 2.268158E+01

Strategy 0 4.707042E+02 228.463800 5.490632E+00

Strategy 1 6.534466E+01 104.670407 3.000000E+00
F15 Strategy 2 1.485090E+01 22.387410 3.000002E+00

Strategy 3 3.401902E+02 239.601500 3.369548E+00
Strategy 4 7.753362E+01 78.76845 3.072684E+00

Strategy 5 1.399849E+02 221.498700 3.000013E+00

Figure 6: Strategic Solution Improvement Comparison for F13

Even though the experimental evaluation is not sufficient, the effectiveness of our method can

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization · 23

be estimated from the results. The advantages of our approach are such that the method can be
incorporated with strategy research, and it can be parallelized for speedup. Therefore, we plan
to investigate strategy and scalability analysis with parallelization in greater detail.

4.3 Comparison with Other Approaches

To evaluate the efficiency of our hybrid approach, we compared it with other heuristic approaches,
GA, PSO, and EDA (PBIL). For all approaches, we performed 30 independent executions (runs)
with the same number of evaluations for each. However, the number of evaluations vary among
functions based on predetermined maximum number of evaluations set in standard PSO. The
best (minimum) solution is recorded in every execution.
In the hybrid approach, each of the eight slaves uses a total of 16 iterations equally divided

among four tactics (i.e., the tactic is changed after every four iterations), and we employ Strategy
2, as shown in Table III. Four iterations are statistically enough to give satisfactory number of
local optima solutions necessary for clustering and vector sampling by Master process in each
tactic (phase). With four tactics, it makes total of sixteen sequentially executed iterations.
Synchronous model of our approach was set for all slaves to finish their search at the same time
in a given iteration (fixed number of generations as a termination condition). All eight slaves are
parallelly executed, each running its own independent instance of the algorithm, and they are
set to accommodate a similar number of predefined parameters such as population size, search
space, and generations. The K-means clustering is performed just after WRS, OCS, and at each
iteration within CC. We have used eight slaves in our experiment to balance the processing load
between our computer processor cores, however the number of slaves is not limited. The total
number of evaluations is given by

NEval = SLAVES · POPSIZE · ITER ·GEN , (7)

where SLAVES is the number of slaves, POPSIZE is the population size in each slave, ITER is
the number of iterations, and GEN is the average number of generations.
We used Standard PSO 2007, where the number of evaluations is controlled by setting it within

the specific function, controlling the swarm size, and carefully observing the average NEval
in every run. Owing to improvement strategies set in PSO and early terminations caused by
erroneous evaluation, we needed to monitor NEval by observing the final number of successfully
evaluated solutions.
For GAs and EDA, the total number of evaluations was obtained as

NEval = POPSIZE ·GEN (8)

For a fair comparison, we set the same number of total evaluations in every approach. We
solved every function listed in Table II 30 times and recorded the average data in Tables VI and
VII. From Tables VI and VII, we conclude that our hybrid approach yields better solutions on
average for ten functions among fifteen.

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

24 · Said Mohamed Said et al.

Table VI: Solution Quality (F1 − F8)

F MEAN STDEV MIN

GA 2.171826E+01 8.033171 1.097725E+01
F1 PSO 6.638152E+02 132.358560 3.830402E+02

EDA 5.830295E-01 1.083213E-01 3.139274E-01
HYBRID 1.479625E-05 5.601400E-05 8.073568E-13

GA 1.173199E+03 387.679700 5.531206E+02
F2 PSO 3.440920E+03 633.273975 2.2253382E+03

EDA 1.142110E+05 2.548724E+04 6.105655E+04
HYBRID 6.034880E+00 15.845680 8.054725E-03

GA 1.913765E+00 0.3616138 1.266923E+00

F3 PSO 9.158852E-01 0.659434 1.035516E-01
EDA 1.784505E+00 1.328715E-01 1.296474E+00

HYBRID 2.838989E-02 2.861382E-02 1.171564E-07

GA 1.803249E+02 48.16632 1.047767E+02

F4 PSO 5.793312E+01 45.130289 1.258991E+01
EDA 5.654497E+01 6.075012E+00 4.665599E+01

HYBRID 2.898902E+01 0.02081097 2.891641E+01

GA 1.600000E+00 1.753814 0.000000E+00

F5 PSO 1.926667E+01 7.465178 8.000000E+00
EDA 1.566667E+00 5.295954E+00 0.000000E+00

HYBRID 1.266667E+00 1.257620 0.000000E+00

GA 4.938599E+01 27.811390 1.818478E+01
F6 PSO 4.964892E+01 13.439184 2.28884048E+01

EDA 1.685275E+02 1.104919E+01 1.477889E+02
HYBRID 2.999541E-01 0.816529 1.760697E-07

GA 1.290777E+00 0.101764 1.130136E+00
F7 PSO 1.006164E+00 0.032570 8.914737E-01

EDA 6.832971E-01 5.458563E-02 5.954656E-01
HYBRID 2.320089E-01 0.419868 9.176119E-04

GA 3.543511E+00 0.345603 2.738278E+00
F8 PSO 1.424752E+00 0.347108 8.08992754E-01

EDA 4.055419E-01 5.203604E-02 3.118305E-01
HYBRID 1.332268E-15 0.000000 1.332268E-15

Figure 7 shows the solution improvement curves for the Rastrigin function (F6) for GA, EDA,
PSO, and the proposed hybrid approach during one hundred generations of searching. The curves
indicate that there is considerable variation in the fitness values obtained by the hybrid approach;
however, it finally yields the best solution as compared to the other approaches. The considerable
variations is attributed to the application of strategies during searching. Independent GA has
the lowest capability to improve the solutions.

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization · 25

Table VII: Solution Quality (F9 − F15)

F MEAN 1 STDEV MIN

GA -2.444638E+00 1.865700 -5.327922E+00
F9 PSO 1.007508E+00 0.033592 4.185728E-01

EDA -7.807477E+00 2.794171E-01 -8.245333E+00
HYBRID -4.216858E+00 0.448879 -5.366555E+00

GA 3.614425E+02 369.5434000 5.500511E+00
F10 PSO 1.930132E+02 137.607458 4. 0.000000E+00

EDA 3.232064E+02 3.441669E+02 2.830059E+00
HYBRID 8.094983E+02 387.685231 2.415661E+02

GA 4.586383E-09 0.000000 1.776972E-17

F11 PSO 2.945888E-10 0.000000 4.8.571489E-16
EDA 1.099034E-14 1.553807E-14 6.990018E-19

HYBRID 7.719056E-13 0.000000 2.545271E-26

GA 3.627734E-01 0.5304258 3.121911E-46

F12 PSO 4.747350E-02 0.124603 4. 5.093622E-04
EDA 5.363002E-01 6.577885E-01 5.173846E-11

HYBRID 5.948715E-02 0.137409 2.032152E-12

GA 2.900864E-03 0.004231 0.000000E+00

F13 PSO 4.046250E-03 0.003521 4. 3.829711E-05
EDA 1.027831E-02 1.035801E-03 9.715927E-03

HYBRID 5.532964E-13 0.000000 4.996004E-16

GA 8.703169E+03 2477.476000 4.417168E+03
F14 PSO 3.228840E+03 2634.603429 4. 1.648598E+02

EDA 8.561090E+03 1.598077E+03 6.322911E+03
HYBRID 3.819127E+01 4.019584 2.504938E+01

GA 3.729539E+03 11024.459109 3.000084E+00
F15 PSO 3.000000E+00 0.000000 4.3000000E+00

EDA 3.965054E+00 2.354626E+00 3.000000E+00
HYBRID 1.485090E+01 22.387410 3.000002E+00

Figure 7: Solution Improvement Curves for F6

A similar behavior is observed in Fig. 8 for the Schaffer function (F13). Although the results
are promising, this approach requires further investigation. For instance, the applicability of
dynamic K-means clustering to optimize the clustering outcome by considering the migration

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

26 · Said Mohamed Said et al.

Figure 8: Solution Improvement Curves for F13

effect between islands, their topologies, etc.

5. CONCLUDING REMARKS

In this paper, we proposed a hybrid method of EDAs and GAs on the basis of master/slave
cooperation. In this method, the master process estimates the probability distribution of the
search space on the basis on the non-dependency model at each iteration and sends probability
vectors to the slaves. The slaves use the vectors to generate a new initial population. We employed
the simplest probability model, and we compensated for the reduced accuracy by applying GAs
to the solutions sampled using the simplest model. Moreover, our method can be incorporated
with strategy research, and it easily can be parallelized. We conducted experiments to verify
the effectiveness of our method. However, careful evaluation with more complex functions and
comparisons with other approaches are required. In particular, accuracy analysis should be
carried out for more complex problems to demonstrate the effectiveness of our method. Real-
world deployment of our approach is considered in the future, with a cloud having master and
slaves all running on independent VM instances. As master and slave processes, might fail at
some point during searching, we also need to consider fault tolerance mechanism in a real world
implementation of our methodology.

ACKNOWLEDGMENTS

A part of this research was supported by Grant-inAid for Scientific Research (C) 22500031 from
Japan Society for the Promotion of Science (JSPS).

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization · 27

REFERENCES

Alba, E., Ed. 2005. Parallel Metaheuristics -A new class of algorithms. Wiley-Intescience.

Baluja, S. 1994. Population-based incremental learning: A method for integrating genetic search based func-

tion optimization and competitive learning. Tech. Rep. Technical Report CMU-CS-94-163, Carnegie Mellon
University.

Bosman, P. A. N. and Thierens, D. 2000. Continuous iterated density estimation evolutionary algorithms
within the idea framework. In Proc of the 2000 Genetic and Evolutionary Computation Conference Workshop
Program. 197–200.

Davis, L. 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991).

Dorigo, M. 1996. Ant system: optimization by colony of cooperating agents. IEEE Trans on systems man, and
cybernetics - part B 26, 29–41.

Eberhart, R. C. and Shi, Y. 2001. Particle swarm optimization: Developments, applications and resources.

IEEE 1, 81–86.

Gagne, C. and Parizeau, M. 2003. A robust master-slave distribution architecture for evolutionary computations.

In Proc of Genetic and Evolutionary Computation Conference Late Breaking 2003. 80–87.

Gallagher, M. R., Frean, M., and Downs, T. 1999. Real-valued evolutionary optimization using a flexible
probability density estimator. In Proc of Genetic and Evolutionary Computation Conference. 840–846.

Gong, Y. and Nakamura, M. 2008. Migration effects of parallel genetic algorithms on line topologies of het-
erogeneous computing resources. IECE Transactions on Fundamentals of Electronics, Communication and
Computer Sciences E91-A(4), 1121–1128.

Harik, G., Lobo, F. G., and Goldberg, D. E. 1998. The compact genetic algorithm. In Proc of the IEEE
Conference on Evolutionary Computation. 523–528.

Holland, J. H. 1972. Adaptation in Nature and Artificial Systems. The University of Michigan Press, Reprinted

by MIT Press (1992).

Hu, X. 2004. Recent advances in particle swarm. Evolutional Computation 1, 90–97.

J. Zhang, W. C., Zhong, J., Tan, Z., and Li, Y. 2006. Continuous function optimization using hybrid ant colony

approach with orthogonal design scheme. In SEAL 2006, Lecture Notes on Computer Science, 4247. 126–133.

Larrañaga, P. and Lozano, J. A. 2002. Estimation of Distribution Algorithms. Kluwer Academic Publishers.

Mendiburu-Alberro, A. 2006. Parallel implementation of estimation of distribution algorithms based on proba-

bilistic graphical models. application to chemical calibration models. Ph.D. thesis, The University of the Basque
Country.

Mühlenbein, H. 1998. The equation for response to selection and its use for prediction. Evolutional Computa-
tion 5, 303–346.

Mühlenbein, H. and Paaß, G. 1996. From recombination in genes to the estimation of distribution i, binary
parameters. In Lecture Notes in Computer Science 1411: Parallel Problem Solving from Nature.

Ocenasek, J. 2002. Parallel estimation of distribution algorithms. Ph.D. thesis, Brno University of Technology.

Perikan, M., Goldberg, D., and Cantú-Paz, E. 1999. Boa: The bayesian optimization algorithm. In Proc of
the Genetic and Evolutionary Computation Conference. 525–532.

Said, S. M. and Nakamura, M. 2010. A hybrid approach of edas and gas based on master/slave cooperation for

continuous function optimization. In Proc of NABIC 2010 Second World Congress. 244–248.

Salomon, R. 1996. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark func-

tions. a survey of some theoretical and practical aspects of genetic algorithms. ELSEVIER, Biosystems 39,
263–278.

Sebag, M. and Ducoulombier, A. 1998. Extending population-based incremental learning to continuous search
spaces. In Proc of Parallel Problem Solving from Nature ? PPSN V. 418–427.

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

28 · Said Mohamed Said et al.

Said Mohamed Said was born in Zanzibar, Tanzania in 1981. He received his B.Sc.
degree in Computer Science from University of Dar-Es-Salaam, Tanzania in 2008 and
M.E. in Information Engineering from University of the Ryukyus, Okinawa Japan in
2011. He is an Assistant Lecturer at University of Dodoma, Tanzania. Currently he is a
Ph.D. candidate at University of the Ryukyus Japan. His main research interests include
Parallel and Distributed Computing, Bioinformatics, and Cloud Computing.

Senlin Guan received the B.E. from Central South University of Forestry and Technol-
ogy, China in 1995, and M.E. and Ph.D. from University of the Ryukyus, Japan in 2006
and 2009. He is currently special assistant professor at University of the Ryukyus. His
research interest includes Petri net modeling, optimization computation for scheduling
problems, and mobile and cloud computing.

Morikazu Nakamura was born in January 28, 1966. He took B.E. and M.E. from Uni-
versity of the Ryukyus in 1989 and 1991, respectively and D.E. from Osaka University
in 1996. He had been an Associate Professor from 1996 to 2005 and has been a Pro-
fessor since 2005 at the same university. His research interests are design and analysis
of parallel and distributed algorithms and Petri nets. He is a member of the Institute
of Electrical and Electronics Engineers and Institute of Electronics (IEEE), Information
and Communication Engineers (IEICE).

International Journal of Next-Generation Computing, Vol. 3, No. 1, March 2012.

