
S2R: A Semantic Web service Similarity and
Ranking Approach

Amal Alhosban, Khayyam Hashmi, Zaki Malik

Wayne State University

and

Brahim Medjahed

University of Michigan - Dearborn

Service Oriented Architectures (SOAs) enable the automatic creation of business applications from independently
developed and deployed services. Mechanisms are thus needed to select these service components that meet or

exceed the functional and non-functional requirements of SOAs. The primary objective of service selection in
SOAs can be viewed as a maximization of an application-specific utility function that matches the constraints of
the service requester against the capabilities and offerings of the service provider(s). In this paper, we propose
such an approach that computes the match between service requests and offerings, based on their functional and

non-functional properties in an efficient manner (in terms of space and time). We compare our approach with
similar existing approaches to its show applicability and performance.

Keywords: Composite services, Matching, Semantic Web, Service-oriented architecture, Similarity.

1. INTRODUCTION

Due to the competitive and fast growing nature of today’s business climate, most organiza-
tions are automating their business processes for service and operation delivery. In this respect,
service-oriented computing (SOC) has become a main trend in software engineering that exploits
Web services as fundamental elements for developing on-demand applications. Web services
are self-described, self-contained and platform-independent computational elements that can be
published, discovered, and composed using standard protocols, to build applications across var-
ious platforms and organizations in a dynamic manner. With the increasing agreement on the
functional aspects of Web services, such as using WSDL for service description, SOAP for commu-
nication and WS-BPEL for composing Web services etc., the research interest is shifting towards
the non-functional aspects of Web services [Papazoglou et al. 2010].
Developers can now add descriptions (using standards such as OWL-S) to their Web ser-

vices to define and advertise the non-functional aspects of services (including input, output,
pre-condition, post-condition and functions), thereby facilitating automated discovery, invoca-
tion and inter-operation. However, the first step in this process is to ‘resolve’ the consumer
request against prospective Web services, so that the most appropriate component could be se-
lected [Alhosban et al. 2011]. The expected availability of a large number of highly specialized
component services, means that it would be increasingly challenging to find the most suitable
service(s) in a reasonable amount of time [Nepal et al. 2010]. Moreover, some Web services may
not be able to satisfy consumer requests individually, and hence need to be integrated with other
Web services to provide the desired functionality. This adds to the complexity of an already
challenging problem [Bouguettaya et al. 2008].
In this paper, we present a novel approach (defined S2R: Semantics-based Similarity and Rank-

ing) for Web service selection. S2R is divided into three levels. In the first level, we filter the

Authors’ address: Department of Computer Science, Wayne State University, 5057 Woodward, Suite 3010, Detroit,
MI 48202. Email: {ahusban, Khayyam, zaki}@wayne.edu
Department of Computer & Information Science, The University of Michigan - Dearborn, 4901 Evergreen Road,
Dearborn, MI 48128. Email: Brahim@umich.edu

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

174 · Amal Alhosban et al.

available Web services under a specific category based on their functional properties such as in-
put, output and operations. In the second level, we further reduce the service search space based
on non-functional properties, such as Quality of Service (QoS) parameters [Alhosban et al. 2011].
Once a reduced pool of similar Web services is obtained, we rank them based on their utility
value (in the third level).
The utility value is calculated using a utility function which allows stakeholders to ascribe

a value to the usefulness of the overall system as a function of several QoS attributes such
as response time, availability, cost, reliability, etc. according to their preferences [Nepal et al.
2010] [Menascé and Dubey 2007] [Bergmann et al. 2001] [Li et al. 2012] [Yao et al. 2010]. Using
utility function, S2R filters Web services at each level so that more costly operations (e.g., rep-
utation calculations) are applied on a reduced number of candidate services to shorten the time
and space complexity of this search process. Moreover, since service selection is an on-demand
process, we apply the S2R filters on run time.
The rest of the paper is organized as follows. Section 2 provides a motivating scenario which is

used to illustrate the S2R approach further in the paper, while Section 3 lists the related works.
Section 4 describes our approach in detail. Section 5 presents the experiments, Finally, Section
6 concludes the paper and provides directions for future work.

2. MOTIVATION

In this section, we present an example scenario to motivate the problem and associated solution.
Assume a travel planning system that is based on a service-oriented architecture (Figure 1.). The
company provides travel planning services that include hotel booking, flight reservation, and car
rental. In addition to these reservation services, the system also provides an insurance service for
the entire trip or individual travel components.

Get credit
report

Notify
consumer

credit

Reserve

Get quote

C o n f i r m a t i o n

A p p ly

S e n d

P a y m
e n t

M a k e p a y m e n tA c c e p t a n d r e s e r v e

A s k f o r

T r a v e l i n s u r a n c e q u o t e

Reserve

G e t q u o te

Get quot e

Check availability

Get quote
Check availability

Consumer

A s k f o r q u o t e

(f l i g h t , h o t e l , a n d c a r)

Hotel
Web service

(HW)

Flight
Web service

(FW)

Car
Web service

(CW)

Credit
Web service

(CrW)

Check availability

R e se rve

Travel Web service
(TW)

C h e ck a va ila b ility

Insurance
Web service

(IW)Credit history
Web service

(ChW) Legend:
Consumer’s invocation Web service
Request-response operation Outsourcing
One-way operation Confirmation

Figure. 1: Example Scenario: A Travel Reservation System

The main Web service for the system is called Travel Web service (TW) with major operations:
Check Availability, Get Quote, Reserve, Apply, and Send Payment. TW does not implement
all these functionalities by itself, rather it outsources some of the functionality to other com-
ponent Web services. In Figure 1. we can see that component Web services (outsourced Web
services) include: Hotel Web service (HW), Flight Web service (FW), Car Web service (CW),

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 175

Insurance Web service (IW), and Credit Web service (CrW). The consumer invokes TW through
the Get Quote operation by providing the travel date, departure and arriving city information.
To get the quote, TW should interact with other services (i.e., HW, FW, and CW) by checking
the availability for the required dates and cities using operation Check Availability. TW then
requests quotes for the available reservations through the operation Get Quote. Upon receiving
individual quotes from component services, TW aggregates these quotes and sends them to the
consumer. At this point in the reservation process, the consumer also has the option of buying
travel insurance (which TW outsources to IW). If the consumer accepts the quote, the payment
process starts. TW outsources CrW to process the credit payments. CrW in turn outsources the
consumer’s credit check process to ChW. If the consumer’s credit meets the credit score require-
ments, then TW makes a reservation with (HW, FW, and CW) and starts the insurance process
(if consumer wills). Finally, TW notifies the consumer with the confirmation number (for flight,
hotel and rental car) and sends the receipt. TW may run into some issues when it is trying to
formulate this solution by outsourcing functionalities to component services. First of all, how
would TW calculate the functional equivalence of two or more similar services, e.g., when TW
is looking for a flight Web service, the first step is to find all the Web services that provide this
functionality (i.e., resolve both syntactic and semantic equivalence). Even if TW is able to find
functionally similar Web services for flight Web service, they may have different non-functional
(QoS) properties (such as service A may have a response time of 3ms and service B may take
7ms to respond to user requests). Hence TW needs to differentiate among the candidate services
based on the value (utility) they add to the composition. The main motivation behind S2R is
to solve the above mentioned issues while reducing the time and space complexity of this (ser-
vices) search process. We believe that an efficient solution to the service selection problem is also
paramount in reducing fault recovery time in SOAs, for cases where a faulty service needs to be
replaced by a ‘similar’ one [Alhosban et al. 2011].

3. RELATED WORK

In this section, we provide a brief overview of some of the related literature. Several methods have
been proposed to deal with the Web service matching problem. The technique in [Xia and Yoshida
2007] uses two stage assessment. In the first stage all service belonging to a specific category are
gathered. The second stage consisits of finding similarity among these services based on input,
output, conditions and effects. LARKS [Sycara et al. 1999] defines five techniques for service
matchmaking: context matching, profile comparison, similarity matching, signature matching,
and constraint matching. Matching services to requests is performed by using any combination of
the above techniques. The ATLAS matchmaker [Paolucci and Wagner 2006] defines two methods
for comparing service capabilities described in DAML-S. The first method compares functional
attributes to check whether advertisements support the required type of service or if it delivers
sufficient quality of service. The second method compares the functional capabilities of Web
services in terms of inputs and outputs. Anamika [Chakraborty et al. 2002] presents a service
matching technique for pervasive computing environments. Service descriptions are provided
in DAMLS. They also include platform specific information such as processor type, speed, and
memory availability. The composition manager uses a semantic service discovery mechanism to
select participant services. RACER [Li and Horrocks 2003] adopts techniques from knowledge
representation to match DAML-S service capabilities. In particular, it defines a description logic
(DL) reasoner; advertisements and requests are represented in DL notations.
Another DAML-S based matchmaker implementation is KarmaSIM [Narayanan and McIlraith

2002] where DAML-S descriptions are described in terms of a first-order logic language (predi-
cates) and then converted to Petri-nets where the composition can be simulated, evaluated and
performed. Context-based matching (CBM) has been proposed in [Medjahed and Atif 2007], the
matching process is performed via peer-to-peer interactions between a context-based matching
engine, CPAs and community services. A service consumer sends a matching request to context-

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

176 · Amal Alhosban et al.

based matching engine which sends a sub request to the communities and compares the consumer
requirement with each community members. Then the context-based matching engine finds the
intersection between the matching set from each community. The communities have been created
based on the policies inside the Web services. The problem in this technique is that the number
of comparisons will be high if the same Web service exists in all communities (i.e., the Web
service includes all policies that the consumer has requested). Circular context-based (CCB) has
been proposed in [Segev 2008], the technique compares context extracted from each Web service
based on its WSDL description to with other Web services’ textual description context. The
second stage consists of finding the context overlapp among the Web service through parsing
WSDL file. Other service matching techniques are also presented in [Bäına et al. 2001] [Heuvel
et al. 2001] [Mecella et al. 2001]. However, these techniques mostly focus on syntactic comparison
among attributes of Web services.
Since we use contextual information of Web services, we position our work with existing context-

oriented Web service frameworks. Several context-aware approaches have recently been proposed
to enhance Web service discovery and composition mechanisms. Context attributes [Lee and
Helal 2003] proposes a context-aware service discovery technique for mobile environments. It
defines the context of a Web service as a set of attributes included in the service description.
Examples of context attributes include user location and network bandwidth. The discovery en-
gine first lookups for Web services based on traditional criteria (e.g., service category in UDDI).
Then, it reduces the qualified services to be returned to clients through context attribute evalua-
tion. This approach uses contextual information for service discovery not for service composition.
Additionally, it focuses on client-related contextual information. It does not seem to consider
provider-related context which is important for Web service composition. Finally, the definition
of context is limited to some attributes added to service descriptions. We adopt a more generic
definition of Web service context through an ontology-based categorization of contextual informa-
tion. Contextualization is proposed at the Web service deployment, composition and conciliation
or matching levels in [Maamar et al. 2006]. The description of contexts is assumed to occur along
three categories: profile, process model, and grounding. The profile describes the arguments and
capabilities of a context. The process model suggests how context collects raw data from sen-
sors and detects changes, that need to be submitted to the Web service. Finally, the grounding
defines the bindings (protocol, input/output messages, etc.) that make context accessible to a
Web service. The authors did not however mention how relevant contexts are elicited in a service
matchmaking process.

4. S2R ARCHITECTURE

In this section, we present the architecture details of S2R: a semantic Web service similarity
and ranking approach. Generally, similarity measurement consists of two components: syntactic
and semantic. In syntactic similarity, we look for the similarity between data items where value
of this similarity usually lies in the range [0,1]. In semantic similarity, we look for defined
relationships among various terms and concepts (e.g. defined in an ontology or extracted). In
S2R, both syntactic and semantic similarity filters are applied to find a set of Web services that
match users’ requirements. We assume that each Web service is defined using a description
language such as WSDL (Web Service Description Language) which describes the functional
service properties and its interface. WSDL files are published in a service registry that allows
providers to advertise general information about their Web services. This information is used by
clients for discovering providers and Web services of interest. UDDI and ebXML are examples
of protocols that can be used for the registration of Web services. Since UDDI is the leading
specification for the development of service-based repositories or registries [Bouguettaya et al.
2008] we use UDDI as a registration repository, where service providers publish their WSDL files
(in catalog form). UDDI is organized in form of business activity categories (including the built-in
NAICS, UN/SPSC and the other user defined categories), and service providers are responsible

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 177

for publishing their services in the appropriate UDDI category. Numerous Web services providing
similar functionality may thus be listed under the same category in a UDDI.
In S2R, we search the UDDI and retrieve the Web services under a category and send them to

the first level (FCF). Thus, S2R starts by calculating the syntactic similarity for each attribute,
and if a syntactic match is not found, candidate services are checked for semantic similarity.
The attributes types in FCF are: (1) syntactic attributes, which include the list of input and
output parameters, the data types of the parameters, and the protocol to be used to invoke the
Web service such as SOAP. (2) Semantic attributes, include the pre-conditions and effects of an
operations execution.

FCF

NCF

(n) Web services in category x

(n-m)
Web services

(n-m-k)
Web services

(n-m-k)
Web services

Functional Context Filter (FCF)
Syntactic:

- List of input/output parameters
- Data types
- Protocols

Semantic:
- Pre-conditions
- Post-conditions

Non-functional Context Filter (NCF)
QoS Parameters:

- Response time
- Availability
- Reliability
- Cost

.

.

- Security

Ranking

Figure. 2: Overview of the matching levels for S2R.

We feed the (reduced) output set from (FCF) into the second level (NCF) filter (see Figure 2.).
NCF is a filtering mechanism based on QoS parameters which measure the quality of a Web
service. There are many parameters that can be used to measure a Web service’s quality such
as response time, availability, reliability, cost, security and privacy, etc. [Comuzzi and Pernici
2009] [Lee 2011] [Krishnamurthy and Babu 2012] [Pernici and Siadat 2011] [Yeom et al. 2011].
In addition, we can add any new specification to each one of these filters. After finding the
providers that support the same service based on functional context (n-m providers), we filter
them based on QoS requirements and are left with (n-m-k providers). In the third level, we rank
the candidate Web services based on their utility. In the ranking level, we rank the candidate
Web services based on their utility. We divide the Web services into two sets: HighRank set and
LowRank set. The HighRank set includes the Web services that have QoS values higher or equal
to consumer’s requested values with the constraint that the price does not exceed consumer’s
maximum price. However, the LowRank set includes the Web services that have QoS values
lower than the requested values. In case of empty HighRank set, the first Web service in the
LowRank set is considered the best candidate. Note that the first two levels (i.e., FCF and NCF)
are ‘context based filters’.
A context is “any information that can be used to characterize the situation of an entity. An

entity is any person, place, or subject that is considered relevant to interaction between a user
and an application, including the user and the application themselves” [Dey 2000]. Context has
been used in several areas such as machine learning, computer vision, information retrieval, and
decision support [Kouadri Mostéfaoui and Brézillon 2006]. We view context as any Web service
consumer or provider-related information that enables interactions between service consumers and
providers. The provider-related context contains meta-data about the provider and its service
(e.g., service description, QoS, etc). Similarly, consumer-related context contains meta-data
about the consumer (e.g., consumer’s location, expertise level, etc). For example, a non-functional

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

178 · Amal Alhosban et al.

context policy may include a set of quality of service parameters (e.g., response time) associated
with the service. Each context definition belongs to a certain category which can be either
consumer-related or provider related. From a provider’s perspective, interacting with a consumer
depends on the situation (i.e. current variable values) of that consumer, and vice versa. Due to
space restrictions, we omit further details regarding context definition. The interested reader is
referred to [Medjahed and Atif 2007]. The summary of the levels and their parameters is given
in Table I. In the following, we provide details for the S2R filtering levels mentioned above.

Table I: S2R Levels

Level Context
Filter

Context
Type

Parameters Supported
language

References

First FCF Functional

Context

Syntactic and semantic OWL-S,

WSDL-S, ..

[Martin et al.

2007], [Paolucci and
Wagner 2006]

Second NCF Non-
functional

Context

response time, availability, relia-
bility, cost,...

WSCL,
HQML, ..

[Gu et al. 2007], [Gu
et al. 2001]

Third Ranking Ranking HighRank set and LowRank set None N/A

4.1 Level I: Functional Context Filter (FCF)

As mentioned earlier, the WSDL files are published in a UDDI and consist of (textual) descriptions
of the Web service’s operations (such as input, output, conditional output, precondition and
postcondition). While some service providers describe these functionalities in different ways (e.g.
both input and precondition are described as input), so S2R includes preconditions with inputs
and postconditions with outputs.

UDDI

OWL-S Profile
- contactInformation

- name
- title
- phone
- fax
- email
- physicalAddress
- webURL

- serviceName
- textDescription
- hasProcess
- serviceCategory
- serviceParameter
- qualityRating
- input
- output
- precondition
- effects
- service Product
- service Classification

Business Entity
- name
- contact

- person name
- phone
- email
- address

- discovery URL
- business Key

Business Service
- business Key
- name
- description
- categoryBag

- hasProcess_TModel
- serviceCategory_Tmodel
- serviceParameter_TModel
- qualityRating_TModel
- input_Tmodel
- output_TModel
- precondition_TModel
- erffect_Tmodel
- serviceProduct_TModel
- serviceClassification_TModel

- bindingTemplates

Figure. 3: Mapping between OWL-S and UDDI constructs.

In S2R, we extract this and other functionalities’ information from OWL-S. An OWL-S service
is characterized by three types of knowledge:

(1) Service profile: it describes the operation of the service. It consists of three types of informa-
tion: a human readable information section which describes the service, the functions that
the service provides and a list of functional attributes. For example, hotel service provides the
room availability of a specific hotel, this is the human information, the functional attribute
is the input, the output and any other quality of service attribute such as the response time.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 179

(2) Process-model: it describes how the service works by defining the services composition and
the exact operations.

(3) Service grounding: it specifies the details of how an agent can access a service (i.e., the
information needed by the agent to discover the service).

If the Web service does not support OWL-S, S2R extracts the Web service information from the
UDDI using the OWL-S/UDDI mapping as shown in Figure 3.
In an ideal scenario we would be able to find a service that perfectly matches to user require-

ments. However in SOAs with numerous combination of service attributes (i.e., input, output,
and operations) the chances of having such a perfect match may be slim. Thus, instead of trying
to find a perfect match, we could find a Web service that fulfills the user’s requirements as much
as possible (i.e., Web services may provide less functionalities or may have more functionalities
than requested). In S2R, we first look for a perfectly matching service, then we increase our
search to incorporate services that provide more functionalities than requested. If we cannot find
any suitable candidate in the first two searches, we expand our search to include services that
provide less than desired functionalities. However, in such scenarios we would need to compose
multiple services to provide the requested functionality. Thus, we may have the following four
scenarios (see Figure 4).

Equivalent

Web servicex

Subsume

Web servicex Web servicex

Not
equivalent

op1 op2 opn

op1 op2 opn op1 op2 opn

op1 op2 opn

opk-1

op1 op2 opn

op1 op2 opn

Plug-in

Web servicex

Web servicey

op1 op2 opn

op1 op2 opn

opk-1

(a) (b) (c) (d)Web servicey Web servicey Web servicey

Legend
Non-similar operation Similar operation

Figure. 4: Service matching scenarios.

• Equivalent (Figure 4a.) Web servicex and Web servicey are equivalent if all operations in Web
servicex are exactly the same as all operations in Web servicey and the number of operations in
Web servicex is equal to the number of operations in Web servicey. Moreover, the inputs and
outputs for each operation in Web servicex are the same (names could potentially differ, e.g.,
cost vs price)as the inputs and outputs for each operation in Web servicey.

• Subsume (Figure 4b.) Web servicex is subsumed by Web servicey if all operations in Web
servicex are included in Web servicey. However, Web servicey has extra inputs, outputs or oper-
ations. In this case Web servicey can be counted as similar Web service to Web servicex but it
may request or provide extra information.

• Not-equivalent (Figure 4c.) Web servicex and Web servicey are not equivalent if all operations
in Web servicex do not match any operation in Web servicey. In this case Web servicex and Web
servicey are totaly different.

• Plug-in (Figure 4d.) Web servicey is plugged-in Web servicex if some operations in Web servicey
matches some operations in Web servicex. In this case we need to find and compose another Web
service(s) that cover the extra operations needed for Web servicex.
To classify any Web service under one of the matching scenarios in S2R, we identify the service

operations according to the following. We consider three main types of operations: one-way,
request-response, and confirmation. In one-way operations, the Web service receives a message

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

180 · Amal Alhosban et al.

without producing any output message (i.e., one-way communication). In request-response op-
eration, the service receives an input message, processes it, and sends correlated output message
to the sender. Confirmation operation sends an output message but does not expect to receive
any more messages. CW::Get quote::FW (see Figure 1.) is an example of a request-response
operation. Its input includes departure airport, arrival airport, departure date, return date, and
the number of passengers. The output message for this request-response message contains a price
and room type(s). ChW::Notify consumer credit::CrW (see Figure 1.) is a one way operation
whose input contains a first name, last name, age and number of days. TW::Confirmation (see
Figure 1.) is a confirmation operation with the output of reservation details and a receipt. As
we can see Request-response operations have both input and output messages. However ,One
way operations only contain input messages and confirmation operations only produce output
messages. Each message consists of one or more parameters called parts in a WSDL. A parameter
has a name and a data type. The data type gives the range of values that maybe assigned to
the parameter. The first step in finding functional equivalence among Web services is to extract
this parts information from the WSDL file for the parameters and return values of operations
provided by candidate Web services.

Definition 3.1.1. Two operations opik and opjl match if either (1) type of message for opik
= “one-way” and type of message for opjl = “confirmation”; or (2) type of message for opik =
“request-response” and type of message for opjl =“request-response”.2

Definition 3.1.2. Each Web service is accessible via operations and each operation is identi-
fied by a tuple < Descriptionij ,Modeij , Inputij , Outputij , Purposeij , Categoryij , Qualityij >,
where Descriptionij is a textual summary about the features of the operation, Modeij is the
type of operation (i.e., one way, response-request or confirmation), Inputij is the input of the
operation (if it exists), Outputij is the output of the operation (if it exists), Purposeij is the
business function offered by the operation, Categoryij describes the operation domain, Qualityij
provides the operation’s qualitative properties. 2

Example: The operation TW::Get quote::HW in our running example (Figure 1). is defined
by a tuple <this operation returns the price for a given date to reserve hotel, request-response,
dates and number of passengers; price in dollar, bussiness.function = request for quote, hotels,
Quality.price>x and Quality.security=“false”>.

Definition 3.1.3. operationij is similar to operationkl or subsumed by operationij if

(1) ∀x ∈ Inputij ,∃x′ ∈ Inputkl| x is data type compatible with x′.

(2) ∀y ∈ Outputij ,∃y′ ∈ Outputkl| y is data type compatible with y′.

(3) (Categoryij = Categorykl) ∨ (Categoryij ⊆ Categorykl).

(4) Modeij = Modekl (see definition 3.1.1).

(5) (Purposeij ≡ Purposekl) ∨ (Purposeij ⊆ Purposekl).

(6) Text matching between Descriptionij and Descriptionkl > ℓ|ℓ is a pre-determined threshold.

In FCF, we apply neighborhood calculation to find the similar Web services based on their
functional properties. This filter works based on three predefined matrices: input matrix, output
matrix and operation matrix. Figure 5. (expanded version of Figure 2.) shows the steps of how
FCF works. Upon arrival of a consumer request, a list of n services is retrieved from the UDDI
under the requested category. FCF’s Matrix Builder module then creates the three matrices:
input, output and operation. Each matrix has m × n dimensions where m is the number of
retrieved Web services and n is the number of inputs, outputs or operations for each matrix
respectively. For instance, an Am×n operations matrix is created as

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 181

Provider

UDDI
Pu b

l i s h

R e
q u

e s t
 m

a tc
h in

g

Re
co

m
m

en
de

d
 W

eb
 s

er
vic

es

FCF

Send (n-m-k) Web services

Send (n-m) Web services

Utility ranking

NCF

Output
Matrix

Input
Matrix

Operation
Matrix

Matrix BuilderWS
Repository

Get All Web services in the
same category (n)

Consumer

Matching
Module

Figure. 5: Functional Context Filter (expanded).

Ai,j =

{
1 if Web servicei has operationj ;
0 otherwise.

When the Web servicei does not provide the operationj , the value of Ai,j is zero. For example,
if we have non-stop operation (i.e., provide the non-stop routes) and Web servicex does not
provide it, we will add zero under this operation for Web servicex.

Table II: Example of Web-operation Matrix

Get-Quote Get-Destination Get-Price Get-Time

Web service1 1 1 0 1

Web service2 1 1 1 0
Web service3 0 1 1 0
Web service4 1 1 1 1
Web service5 1 1 0 0

Web service6 0 1 1 1

While we are filling the matrix, the main concern is determining if the parameters of servicex
is the same as the parameters in the matrix. For instance, finding a flight using Web servicex
requires the input (airport name), but Web servicey may requires the input (zip code) for the
same operation. Hence it is important to find sematic similarity to address such scenarios.
S2R extracts the semantic information of the candidate Web services through OWL-S. The

semantics of the parameters are defined by the following attributes:

(1) Consumer and provider types: the consumer and the provider should be under the same
category. For example, if they provide travel services then they should be under the travel
category. In case of a composite solution that has multiple categories, the Business role will
define the category for each service.

(2) Category: the category for each parameter describes the area of interest of the parameter.
The category is defined by a tuple (domain, synonym, overlap). Domain gives the area
of interest. For example, “travel” which takes these values from the domain in OWL-S.
Synonym contains a set of alternative names for the domain name. For example, “trip” is
a synonym of “travel”. Overlap contains the list of categories that overlap with the current
category.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

182 · Amal Alhosban et al.

(3) Purpose: describes the goal of the parameter, for example, the goal of Get-Quote in the
scenario is to return the price of the requested service.

(4) Business role: the business role gives the type(category) information about a service under a
certain business role. Every parameter has a well defined meaning according to the taxonomy.

(5) Unit: it is the measurement unit for a parameter such as, using miles to measure the distance
and dollar to measure the cost, etc.

We use Table II to illustrate matrix building. The matrix contains six Web services and four
operations. The matrix dimensions are A6×4. The operations for Web service1 are (Get-Quote,
Get-Destination and Get-Time), the Web service2 operations are (Get-Quote, Get-Destination
and Get-Price), etc. The first step of S2R is determining the inputs, outputs and operations
of the Web service which based on the consumer request. If all the properties are available in
the matrix then we just add the service name, and insert one under the property if the service
provides it, else insert zero. However, if the property does not exist, we will edit and add the
new property to the matrix. For example, one provider wants to publish Web service7 which
includes the operations (Get-Quote, Get-Destination, Get-Price and Get-Rate). The first
three operations exist in the matrix but the last operation is a new one. In this case we add
the new property (Get-Rate), add one under the operations (Get-Quote, Get-Destination and
Get-Price), so the new matrix will be as follows

Table III: Example of Adding Web service to the Web-operation Matrix

Get-Quote Get-Destination Get-Price Get-Time Get-Rate

Web service1 1 1 0 1 0
Web service2 1 1 1 0 0

Web service3 0 1 1 0 0
Web service4 1 1 1 1 0
Web service5 1 1 0 0 0
Web service6 0 1 1 1 0

Web service7 0 1 1 1 1

FCF inserts the requirements into a vector by getting the parameters for a specific category
from the service repository. It then builds a priority matrix. The priority matrix is a matrix
that gives weight to each property and will move the focus towards more important operations.
Based on TF-IDF [Karimzadehgan et al. 2011], we define the priority matrix over the original
matrix Am×n to compute the weight of each item as:

wi,j =
Ai,j × |Wsi|

OpM
∗ log Ai,j

|Opj |
(1)

where Ai,j is one if the operation j exists in Web service i, otherwise Ai,j is zero, |Opj | is the
number of times that Opj has been used by all Web services, OpM is the number of operations
in the matrix and |Wsi| is the number of operations for Web service i. The result after applying
Equation 1. to our example matrix (in Table III) will be the priority matrix in Table IV. The
operations that are provided most often by the Web services in the same category will have the
highest weights and the operations that are provided less will have lower weights.
After building the priority matrix, FCF converts each row of the matrix into binary vectors,

for example if the consumer request contains the operations <Get-Quote, Get-Destination,
Get-Price, Get-Rate> while the available service has<Get-Quote, Get-Destination, Get-Price,
Get-Time, Get-Rate > then the query vector of this Web service is < 1, 1, 1, 0, 1 >. FCF finds
similar Web services based on vector similarity [Chan et al. 2011] as:

Similarity(I, J) = |cosine
−→
Vi ,

−→
Vj | = |

n∑
k=1

(ik × jk)| ÷

√√√√ n∑
k=1

i2k ×

√√√√ n∑
k=1

j2k (2)

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 183

Table IV: Priority Matrix

Get-Quote Get-Destination Get-Price Get-Time Get-Rate

Web service1 0.0635 0.1111 0 0.0635 0
Web service2 0.0635 0.1111 0.0794 0 0
Web service3 0 0.1667 0.1190 0 0
Web service4 0.0476 0.0833 0.0595 0.0476 0

Web service5 0.0953 0.1667 0 0 0
Web service6 0 0.1111 0.0794 0.0635 0
Web service7 0 0.0833 0.0595 0.0476 0.0119

Now, let us suppose that the consumer requests a matching for Web service that includes the

operations: < Get− Quote, Get− Destination, Get− Price > i.e., the vector will be
−→
V1 =<

1, 1, 1, 0, 0 > and it will compared to all vectors
−→
Vd where d ∈ [1,m] in the matrix Am×n.

I =

1 1 0 1 0
1 1 1 0 0
0 1 1 0 0
1 1 1 1 0
1 1 0 0 0
0 1 1 1 0
0 1 1 1 1

, J =

(
1 1 1 0 0

)
, Similarity(I, J) =

0.6667
1.0

0.8403
0.8824
0.8403
0.6667
0.5882

(3)

If the threshold β for selecting the Web services is (0.8) then the result from FCF is the set
{Webservice2,Webservice3,Webservice4,Webservice5}. In this case, we find that Webservice3
and Webservice5 have the same similarity value (0.8403). Notice that Webservice3 does not
provide the operation Get-Quote and Webservice5 does not provide the operation Get-Price.
In such case, we return back to the operation priority matrix which shows the priority for the
operation Get-Price is 0.1190 and the priority for the operation Get-Quote is 0.0953, so we
prefer Webservice3 contains the higher priority operation.

4.2 Level II: Non-functional Context Filter (NCF)

NCF is divided into two steps: The first step checks for the service availability, thereby, eliminat-
ing the Web services that are unavailable. The second step checks Web service similarity based
on other QoS parameters (e.g., response time, throughput, reliability, etc). We use the ping
utility for the former, which has been used for Web service performance measurements [Guoping
et al. 2009]. After determining the set of Web services that respond to the ping inquires, we start
the second step where we use Context Policy Assistance (CPA) to test the similarity between
the QoS parameters that are required by the consumer and the QoS parameters offered by the
available Web services.

Context Rule NF-cost
Context Property Cost
Instance cost_s, cost_d
Type NFP
Action matchproperity($cost_s$, $cost_d$)

{ If cost_d<= cost_s Then return true else return false }

Figure. 6: Rule example.

CPA is created by the service provider and should be attached to the service. It facilitates
interaction between providers and the service registry to store the context policies. For further
details, the interested reader is referred to [Medjahed and Atif 2007]. A service provider may
create the context specification using a context specification language such as WS-Policy. WS-
Policy provides a general model and syntax to describe and communicate the policies of Web
services [Erradi et al. 2007]. Each policy contains a set of rules that define the QoS require-
ments/capabilities of the Web services. A sample rule is shown in Figure 6. where a context

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

184 · Amal Alhosban et al.

rule is identified by a name to specify the property. In this rule we need two instances: the
consumer’s cost and the provider’s cost. The type of this policy is NFP (non-functional policy)
and it compares the cost between the two parties to determine if they are compatible. We use
these policies to determine if two Web services are similar based on the QoS parameters they
both share [Alrifai et al. 2010].

Registered in
Ping

Service Space

NCF

Set of matching Web services from
FCF

FCF

Communication
Module Available

Yes

No
Eliminate Web
service from list

UDDI

Calculate
Conformity (QoSi, QoSj)

Add to the matching list

Ranking

Set of matching Web services from
NCF

First step

Second step

Conformity > Ɵ

Calculate
Conform (i,j)

Yes

More Web
services

Yes

No

No

Retrieve

Figure. 7: Non-functional Filter (expanded).

Definition 3.2.1. QoS vector description: it is an extendable vector used to define QoS param-
eters of the provider and the consumer. It is expressed as: QoS = < QoS1, QoS2, ..., QoSn >, n
∈ R, where QoSn indicates nth QoS attributes and QoSi where i ∈ [1,n] is equal to {Availability,
Cost, Response time, Error rate, Throughput, Reliability, Reputation, and Security.}.2
QoS parameter matching is done as:

(1) Convert the parameters into QoS vector descriptions. Then, we have one vector for the con-
sumer request < ConQoS1, ConQoS2, ..., ConQoSn > and multiple vectors for the provider
offerings< Pro1QoS1, P ro1QoS2, ..., P ro1QoSn > ... < ProkQoS1, P rovkQoS2, ..., P rovkQoSn >.
Here we assume that the providers provide trusted information for the QoS values [Sherchan
et al. 2010]. There are three different cases in converting the QoS parameters: the consumer
vector is greater than the provider vector, the consumer vector is less than the provider vec-
tor, or the consumer vector is equal to the provider vector. In the first case we add zeros at
the end of the consumer vector and in the second case we add zeros at the end of provider
vector.

(2) Create a new vector called conform with length equal to the max length of consumer and
provider vectors. For each element in the vector use the polices to compare the conditions,
and if the condition is met then add one to the conform vector else put zero. At the end of
this step we will have the vector < conform1, conform2, ..., conformn >.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 185

(3) Calculate the conformity degree between the services for the consumer QoSi and the provider
QoSj as:

Conformity(QoSi, QoSj) =

z∑
q=1

Weightq ∗ conformq (4)

where i,j are Web services, z is the maximum length of parameters, i.e., z = max(|QoSi|, |QoSj |),
and Weightq is the weight assigned to each QoS parameter.

Consumers may have different expectations about the conformity degree of their services. For
this purpose, they provide a conformity threshold θ (0 < θ 6 1). In NFC, we find all Web
services j where the conformity degree (QoSi, QoSj) is greater than θ, which are then passed to
the ranking level. The conformity threshold is given by the consumer as a part of his profile,
while the QoS weight is created automatically by the system based on the level of the consumer’s
expertise. In S2R, we defined three types of consumers: expert, regular and normal consumers.
The expert consumers are knowledgable about meaning of all QoS parameters and they may
assign the desired value for the QoS parameters for specific services. The regular consumers have
some knowledge about the QoS parameters, and they may assign values to some QoS parameters
and leave the other parameters without weights. In this case, the system predefined weights are
used for unassigned parameters. The normal consumers do not have any knowledge about the
QoS parameters that the system assigns weights for all parameters.
The main benefit of categorizing the consumers into these types is to let the expert consumer

participate in making a decision by providing weights for each QoS parameter. However, the sys-
tem will provide all the QoS attribute weights for other categories of the consumers. In essence,
consumer categories are determined based on the assigned values for the current request.

Example: Suppose that Web service HW (see Figure 1) is one of the candidate Web services
as a result of FCF. Let it have the following QoS vector: < price = $50; response-time= 60
sec; error-rate = 0.01; security=“false”>. On the other hand, the consumer (Web servicex) QoS
vector is as following: < price 6 $70; response-time < 90 sec; error-rate < 0.05; reliability= 0.80;
security=“true”>. The first step is building the conformity vector: < 1, 1, 1, 0, 0 >. The first
three values of the vector are equal to one because the conditions are met between Web servicex
and Web servicey. However, since the values of reliability and security do not match, 0’s are
appended. The conformity degree based on individual QoS parameter weights is then assessed.
Assume that the consumer provides the weights as < 0.3, 0.2, 0.4, 0.1, 0.3 >, then:

Conformity(QoSx, QoSy) =
5∑

q=1

< 0.3, 0.4, 0.1, 0.1, 0.1 > ∗ < 1, 1, 1, 0, 0 >= 0.8 (5)

4.3 Level III: Web service Ranking

In this level, S2R ranks the Web services based on the range compatibility of the QoS parameters.
We use weighted sum filter function after converting the QoS parameters into a range vector in
the format of the component vector description.

Definition 3.3.1. The component vector description is expressed as:
< (QoS1, QoS1min, QoS1max), (QoS2, QoS2min, QoS2max), ..., (QoSn,QoSnmin, QoSnmax) >,
n ∈ R, where QoSi∈[1,n] is the best QoS value for parameter i, QoSimin is the minimum ac-
ceptable value for parameter i, and QoSimax is the maximum acceptable value for parameter i,
then QoSimin 6 QoSi 6 QoSimax.2

Each vector is accompanied by a decision model, i.e. ranges of all the QoS parameters as
well as their respective priorities also known as the weights. The ranking will be based on the
matching degree (i.e., how near the QoS parameter that is provided by the provider is to the

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

186 · Amal Alhosban et al.

QoS parameters required by the consumer). Note that we can use the provider QoS values in
one of two ways:(i) QoS values as advertised by the service provider, or (ii) QoS values obtained
using behavior monitoring through the community (i.e., provider reputation). The best ranked
Web service will be the Web service that is closest to the ’best’ value and the worst ranked will
be the Web service that is the farthest from the ’best’ value. However, if a Web service provides
a larger value than the best value but has a lower cost associated to it, then the system will give
this Web service a higher rank.

Definition 3.3.2. ∀ Web services WSi ∈ ω, where ω is the set of all Web services which are
similar (functional and non-functional) to the requested service:

WebServiceRankSet =

{
HighRank if WSi > µ ∧ cost 6 ℘;
LowRank if WSi < µ.

where µ is the best value of QoSj that is provided by the consumer from the vector <
(QoSj , QoSjmin, QoSjmax) >, and ℘ is the acceptable cost by the consumer. 2
We assume that all the participating Web services are able to articulate their objectives and

prioritize them [Ackoff 1978]. The articulation and prioritization of objective values is well
accepted in multi-attribute situations and operations research [Chandra et al. 2000] [Faratin
et al. 2002] [Resinas et al. 2012]. The consumer determines/assigns a priority for each QoS
parameter (e.g., the price of the service is more important than its execution time). In our
method, we covert these priorities into a weighted vector to compare the consumer requirements
with the provider offer. Table V lists the definition of symbols used henceforth. All the Web
services conform to some constraints in the solution. For instance, any QoS vector cannot have
a negative value (as shown by Equation 6), and the QoS values lie between the maximum and
minimum allowable values set by the consumer Web service (as shown by Equation 7).

Xj > 0 and Yij > 0 (6)

Xj(min) 6 Xj 6 Xj(max) and Yij(min) 6 Yij 6 Yij(max) (7)

The utility function is a multi-step calculation that evaluates the degree of matching between
the Web services. A weighted sum approach is used to combine these multiple QoS parameters.
We use a distance function to measure the difference among the proposed solutions of both the
consumer and provider Web services. Thus, lower utility values are desired as they translate
to lesser mismatch among the services. Similarly, lower values translate to higher ranks for the
solutions among the solution space. The utility value of a match is calculated as follows

∆ij =
|Xj − Yij |

Xj
(8)

rj =
n∑

j=0

(WXj ∗∆ij +WYij ∗∆ij) (9)

Rs = min
G∑

j=0

(rj) (10)

Based on the previous equations (Equation 8, Equation 9, and Equation 10) we compare the
maximum QoS for each Web service in the set. If the maximum QoS is greater than or equal Rs

then this Web service will be in the ranking set. At the end of this level we have an ordered list
of Web services based on their QoS parameters. Below is the algorithm of our technique which
contains two subfunctions FCF and NCF shown in Figure 8.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 187

Algorithm 1 Semantic Web services Matching Algorithm

1: INPUT: A Web service IP address.
2: OUTPUT: A set of ranked similar Web services..
3: Contact UDDI to determine the set of Web services (n) under the same category of Web servicex.
4: Retrieve the inputs, the outputs and the operations for (n) Web services.
5: Υ = Call FCF(n, x.paramaters, j.parameters)
6: λ = Call NFC(Υ, consumer’s experience, < QoSx1, QoSx2, ..., QoSxq >)
7: V1 =< QoSxi, QoSxi(min), QoSxi(max) >
8: V2 =< QoSji, QoSji(min), QoSji(max) >
9: Set ω=∅
10: for each Web service T ∈ λ do
11: Xj > 0 and Yij > 0
12: Xj(min) 6 Xj 6 Xj(max) and Yij(min) 6 Yij 6 Yij(max)

13: ∆ij =
|Xj−Yij |

Xj

14: rj =
n∑

j=0

(WXj ∗∆ij +WYij ∗∆ij)

15: Rs = min
G∑

j=0

(rj)

16: if QoST (max)6 Rs then
17: T ∈ ω
18: end if
19: end for
20: return ω

Input: A set of WSj(j ∈[1,n]),
x.inputi, x.outputi,x.operationi,
j.inputi, j.outputi,j.operationi,

Output: A set of functional similar Web services(Υ).
for each Web service sj ∈ n do

for each x.parameteri do
if sj .parameterk ≡ x.parameteri then

A(i,j)=1
else {sj .parameteri ̸= x.parameteri}

A(i,j)=0
end if

end for
end for

for i =1 to m do
for j=1 to n do

wi,j =
Ai,j×|Wsi|

|Op| ∗ log
Ai,j

|Opj |
end for

end for
Similarity(x, y) = |cosine

−→
Vi,

−→
Vj | = |

∑n
k=1(ik × jk)| ÷√∑n

k=1 i
2
k ×

√∑n
k=1 j

2
k

Set Υ=∅
for each Web servicey do

if Similarity(x,y)¿β then
Web servicey ∈ Υ

end if
end for
return Υ

(a) Functional context Filter(FCF)

Input: A set of Web services (Υ), consumer’s ex-
perience, QoS vector for Web servicex and WS
∈ Υ

Output: A set of non-functional similar Web
services(λ).
Set λ=∅ and ℜ=∅
for each Web service R ∈ Υ do

if Ping(R.IP) is TRUE then
R ∈ ℜ

end if
end for

for each T ∈ ℜ do
for i=1 to n do

for j=1 to m do
if QOSxi ≡ QoSRj then

Conformi =1
else

Conformi =0
end if

end for
end for
Conformity(QoSx,QoSR) =∑z

q=1 Weightq ∗ conformq

if Conformity (QoSx,QoSR)> θ then
R ∈ λ

end if

end for
return λ

(b) Non-functional context Filter(NCF)

Figure. 8: Functional and Non-functional Context Filters

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

188 · Amal Alhosban et al.

5. PERFORMANCE ANALYSIS

In this section, we define an analytical model to study the performance of the proposed technique
(S2R). Our Analytical model has 1000 Web services that are divided into three categories. We
change the number of polices that are evaluated every time (e.g., 2, 4, 8 policies) while keeping
other variables such as number of context specifications per policy, number of members per
category, etc. fixed. We focus on computing the total time and search space complexity for
checking the similarity degree of the target Web services through our three levels. We compare
our technique with three similar existing works through this analytical model.

Table V: Definition of Symbols

Symbol Definition

Xj The value of jth component of consumer’s vector.

Yij The value of jth component of ith Provider’s vector.

Xj(min) The minimum allowed value of jth component of consumer’s vector as provided by the consumer.

Xj(max) The maximum allowed value of jth component of consumer’s vector as provided by the consumer.

Yij(min) The minimum allowed value of jth component of ith Provider’s vector as provided by the provider.

Yij(max) The maximum allowed value of jth component of ith Provider’s vector as provided by the provider.

WXj The weight of jth component of consumer’s vector as provided by the consumer.

WYij The weight of jth component of ith Provider’s vector as provided by the provider.

rj Utility of the solution s for participant j.

Rs Utility of the solution s (for all participants).

Ncom Number of categories.

Np Number of policies per service.

Ncs Number of context specifications per policy.

Nmember Number of members per category.

Nr Number of rules.

Ns Number of services in a particular category.

Tpall Time to fetch all policies of a service.

Tpall1 The time to parse a service description and the network transmission delay.

Tpall2 The time spent by each category to process its sub request.

Tpone Time to fetch one policy of a service.

Tcs Time to get a context specification.

TXML Time to parse a service description.

TNet Network transmission delay.

Trep Time spent to assess a reply from a category.

Table V defines the parameters and symbols used here after. We assume that Web services are
divided into categories (e.g., under UDDI categories). To simplify the analysis, we assume that
the times to retrieve a description from a service registry and parse that description are fixed
values. Based on the categories, we compute the average matching time Tmatch which is the time
it takes to find the similar services.

Tmatch =
(TMINmatch + TMAXmatch)

2
(11)

where TMINmatch is the best case matching time and TMAXmatch is the worst case matching time.
Tmatch includes a polling time (Tpoll) and a decision time (Tdec), where, Tpoll is a combination of
Tpoll1 and Tpoll2. Tpoll1 includes the time it takes to fetch the policies, parse a service description
and the network transmission delay. In the best case, the Web service would have only a single
policy (TMINpoll1) and in the worst case it may have Ncom polices (TMAXpoll1). Hence,

TMINpoll1 = Tpone + TXML + TNet (12)

TMAXpoll1 = Tpone +Ncom × (TXML + TNet) (13)

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 189

Tpoll2 includes the time spent in each category to process its sub request.

TMINpoll2 = 2× Tpone + 2× Tcs + 4× TXML (14)

We multiply Tcs by two because we need to compare each policy twice: once for the provider
and once for the consumer. At a minimum, each policy would be compared to a single policy
on both sides. Similarly, we multiply TXML by four because we need to parse the description of
XML four times (we need to parse XML files twice for the consumer and twice for the provider:
once for determining the properties and once for determining the policies).

TMAXpoll2 = Tpone +Ncs × (TXML +Ns × (Tpone + TXML +2× Tcs+Nr × (2× TXML))) (15)

In calculating TMINpoll2 we multiply Tpone by two because we retrieve the policy for the source
and the category member. The decision time (Tdec) includes the network delay and the time
spent to asses a reply from the Web services under the same category. In the best case,

TMINdec = TNet + Trep (16)

TMAXdec = Ncom × (TNet + Trep) (17)

Based on the previous equations, Tmatch is then,

Tmatch =
(TMINpoll1 + TMAXpoll1 + TMINpoll2 +Ncom × TMAXpoll2 + TMINdec + TMAXdec)

2
(18)

The previous formulas give matching times for each technique. In what follows, we calculate
the total matching time for the four techniques: S2R, CME, CCB and Brute-force. Figure 9a.
shows a comparison between the Brute-force method (exhaustive search), CME [Medjahed and
Atif 2007], CCB [Segev 2008] and S2R for service matching time based on the number of services.
Note that Brute-force has the highest matching time especially when we have a large number of
services. CME perfroms better than Brute-force method, but still takes more time than CCB.
However, our method provides the lowest matching time, even if the number of services is large.
Figure 9b. shows the relationship between the number of services and the search space for each
matching method. We can see that Brute-force method has the largest search space and the
smallest search is attributed to S2R.

0

200

400

600

800

40 60 80 100 120 140 160 180 200 220

Se
rv

ic
e

 C
al

ls

Number of Services

S2R

CCB

CME

Brute-force

(a) (b)

Brute-force

CME

CCB

S2R

0

1000

2000

3000

4000

5000

6000

7000

40 60 80 100 120 140 160 180 200 220

M
at

ch
in

g
Ti

m
e

(m
s)

Number of Services

CME

S2R

Brute-force

CCB

CME

S2R

Brute-
force
CCB

Figure. 9: Matching Time and Search Space analysis.

In the last set of experiments, we evaluate the services matching time with variable number of
policies. Figure 10 presents the results of two, four, and eight policies. In Figure 10a. we can see
that S2R took a maximum matching time of (8,000 and 10,000 ms) when we use eight policies.
However, in the Brute-force method (see Figure 10c.) the maximum time is between (22,000 and

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

190 · Amal Alhosban et al.

25,000 ms). Figure 10b. shows that the maximum time using CME which is between (14,500 and
16,000 ms). Moreover, Figure 10d. shows that CCB took the maximum time of (15,000 to 17,000
ms). This shows that S2R provides better matching time for all variable number of policies.

(b)(a)

(c) (d)

0

5000

10000

15000

20000

25000

40 60 80 100 120 140 160 180 200 220

Ma
tch

ing
 Ti

me
 (m

s)

Number of Services

S2R

Two policies
Four policies
Eight policies

0

5000

10000

15000

20000

25000

40 60 80 100 120 140 160 180 200 220

Ma
tch

ing
 Ti

me
 (m

s)

Number of Services

Brute-force

Two policies
Four policies
Eight policies

0

5000

10000

15000

20000

25000

40 60 80 100 120 140 160 180 200 220

Ma
tch

ing
 Ti

me
 (m

s)

Number of Services

CME

Two policies
Four policies
Eight policies

0

5000

10000

15000

20000

25000

40 60 80 100 120 140 160 180 200 220

Ma
tch

ing
 Ti

me
 (m

s)

Number of Services

CCB

Two policies
Four policies
Eight policies

Figure. 10: Scalability analysis for different number of context policies. (a) S2R. (b) CME. (c) Brute-force. (d)
CBB.

Figure 11 shows the four techniques with their maximum and minimum matching times. We
can see that S2R takes the least amount of time to find the matching services, and scales very
well when the number of Web services is increased (shown in Figure 11 from 40 to 220).

Legend
40 Web Services 220 Web Services

Figure. 11: Maximum and minimum matching times.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 191

6. CONCLUSION

S2R extends the scope of Web service selection by providing a semantic Web service similarity and
ranking approach. Rather than selecting Web services randomly, we provide a selection of services
that have the highest number of operations in coherence with the consumer request, and have
corresponding acceptable QoS parameter values. Our method combines semantic and syntactic
matching with QoS requirements. In addition, our method ranks the available candidate services
to provide the user with a list of candidate services even if no exact match is found. Experiment
results show that our proposed technique improves the service selection process by reducing the
time and search space complexity. In the future, we plan to investigate techniques for enabling
automated planning and replacement of faulty Web services with similar ones that have high
utility.

REFERENCES

Ackoff, R. L. 1978. Redesigning the future. Wiley, New York.

Alhosban, A., Hashmi, K., Malik, Z., and Medjahed, B. 2011. Assessing fault occurrence likelihood for service-
oriented systems. In Proceedings of the 11th International Conference on Web Engineering. 59–73.

Alrifai, M., Skoutas, D., and Risse, T. 2010. Selecting skyline services for qos-based web service composition.
In Proceedings of the 19th international conference. WWW ’10. ACM, New York, USA, 11–20.

Bäına, K., Benali, K., and Godart, C. 2001. A process service model for dynamic enterprise process intercon-
nection. In Proceedings of the 9th International Conference on Cooperative Information Systems. CooplS ’01.

Springer-Verlag, London, UK, 239–254.

Bergmann, R., Richter, M. M., Schmitt, S., Stahl, A., and Vollrath, I. 2001. Utility-oriented matching:

A new research direction for case-based reasoning. In In professionlles wissens managment: Erfahrungen Und
Visionen. Proceeding of the 1st conference knowledgr management. Shaker. 264–274.

Bouguettaya, A., Krüger, I., and Margaria, T., Eds. 2008. Service-Oriented Computing - ICSOC 2008, 6th
International Conference, Sydney, Australia, December 1-5, 2008. Proceedings. Lecture Notes in Computer
Science, vol. 5364.

Chakraborty, D., Perich, F., Joshi, A., Finin, T. W., and Yesha, Y. 2002. A reactive service composition ar-

chitecture for pervasive computing environments. In Proceedings of the IFIP TC6/WG6.8 Working Conference
on Personal Wireless Communications. PWC ’02. Kluwer, B.V., Deventer, The Netherlands, The Netherlands,
53–62.

Chan, N. N., Gaaloul, W., and Tata, S. 2011. A web service recommender system using vector space model
and latent semantic indexing. Advanced Information Networking and Applications, International Conference

on 0, 602–609.

Chandra, S., Ellis, C. S., and Vahdat, A. 2000. Differentiated multimedia web services using quality aware
transcoding. In INFOCOM. 961–969.

Comuzzi, M. and Pernici, B. 2009. A framework for qos-based web service contracting. ACM Trans. Web 3,
10:1–10:52.

Dey, A. K. 2000. Providing architectural support for building context-aware applications. Ph.D. thesis, Atlanta,
GA, USA. AAI9994400.

Erradi, A., Maheshwari, P., and Tosic, V. 2007. Ws-policy based monitoring of composite web services. In
Proceedings of the Fifth European Conference on Web Services. IEEE Computer Society, Washington, DC,

USA, 99–108.

Faratin, P., Sierra, C., and Jennings, N. R. 2002. Using similarity criteria to make issue trade-offs in automated
negotiations. Artif. Intell. 142, 2, 205–237.

Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., and Xu, D. 2001. An xml-based quality of service enabling
language for the web. Tech. rep., Champaign, IL, USA.

Gu, Z., Li, J., Tang, J., Xu, B., and Huang, R. 2007. Verification of web service conversations specified in wscl.
In Proceedings of the 31st Annual International Computer Software and Applications Conference - Volume 02.
COMPSAC ’07. IEEE Computer Society, Washington, DC, USA, 432–437.

Guoping, Z., Huijuan, Z., and Zhibin, W. 2009. A qos-based web services selection method for dynamic web

service composition. In Proceedings of the 2009 First International Workshop on Education Technology and
Computer Science - Volume 03. ETCS ’09. IEEE Computer Society, Washington, DC, USA, 832–835.

Heuvel, W.-J. v. d., Yang, J., and Papazoglou, M. P. 2001. Service representation, discovery, and composition
for e-marketplaces. In Proceedings of the 9th International Conference on Cooperative Information Systems.
CooplS ’01. Springer-Verlag, London, UK, 270–284.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

192 · Amal Alhosban et al.

Karimzadehgan, M., Li, W., Zhang, R., and Mao, J. 2011. A stochastic learning-to-rank algorithm and its
application to contextual advertising. In Proceedings of the 20th international conference on World wide web.
WWW ’11. ACM, New York, NY, USA, 377–386.

Kouadri Mostéfaoui, G. and Brézillon, P. 2006. Context-based constraints in security: Motivations and first
approach. Electron. Notes Theor. Comput. Sci. 146, 85–100.

Krishnamurthy, V. and Babu, C. 2012. Pattern based adaptation for service oriented applications. SIGSOFT

Softw. Eng. Notes 37, 1 (Jan.), 1–6.

Lee, C. and Helal, S. 2003. Context attributes: An approach to enable context-awareness for service discovery.
In Proceedings of the 2003 Symposium on Applications and the Internet. SAINT ’03. IEEE Computer Society,
Washington, DC, USA, 22–.

Lee, Y. 2011. bqos(business qos) parameters for soa quality rating. In FGIT-ASEA/DRBC/EL. 497–504.

Li, B., Xu, Y., Wu, J., and Zhu, J. 2012. A petri-net and qos based model for automatic web service composition.
JSW 7, 1, 149–155.

Li, L. and Horrocks, I. 2003. A software framework for matchmaking based on semantic web technology. In
Proceedings of the 12th international conference. WWW ’03. ACM, New York, USA, 331–339.

Maamar, Z., Benslimane, D., and Narendra, N. C. 2006. What can context do for web services? Commun.
ACM 49, 98–103.

Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K., Mcguinness, D. L.,

Sirin, E., and Srinivasan, N. 2007. Bringing semantics to web services with owl-s. World Wide Web 10,
243–277.

Mecella, M., Pernici, B., and Craca, P. 2001. Compatibility of e -services in a cooperative multi-platform
environment. In Proceedings of the Second International Workshop on Technologies for E-Services. TES ’01.
Springer-Verlag, London, UK, 44–57.

Medjahed, B. and Atif, Y. 2007. Context-based matching for web service composition. Distrib. Parallel
Databases 21, 5–37.

Menascé, D. A. and Dubey, V. K. 2007. Utility-based qos brokering in service oriented architectures. In ICWS.

422–430.

Narayanan, S. and McIlraith, S. A. 2002. Simulation, verification and automated composition of web services.

In Proceedings of the 11th international conference. WWW ’02. ACM, New York, USA, 77–88.

Nepal, S., Sherchan, W., Hunklinger, J., and Bouguettaya, A. 2010. A fuzzy trust management framework
for service web. In ICWS. 321–328.

Paolucci, M. and Wagner, M. 2006. Grounding owl-s in wsdl-s. In Proceedings of the IEEE International
Conference on Web Services. IEEE Computer Society, Washington, DC, USA, 913–914.

Papazoglou, M. P., Pohl, K., Parkin, M., and Metzger, A., Eds. 2010. Service Research Challenges and
Solutions for the Future Internet - S-Cube - Towards Engineering, Managing and Adapting Service-Based
Systems. Lecture Notes in Computer Science, vol. 6500. Springer.

Pernici, B. and Siadat, S. H. 2011. Adaptation of web services based on qos satisfaction. In Proceedings of the

2010 international conference. ICSOC’10. Springer-Verlag, Berlin, Heidelberg, 65–75.

Resinas, M., Fernandez, P., and Corchuelo, R. 2012. A bargaining-specific architecture for supporting auto-

mated service agreement negotiation systems. Sci. Comput. Program. 77, 1, 4–28.

Segev, A. 2008. Circular context-based semantic matching to identify web service composition. In Proceedings of
the 2008 international workshop on Context enabled source and service selection, integration and adaptation:
organized with the 17th International World Wide Web Conference (WWW 2008). CSSSIA ’08. ACM, New
York, NY, USA, 7:1–7:5.

Sherchan, W., Nepal, S., Hunklinger, J., and Bouguettaya, A. 2010. A trust ontology for semantic services.

In IEEE SCC. 313–320.

Sycara, K., Klusch, M., Widoff, S., and Lu, J. 1999. Dynamic service matchmaking among agents in open

information environments. SIGMOD Rec. 28, 47–53.

Xia, H. and Yoshida, T. 2007. Web service recommendation with ontology-based similarity measure. In Pro-
ceedings of the Second International Conference on Innovative Computing, Informatio and Control. ICICIC
’07. IEEE Computer Society, Washington, DC, USA, 412–.

Yao, D., Lu, B., Fu, F., and Ji, Y. 2010. A risk assessment algorithm based on utility theory. In Proceedings of
the Advanced intelligent computing theories and applications, and 6th international conference on Intelligent

computing. ICIC’10. Springer-Verlag, Berlin, Heidelberg, 572–579.

Yeom, G., Tsai, W.-T., Bai, X., and Lee, Y. 2011. A design of policy-based composite web services qos

monitoring system. IJCCBS 2, 1, 79–91.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

S2R: A Semantic Web service Similarity and Ranking Approach · 193

Amal Alhosban is a Ph.D. candidate in the Department of Computer Science at Wayne
State University. She received her Masters degree in Computer Science from Al al-Bayt
University, Jordan, and joined there as a faculty member. Since starting her doctoral
studies at Wayne State University she has served under various capacities (e.g. Grad-
uate Research / Teaching Assistant, Student Assistant, and Part Time Faculty) in the
Department of Computer Science. Her research interests include service computing, re-
liable distributed systems, semantic Web, data mining and wireless networks. She has
published several research papers on these topics, and is an active member of ACM and
IEEE.

Khayyam Hashmi is a Ph.D. candidate in the Department of Computer Science at
Wayne State University, where he is a member of the Services COmputing REsearch
(SCORE) Laboratory. He received his M.S in computer science degree for National Uni-
versity of Computer and Emerging Sciences, Pakistan. His research interests include
service computing, distributed systems, semantic web and software process engineering.

Zaki Malik is an Assistant Professor of computer science at Wayne State University,
where he heads the Services COmputing REsearch (SCORE) Laboratory. His research in-
terests lie broadly in service computing, reliable distributed systems, Web databases, and
semantic integration systems. The focus of the research is on applying service-oriented
techniques in these areas to build computer systems that are deployable in practice. He
has published several papers in the above areas in top journals and conferences (e.g.,
VLDBJ, WWWJ, ICSOC, ICWS, etc), and authored a book on Trust Management in
Service-oriented Environments. He also serves in various capacities on the committees
and boards of database and service-oriented computing conferences and journals. He re-
ceived the PhD degree in Computer Science from Virginia Tech, and is a member of the
IEEE and ACM.

Brahim Medjahed is Associate Professor at the University of Michigan - Dearborn’s
Department of Computer and Information Science. He received the Ph.D. degree in
computer science from Virginia Tech in May 2004. He received the 2004 ”Outstanding
Graduate Research Award” at Virginia Tech’s Department of Computer Science. He also
received the Computer Journal Wilkes Award for 2008 (Best paper award). His research
interests include service-oriented computing, Web services, data integration, and semantic
Web. He authored a book published by Springer on semantic Web service composition.
He has published more than 60 papers in international journals and conferences.

International Journal of Next-Generation Computing, Vol. 3, No. 2, July 2012.

