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Guaranteeing the high availability of Web services is a significant challenge due to the varying number of invocation
requests the Web services have to handle at a time, as well as the dynamic nature of the Web. The issue becomes

even more challenging for composite Web services in the sense that their availability is inevitably dependent on
corresponding component Web services. Current Quality of Service (QoS)-based selection approaches assume
that the QoS of Web services (such as availability) is readily accessible and those with better availability are
selected in the composition. Unfortunately, how to provide real-time availability information of Web services is

largely overlooked. In addition, the performance of these approaches will raise questions when the pool of Web
services to select from becomes large. In this paper, we tackle these problems by exploiting particle filtering-based
techniques. In particular, we developed algorithms to accurately predict the availability of Web services and

dynamically maintain a subset of Web services with higher availability ready to join service compositions. Web
services can be always selected from this smaller space, thereby ensuring good performance in service compositions.
Our implementation and experimental study demonstrate the feasibility and benefits of the proposed approach.
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1. INTRODUCTION

Web services and service-oriented computing (SOC) represent a paradigm for building distributed
computing applications over the Internet. Unfortunately, after the development of nearly one
decade, Web services are still in their infancy [Papazoglou et al. 2007; Hwang et al. 2007; Yu et al.
2008; Rosario et al. 2008; Sheng et al. 2010]. According to a recent study in Europe [Domingue
and Fensel ], the Web currently contains 30 billion Web pages, with 10 million new pages added
each day. In contrast, only 12,000 real Web services exist on the Web. Even worse, many Web
services have been deployed with dependability problems (e.g., unexpected behaviors and lack of
reliability and availability details). This presents a major hurdle for enterprises and government
agencies seeking to embrace Web services as a development technology for their mission critical
applications.
Guaranteeing the availability of a Web service is a significant challenge due to the varying

number of invocation requests the Web service has to handle at a time, as well as the dynamic
nature of the Web. Over the last few years, many works have emerged in addressing Web services
availability problem. Almost all of these approaches are based on the concept of service commu-
nity where Web services with similar functionalities (but different non-functional properties such
as quality of service (QoS)) [Medjahed and Bouguettaya 2011; Benatallah et al. 2003; Zeng et al.
2003] are grouped in a particular “cluster”. The basic idea on improving the availability of Web
service in a composition is to substitute Web services with poor quality using peers with better
quality from the same service community. This typically involves QoS based service selection.
Most QoS service selection approaches assume that the QoS information (e.g., availability of

Web service) is pre-existing and readily accessible. This unfortunately is not the case in most real
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world applications. In reality, the availability status, as well as other QoS properties, of a Web
service is highly uncertain, which changes over time. How to accurately estimate and predict the
availability status of a Web service becomes an important research problem. In addition, given
the wide adoption of Web service technologies in industry, more and more Web services will be
available and the size of service communities will be inevitable large. Selecting from such a large
space will inevitably lead into performance problems. Ideally, low quality Web services should
be automatically filtered and not be considered during service composition.
The work in this paper focuses on solving the above problems, which is an extension of our

earlier work published in [Yao and Sheng 2011]. In particular, we propose a particle filter based
approach to accurately predict and adjust Web service availability in real time. We further
propose an algorithm to dynamically filter low quality Web services from service communities so
that service compositions have to deal with only partial set of high quality component services.
As a result, our approach offers a more efficient and effective solution to service composition
which ensures the high availability of the generated composite Web services. In a nutshell, our
contributions are as follows:

— A model for assessing Web services availability using particle filter technique, which can return
precise and dynamic prediction of this availability. In our approach, the availability of a Web
service combines both historical availability information and predicted availability.

— An algorithm to optimize Web services selection from a cluster of Web services (like service
community where all services offer similar functionalities) by dynamically reducing the candi-
date Web services search space during Web services composition. Top Web services with high
QoS can be always maintained for each service community, which are recommended to com-
posite Web services, thereby not only ensuring the high availability of composite Web services,
but also significantly improving the efficiency of Web service composition, and

— An implementation of a research prototype system using a number of state-of-the-art tech-
nologies. To validate the feasibility and benefits of our approach, we conducted extensive
experimental studies.

The rest of the paper is organized as follows. Section 2 briefly introduces service availability
model and the particle filter techniques. Section 3 describes the details of our approach and the
algorithms. Section 4 reports on the implementation and some preliminary experimental results.
Finally, Section 5 overviews related work and Section 6 provides some concluding remarks and
future research directions.

2. BACKGROUND

In this section, we briefly discuss some basic concepts, namely Web service community, Web
service availability, and particle filtering. We then present a motivating example.

2.1 Web Service Community

The concept of Web service community [Medjahed and Bouguettaya 2011; Zeng et al. 2003] is
proposed to handle the large number and dynamic nature of Web services (e.g., emergence of
new services and retraction of old ones) in a flexible way. A service community is a collection of
Web services with a common functionality but different nonfunctional properties such as different
providers and different QoS. Service communities provide descriptions of a desired functionality
without referring to any potential service. When a community receives a request to execute an
operation, the request is delegated to one of its current members based on appropriate selection
strategies [Benatallah et al. 2003].
Figure 1 illustrates the basic process of creating a community and registering Web services with

it. Communities are specified by community providers (step 1), who then register the communities
with service registry (step 2). A community is a service that is created, advertised, discovered, and
invoked in the same way that regular Web services are. Communities are published in a service
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Figure. 1. Illustration of Web service communities

registry (e.g., UDDI) so that they can be discovered by service providers. Service providers
search the service registry to find the appropriate communities (step 3) and register their services
(atomic or composite) with the communities (step 4). After registering with a community, a Web
service becomes a member. It should be noted that a service community can be a member of
another community.

2.2 Modeling Web Services Availability

There are different classifications of availability and many ways to calculate it [Elsayed 1996].
Almost all existing approaches (e.g., [Zeng et al. 2004; Liu et al. 2004; Guo et al. 2008]) use
operational availability that measures the average availability over a period of time (i.e., the ratio
of the service uptime to total time). Although this is simple to calculate, it is hard to measure
the availability of a Web service at a specific time.
In this work, we model Web service availability as instantaneous (or point) availability. The

instantaneous availability of a Web service s is the probability that s will be operational (i.e., up
and running) at a specific time t. The following discusses how this is calculated.
At a given time t, a Web service s will be available if it satisfies one of the following conditions:

— The Web service s is working in the time frame of [0,t] (i.e., it never fails by time t). We

represent the probability of this case as R(s, t) = Ta(t)
Ts(t)

, where Ta(t) is the total available time

for each component Web service and Ts(t) is the total measurement time [Ran 2003].

— The Web service s works properly since the latest repair that occurred at time u (0 < u < t).

The probability of this condition is
∫ t

0
R(s, t−u)m(s, u)du, where m(s, u) is the renewal density

function of s. In our work, we model m(s, u) as Poisson distribution m(s, u) ∼ e−λλk

k!
.

Based on these two conditions, the availability of s at time t, A(s, t), is calculated using the
following formula:
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A(s, t) = R(s, t) +
∫ t

0

R(s, t− u)m(s, u)du (1)

2.3 Particle Filtering

We consider the availability of Web services as a dynamic system (i.e., it changes over time),
which can be modeled as two equations: state transition and measurement. The states can not
be observed directly and need to be estimated, while the measurements can be observed directly.
For a very simple example, if we track a robot, we can model its state as a vector including
the robot’s position and velocity {p, v}, and the observation of the position (i.e., measurements)
can be obtained from the GPS. For Web services, [Guo et al. 2008] exploits Extended Kalman
Filter to predict the Web service dependability state. In our work, we model the component Web
service availability state as:

xt = ft(xt−1, vt−1) (2)

where ft is a non-linear state transition function of the availability of a component Web service,
xt, xt−1 are estimated and previous states of the component Web services respectively, and vt−1

is the state noise in a non-Gaussian distribution (e.g., disturbance caused by network throughput
to the Web service availability). Similarly, measurement equation for the component Web service
availability is represented as

zt = ht(xt, nt) (3)

where ht is a non-linear measurement function, zt is a measurement, xt is the estimated Web
service availability state, and nt is the measurement noise which is not confined as Gaussian
distribution, (e.g., observation error).
The availability of Web services changes over time, which is full of uncertainty due to problems

of network issues, hosting servers’ loads, and even service requester environments. However,
the state transition of availability from time t − 1 to time t can not be guaranteed as a linear
transition, and in the measurement equation, the noise can also not be guaranteed as Gaussian
distribution. We therefore propose to exploit the generic particle filter [Kitagawa 1996] to solve
the dynamic availability of Web services. Particle filtering can deal with the non-linear and
non-gaussian distribution situation presented in Web services, which will be detailed later.
The reasons backing particle filter adoption are as follows:

— Particle filters can represent arbitrary probability densities by a collection of particles with
weight;

— Unlike Kalman filters, particle filters can converge to the true posterior even in non-Gaussian,
non-linear dynamic systems; and

— Compared to grid-based approaches, particle filters are very efficient because they automati-
cally focus their resources (particles) on regions in state space with high probability.

Briefly, the particle filter is a technique for implementing Bayesian filter recursively by Mont
Carlo sampling, and it is a sequential Monte Carlo methods based on particles representations
of probability densities other than the Gaussian distribution which can be used in more general
areas and for any state space model [Arulampalam et al. 2002; Ng et al. 2002]. The particle
filter aims at tracking the state of a system as it evolves over time and typically with a non-
Gaussian and potentially multi-model probability density function (pdf). It represents the pdf
as particles which are associated with weight, and estimates the states by recursively updating
approximations of posterior. Figure 2 shows the basic implementation process of the generic
particle filter, consisting of the following three main processes:

(1) Particle generation: draw N particles with weights for state from a proposal distribution
function, the proposal distribution function can be defined freely (e.g., uniform distribution).
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Figure. 2. The main processes of the particle filter technique

Algorithm 1: Generic Particle Filter Algorithm

Let N̂eff be the effective particle sample size and Nt be the threshold of the particle size.
for i = 1 : Ns do

Draw xi
t ∼ q(xt|xi

t−1, zt)

Assign the particle a weight, wi
t according to wi

t ∝ wi
t−1

p(zt|xi
t)p(x

i
t|x

i
t−1)

q(xi
t|x

i
t−1,zt)

, q(·) is a proposal

function,and can be defined.
end

Calculate total weight: t =
∑Ns

i=1 w
i
t

for i = 1 : Ns do
Normalize: wi

t = wi
t/t ;

end

Calculate N̂eff using N̂eff = 1∑Ns
i=1(w

i
t)

2

if N̂eff < Nt then
Resample (Algorithm 2).

end
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Algorithm 2: Resampling Algorithm
Let CDF be the Cumulative Density Function.
Initialize CDF: c1 = 0;
for i = 2 : Ns do

Construct CDF: ci = ci−1 + wi
t;

end
Start at the bottom of the CDF: i = 1
Draw a starting point: u1 ∼ U [0,N−1

s ]
for j = 1 : Ns do

Move along the CDF: uj = u1 +N−1
s (j − 1)

while uj > cj do
i = i+ 1;

end

Assign sample: xj⋆
t = xi

t ;

Assign weight: wj
t = N−1

s ;
Assign parent: ij = i ;

end ����� ��� ���	
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Figure. 3. A Travel Agency Scenario

(2) Weight update: the weights of particles are recursively updated and normalized.

(3) Resampling: when implementing the generic particle filter, after a few iterations, most of
particles have negligible weight. In other words, the weight is only concentrated on a few
particles. The resampling process stochastically discards particles with negligible weight, and
replaces them with the particles with large weights.

Algorithm 1 shows the detailed algorithm of the generic particle filter. The resampling al-
gorithm, which is also called systematic resampling, and is simple to implement, is shown in
Algorithm 2. Its time complexity is O(Ns) where U [a, b] is the uniform distribution on the
interval [a, b]. Interested readers are referred to [Kitagawa 1996] for more details.

2.4 Motivating Example

To illustrate the motivations of our approach, we take the widely-used travel agency service
(Figure 3) as an example. When a user travels to a place, she usually needs to book her flight,
accommodation, and perhaps needs also to rent a car. A travel agency service plays like a
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Figure. 4. Web Service Selection in Compositions

composition engine, which composes different Web services to fulfill the user’s travel requirements.
Ideally, the travel agency service should be highly available so that users can use it for their travel
planning whenever they need it. Since the travel agency service relies on other Web services
(e.g., flight booking and hotel booking), high availability of the travel agency service essentially
means the selection of highly available component Web services.
However, it is quite common that there might be a large number of Web services (normally with

very different QoS) providing same services (e.g., flight booking). Searching such a large service
pool is not only time-consuming, but more importantly, unreliable since the availability of Web
services dynamically changes over time. Our approach (Section 3) dynamically maintains the
availability information of Web services and effectively filters Web services with high availability
(i.e., reduce the search space), thereby improving the quality of composition Web services.

3. THE PARTICLE FILTER BASED APPROACH

Figure 4 shows the basic idea of our approach. Specifically, we propose to add a filtering layer
between Web service layer and composition layer (right side of Figure 4). The layer of Web
services contains several service communities and each of them consists of Web services with
similar functionalities. Each community may be heavily populated with Web services.
The filtering layer is essentially a subset of service communities in the Web service layer, which

consists of Web services with high availability that will directly involve in service compositions.
The Web services are selected based on the accurate estimation and ranking algorithm described
in this section. It should be noted that the relationship between Web service communities and
the filtering layer is dynamic and adaptive. Our approach dynamically adjusts the members in the
filtered service communities where degrading Web services are automatically and transparently
replaced with Web services of better availability from the Web service layer.

3.1 Particle Filtering Based Estimation

Web services’ availability state is highly dynamic and therefore needs an adaptive approach to
monitor and track each Web service’s state. This is important to conduct optimized selection
algorithms for composite Web services such as [Zeng et al. 2003; Alrifai et al. 2010]. We apply
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Algorithm 3: Particle Filter based Algorithm

1. Initialization: compute the weight distribution Dw(a) according to IP address distribution.
2. Generation: generate the particle set and assign the particle set weight, which means N discrete
hypothesis

— generate initial particle set P0 which has N particles, P0 = (p0,0, p0,1, ...p0,N−1) and distribute them in a
uniform distribution in the initial stage. Particle p0,k = (a0,k, weight0,k) where a represents the Web service

availability.

— assign weight to the particles according to our weight distribution Dw(a).

3. Resampling:

— Resample N particles from the particle set from a particle set Pt using weights of each particles, refer to
Algorithm 2.

— generate new particle set Pt+1 and assign weight according to Dw(a)

4. Estimation: predict new availability of the particle set Pt based on availability function f(t).
5. Update:

— recalculate the weight of Pt based on measurement ma, wt,k=
∏

(Dw(at,k))(
1

√
2πϕ

)exp(−
δa2t,k

2ϕ2
), where

δat,k = ma − at,k
— calculate current availability by mean value of pt(at)

6. Go to step 3 and iteration until convergence

the particle filtering technique to make accurate estimation of Web service’s availability state,
which serves the foundation for dynamically optimized selection of Web services in composition.
We consider that the changes of availability of Web services are uncertain. The availability

modeling function is non-linear and the noise (Section 2.3) can not be guaranteed as a Gaussian
distribution. Particle filter can improve the performance over the established non-linear filter-
ing approaches since it provides optimal estimation in non-linear and non-Gaussian state space
models, as well as estimation of non-linear models without making any assumption on the mea-
surement noise distribution. Particle filter can estimate a systems states sufficiently when the
number of particles (estimations of the state vectors that evolve in parallel) is large.
The particle filter refers to belief using a number of particles. There are two main steps in the

particle filter algorithm: prediction and update. Particle filters realize Bayes filter updates ac-
cording to a sampling procedure, often called sequential importance sampling with resampling
[Fox et al. 2003]. Whenever new observations zt are discovered, the filter predicts the state using
Bel− ←

∫
p(xt|xt−1)Bel(xt−1)dxt−1. And then the filter will correct the predicted estimation

using Bel(xt)← αtp(zt|xt)Bel−(xt), where Bel(xt) is a probability distribution over xt.
In our approach, we model the availability of a Web service i at time t as xi(t), which maintains

the probability distribution of the service availability at t. The state transition of Web service
i’s availability can be represented as:

xi(t+ 1) = g(xi(t)) + ϕi(t) (4)

where g(xi(t)) denotes the nonlinear transition of service i’s availability and ϕi(t) denotes the
noise to service i’s availability. We can further define the observation equation of the Web service
i’s availability as:

zi(t) = h(xi(t)) + δi(t) (5)

where zi(t) is the observation value of service i’s availability, h(xi(t)) is the observation function,
and δi(t) is the observation noise. In our particle filtering approach, the posterior distribution of
xi(t) can be inducted as the belief Bel(xi(t)) = {xi(t), wi(t)}, i = 1, 2, ...,M, where wi(t) are the
different weight values, which indicate the contribution of the particle to the overall estimation,
also called important factors (

∑
wi(t) = 1).

Algorithm 3 shows steps to summarize the particle filtering process. Firstly, we initialize a
uniformly distributed sample set representing a Web service’s availability state. We assign each
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Algorithm 4: Overall Adaptive Filtering Algorithm
Input: initial availability values, α, τ .
Output: predicted availability, referencing availability, candidate list.
1. Read in the initial parameters;
2. Calculate each values for Web service aij(s, t) in Web service community j at time t;

3. Predict the availability state of next time slot using particle filter (Algorithm 3);
4. Looking up database and calculate the mean values of availability H.
5. Calculating the reference availability R.
6. Update the top k candidate list in each Web services community for every time interval τ ;

7. Go to step 2, and iterating.

sample a same weight w. Secondly, when the availability changes, the particle filter calculates
the measurement by adjusting and normalizing each sample’s weight. These samples’ weights
are proportional to the observation likelihood p(z|x). The particle filters randomly draw samples
from the current sample set whose probability can be given by the weights. Then we can apply
the particle filters to estimate the possible next availability state for each new particle. The
prediction and update steps will keep running until convergence.
We calculate the weight distribution by considering the bias resulted from the routing informa-

tion between users and targeting component Web services (e.g., routing-hops between the user
and the component Web service or whether user and targeting services are in the same IP address
segment). The Sequential Importance Sampling (SIS) algorithm is a Monte Carlo method that
forms the basis for particle filters. The SIS algorithm consists of recursive propagation of the
weights and support points as each measurement is received sequentially. To tackle the degener-
acy problem, we adopt a more advanced algorithm with resampling [Arulampalam et al. 2002].
It has less time complexity and minimizes the Monte-Carlo variation. The resampling algorithm
is given in Algorithm 2.

3.2 The Dynamic Filtering Algorithm

Based on Algorithm 3, we can sort the top k Web services with high availability according to
the monitoring and prediction. We call this estimated availability Ei. In addition, for the overall
filtering algorithm, we also take the history information on availability Hi into account, on top
of the estimated availability by using the particle filter technique. The historical fluctuation of
Web services availability has important impact on the current availability of the services. We call
this historical fluctuation H impact as availability reputation. The most common and effective
numerical measure of the center tendency is using themean, however, it is sensitive to the extreme
values (e.g., outliers) [Han and Kamber 2006]. In our work, we define the final availability of a
Web service as reference availability R, which is calculated using:

Ri(τ) = σEi(τ) + (1− σ)Hi(
τ−1∑
1

(τ − 1)) (6)

where τ is a time span which can be defined by users and σ ∈ [0, 1] is the weight and users
can assign different weight based on their different preference between predication and history of
service availability. For example, if σ is 1, the availability of a Web service will totally depend on
the estimation value obtained by the particle filtering algorithm. Here, the historical values can
be considered as the smoother for the reference availability R. Finally, we summarize the overall
particle filter algorithm for Web service selection in Algorithm 4.

4. IMPLEMENTATION AND EXPERIMENTS

In this section, we discuss the implementation of the proposed approach and also report on some
experimental results.
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Figure. 5. Architecture of the prototype system

4.1 System Implementation

The proposed approach has been implemented as a Web-based prototype system. Figure 5 shows
its main modules. The Service Availability Modeler is responsible for building the Web
service availability model. In particular, we have built a Particle Filter for each Web service
and tagged a multiple Particle Filter according to each Web service community. The Services

Monitor is responsible for estimating and predicting the availability of Web services using the
availability model. The module takes as inputs the availability values for each Web service and
outputs the updated estimation of the availability for each Web service. The new estimation is
also stored in a database (i.e., Service History Archive) that keeps the historical availability
for each service.

The Services Filter is responsible for ranking the Web services of a community and recom-
mend the top N Web services with the highest availability in real-time. In order to do so, the
Service Filter retrieves the historical information from the archive and calculates the reference
availability of Web services using Equation 6. Finally, the Services Controller is responsible
for running the selection algorithm to generate the candidate Web services lists and update the
candidate pool (e.g., replacing the degrading Web service with the one with better quality).
As a consequence, Web service composition only needs to interact with this small number of
candidates, which guarantee the high availability of the generated composite Web services.

The prototype system has been implemented in Java and is based on state-of-the-art technolo-
gies like XML, SOAP, WSDL, and UDDI [Curbera et al. 2002]. Java2WSDL, a tool provided
by Apache Axis1, is used to generate WSDL descriptions from the Java class files so that all the
components of the system can be invoked as Web services. Services are deployed on Apache Axis.
In our implementation, we use Apache Tomcat2 as a Web server where Apache Axis is deployed.

1http://ws.apache.org/axis/index.html.
2http://jakarta.apache.org/tomcat/.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.



Achieving High Availability of Web Services Based on a Particle Filtering Approach · 137

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

A
va

ila
bi

lit
y

 

 
Actual Availability
Estimated Availability

Figure. 6. Availability of a Web Service: Actual Availability vs. Estimated Availability

4.2 Experimental Results

In this section, we present four experimental results. The first one studies the estimation accuracy
of our approach. The second experiment compares the availability of composite Web services with
and without our approach. The third experiment studies the impact of σ on the error rate of
estimation accuracy. The last experiment studies the performance in composing Web services
using our particle filter based approach. For the experiments, we simulated 500 Web services of
five different Web service communities (i.e., 100 Web services for each service community). We
set the failure probability for the Web services as 3.5 percent, which complies with the findings
in [Kim and Rosu 2004].

Estimation Accuracy. The purpose of this experiment is to study the accuracy of our availability
estimation approach. In the experiment, we simulated Web services’ availability fluctuation and
tracked their fluctuation of availability for 50 time steps (each time step counted as an epoch).
The actual availability of Web services and corresponding estimated availability using our particle
filter approach were collected and compared. Figure 6 shows the result of one particular Web
service. From the figure, we can see that our approach works well in tracing and predicting the
availability of Web services.

Availability of Composite Web Services. The purpose of the second experiment is to study the
impact of our approach on the availability of composite Web services. We randomly generated
composite Web services by composing services from five different communities. We simulated
a comparatively significant fluctuation on the availability (i.e., changes in availability) of Web
services for 50 different rounds and collected the availability information of the composite ser-
vices under the situations of i) using our approach and ii) without using our approach. In our
experiment, the availability of a composite Web service, Ac, is a product of eA(si,t), where c is
a composite Web service, si is a component Web service of c, and A(si, t) is the availability of
component service si.
Figure 7 shows the availability of a particular composite Web service. From the figure we can
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Figure. 7. Availability of a Composite Web Service

see that the availability of the composite Web service is more stable when using our approach.
In contrast, without using our approach, its availability is very sensitive to the fluctuations of
service availability. The reason is that our particle filter based approach can dynamically predict
the availability of component Web services and proactively substitute the services with poor
availability.

The impact of σ for average error rate on accuracy. This experiment aims to study the impact of σ
(Equation 6) on the accuracy of availability estimation. In the equation, the value of σ represents
the weight between the predicted availability and historical availability. In particular, the weight
of the historical availability (i.e., 1-Σ) is considered to be a smoother. In this experiment, we
set the smoother over a range of 0 and 0.8 to show the impact on the accuracy of prediction for
component Web services. Figure 8 shows the result of a particular Web service. From Figure 8
we can see that although the error rate stays relatively stable when the smoother is less than 0.2,
the average availability error rate increases constantly when the smoother becomes bigger. The
reason is that the role of historical data played in the particle filtering prediction process, which
is based on the Markov assumption.
We also studied the impact of σ on the availability of composite Web services. In the exper-

iment, we set the values of the smoother as 0, 0.2, and 0.5. Figure 9 shows the result of one
composite Web service. From the figure we can see that when we take the smoother into account,
the availability of the composite Web service is more stable. Interestingly, there are no signifi-
cant changes when the value of the smoother is set as 0.2 and 0.5. As a result, by combining our
findings on estimation accuracy of component Web services (Figure 8), in our implementation,
we chose to set the value of the smoother as 0.2.

Time for composing Web services. This experiment aims at studying the performance of our
approach in Web services composition. In this experiment, we set the top-N Web services where
N is 20, which means the size of candidate list for each Web service community is 20. We further
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Figure. 8. The Impact of σ on Estimated Availability Error of a Component Web Service
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Figure. 9. The Impact of σ on the Availability of a Composite Web Service

set the number of component Web services to 125, 250, 375, and 500 (i.e., each service community
has 25, 50, 75, and 100 Web services respectively). We recorded and compared the time used
for composing composite Web services with and without our proposed filtering algorithm. The
availability of the composite Web services is manually set in this experiment (> 0.80). It should
be noted that in real situation, the requirement of a composite Web service’s availability is usually
determined by the SLA. All composite Web services produced similar results and Figure 10 shows
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Figure. 10. Time for Composing a Composite Web Service

the result of a certain composite Web service. It can be noticed that the improvement in reducing
the execution time is obvious, particularly when the size of service communities becomes bigger.
This is due to the smaller size of the filtered service communities with high quality component
Web services.

5. RELATED WORK

There is a large body of research work related to the topic we discussed in this paper. One impor-
tant area on achieving high availability of Web services focuses on replication technology [Salas
et al. 2006; Serrano et al. 2008; Sheng et al. 2009]. The underlying idea is to spread service
replicas over various locations and if needed, direct invocation requests to appropriate replica
(e.g., with lower workload). Serrano et al. [Serrano et al. 2008] discuss an autonomic replication
approach focusing on performance and consistency of Web services. Salas et al. [Salas et al. 2006]
propose a replication framework for highly available Web services. Sheng et al. [Sheng et al. 2009]
further developed the idea by proposing an on-demand replication decision model that offers the
solution to decide how many replicas should be created, and when and where they should be
deployed in the dynamic Internet environment. While these approaches focus on improving ser-
vice availability through replication, our work concentrates on monitoring and predicting service
availability. Our work is complementary to these works in the sense that the estimations provide
a good source of information for replication decisions.
Many research projects achieve high availability of Web services based on the concept of service

communities where Web services are selected based on QoS [Liu et al. 2004; Zeng et al. 2004;
Wang et al. 2006; Maamar et al. 2008; Alrifai et al. 2010; Medjahed and Bouguettaya 2011].
The basic idea is that services with similar functionalities are gathered as communities. If a Web
service is unavailable, another service will be selected based on QoS. The work presented in [Zeng
et al. 2004] is the first of few that focuses on optimizing services selection during composition.
The authors advocate that service selection should be carried out during the execution of a
composite service, rather than at design time. They further propose a global planning approach
to optimally select services based on linear programming methods. In one of the most recent
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works, Alrifai et al. propose a new approach based on the notion of skyline to select services for
composition effectively and efficiently [Alrifai et al. 2010]. However, most approaches assume that
QoS is readily accessible and ignore its dynamic nature. In addition, selecting Web services from
large communities may have performance issues. Our work focuses on these issues by proposing
a particle filter based approach (could say more later).
The work presented in [Guo et al. 2008; Sirin et al. 2004; Rosario et al. 2008; Hwang et al.

2007] are the most similar ones to our work. In [Guo et al. 2008], Guo et al. model a composition
process into the Markov Decision Process and use Kalman Filter to tracking the state of com-
posite Web services. Sirin et al. [Sirin et al. 2004] propose a filtering methodology that exploit
matchmaking algorithms to help users filter and select services based on semantic Web services
in composition process. Rosario et al. [Rosario et al. 2008] focus on Service Level Agreements
(SLAs) of composite Web services and propose a soft probabilistic contracts that consist of a
probability distribution for the considered QoS parameter. These soft contracts can be com-
posed to yield a global probabilistic contract for composite Web services. However, these works
focus on adaptive composition of Web services and do not pay attention to the availability of
component Web services. Finally, Hwang et al. [Hwang et al. 2007] propose a probability-based
QoS model for describing QoS values of both atomic and composite Web services. Our approach
uses particle filter to precisely predict the availability of Web services in real time and dynami-
cally maintains a subset of Web services with higher availability, from which service developers
can choose in their compositions.

6. CONCLUSION

Guaranteeing the availability of Web services is a significant challenge due to the varying number
of invocation requests the Web services have to handle at a time, as well as the dynamic nature
of the Web. Many existing approaches ignore the uncertain nature of service availability and
simply assume that the availability information of a Web service is readily accessed. In this
paper, we proposed a novel approach to monitor and predict Web service’s availability based
on particle filter techniques. Furthermore, we developed algorithms to filter Web services from
service communities for efficient service selection. The implementation and experimental results
validated our approach.
There are a few directions following our work presented in this paper. First of all, we will

conduct more experiments to study the performance of the proposed approach (e.g., scalability).
We also plan to extend our approach to support other important service dependability properties
such as reputation, reliability, and security, which eventually underpins the construction of robust
and highly dependable Web services.
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