
Temporal-Textual Retrieval: Time and Keyword
Search in Web Documents

Ali Khodaei, Cyrus Shahabi

Computer Science Department, University of Southern California, USA

and

Amir Khodaei

Electrical Engineering and Computer Sciences Deptt., University of California, Berkeley, USA

As the web ages, many web documents become relevant only to certain time periods, such as web-pages containing

news and events or those documenting natural phenomena. Hence, to retrieve the most relevant pages, in addition
to providing the relevant keywords, one may desire to identify the relevant time period(s) as well, e.g., “Barack

Obama 1980-1985”. Unfortunately, not much work has been done by industry or academia to support this type

of searches. To the best of our knowledge, the only way that some search engines exploit the time information
in the user query is to filter out those resulting web pages whose publication/modification time are not within

the queried time interval. In this paper, we propose a new indexing and ranking framework for temporal-textual

retrieval. The framework leverages the classical vector space model and provides a complete scheme for indexing,
query processing and ranking of the temporal-textual queries. We propose a variety of approaches to exploit

popular keyword and temporal index structures. We present a novel hybrid index structure which indexes both

the temporal and the textual aspects of the documents in a unified, integrated manner. We also study how to
rank documents by seamlessly combining their temporal and textual features. We develop a new scoring schema

called temporal tf-idf to compute the temporal relevance of a document to a query, and we combine this score
with the textual relevance to compute the overall relevance score of the document to the query. We present both

a cost model analysis and an extensive set of experiments over real-world datasets (New York Times Annotated

Corpus and Freebase) to evaluate the proposed framework and demonstrate its efficiency and effectiveness.

Keywords: Web Search, Time-aware ranking, Indexing, Temporal information retrieval

1. INTRODUCTION

For the first time in human history, there is a medium, the World Wide Web, that is continuously
documenting our lives as they happen. Hence, it is such a waste to only be able to search this
rich history by keywords and not by time. The web is no longer a snapshot of our history, neither
should its search scheme. Unfortunately, the content of web-pages is currently not time-tagged,
but this will become common practice in the near future (the same way that pages are now being
geo-tagged) and until then, many techniques for automatic extraction of temporal information
from documents [Verhagen et al. 2009], [Wong et al. 2005], [Alonso et al. 2007] will serve the
purpose. Consequently, the challenge is how to enable efficient search of time-tagged web-pages?
Or even more fundamentally, how to rank the results of a keyword-time search? Should a page
with more textual similarity to the query keywords get ranked higher or the one with less textual
similarity but higher temporal similarity? What does temporal similarity or relevance even mean
and how it should be quantified? This paper is our initial attempt to address some of these
fundamental and exciting open problems.

Several search engines have already started to exploit time in their search process. For instance,
Google has started to add a feature called search result option that allows users to filter their
search results by a custom time interval. For these search engines, the time attribute is usually the

This research is supported in part by Award No. 2011-IJ-CX-K054 from National Institute of Justice, Office of
Justice Programs, U.S. Department of Justice, as well as the NSF grant IIS-1115153, the USC Integrated Media

Systems Center (IMSC), and also by unrestricted cash gifts from Google, Microsoft and NGC. The opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and do not

necessarily reflect the views of the sponsors such as NSF or NIJ.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 289

d2

d1

Q

1980 1985 1990 1995 2000 2005 2010

d4

d3

d5
time

d6

(a)

0

6

4

9

4

war

7d5

11d4

5d3

10d2

12d1

Iraq

KeywordsDocument

Al-Anfal
Campaign

Reagan
Presidency

Gulf War

Kurdish Civil
War

Iran-Iraq

War

Iraq Invasion

Title

1986-1989

1981-1985

1990-1991

1991-1997

1980-1988

2003-2010

Time

00d6

(b)

A tempo-textual query on documents with time information.

publication time (or the last modified time) of a document. The main assumption here is that the
time-tag is a single time point, which simplifies the temporal “retrieval” problem to the temporal
“filter” problem. That is, the final relevance (and ranking) of a document is still determined
by the document’s textual relevance to the query keywords, and the temporal feature of the
document is only used to filter the documents in or out of the final result set. To illustrate why
this is a simpler problem, consider the analogous situation where each web document contains
a single keyword. In this case, for each web document, we simply need to check whether its
keyword exists in the list of query keywords or not. There would be no need for relevance metrics
such as tf-idf or indexing techniques such as inverted files. Similarly, if we relax the assumption
that the temporal aspect of a web document is represented by a single time point, but by one or
more time points and/or intervals, then we need temporal similarity metrics and index structures
to efficiently estimate the temporal relevance of a web document to one or more query time
points/intervals. Note that given the sophistication of the web content, it is no longer feasible to
represent the temporal content of many web documents with a single time point. For instance, a
Wikipedia page describing the biography of an individual is very likely to have several references
of time, each relating to an event/achievement during the person’s lifetime. Even if we consider
representing only the published and modified time of a web document (instead of its content
time), a single time point representation is simplistic as the publication and/or modification of a
web document evolves through multiple time intervals or time points.

This paper considers a new kind of top-k query that takes into account both the temporal
information in a document’s content and the textual keywords of the document. An example
query may search for “Lakers Celtics Rivalry between years 1984 and 1986”. We call this
type of query a Temporal-Textual Retrieval (“tempo-textual” for short) query. The answer to a
top-k tempo-textual query is a list of k documents ranked according to a scoring function that
combines their textual and temporal relevances to query keywords and the query timestamp,
respectively. The tempo-textual query is different from queries that retrieve textually relevant
documents within a time range or queries that rank the relevant documents based only on their
temporal feature.

Example 1: Consider a collection of web pages, each one describing an event using tex-
tual keywords and also including one (or more) time-intervals (e.g., days, month, years or even
decades). Suppose Tom is a student researching the history of war in Iraq between years 1982
to 1992. He submits a query to the system with two textual keywords “Iraq” and “war” and
specifies “1982 - 1992” as the temporal expression.

Suppose there exist six documents in our collection with temporal information close (in time)
to the query’s temporal expression. Figure 1a shows these documents’ temporal information plus
the query’s temporal expression (for a better readability, time-intervals are shown at different
levels). Figure 1b shows each document’s title and the frequencies of the two query keywords in
each document. Tom wants to find top-3 relevant documents to the query.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

290 · Ali Khodaei et al.

In this example, document d6 is not a relevant document since it does not contain any of the
query keywords. Document d1 is not very relevant to the query either, since its time-interval is
very far from the query’s time-interval (interestingly, this document is very likely to be the most
relevant result when a regular textual search is used). The other four documents are overlapping
(in time) with query’s time-interval and contain at least one of the query keywords, therefore
all could be potentially of interest to the user. However, it is not clear how to measure the
relevance for documents and rank them in accordance with each other. For instance, it is clear
that document d2 should have a high relevance since its time-interval is very similar (has a
significant overlap) to the query’s time-interval and also contains both query keywords. On the
other hand, it is not clear how relevant document d5 is to the query. Although its time-interval
is contained in the query time-interval, it does not have one of the query keywords. The other
two documents, d3 and d4 both have the two query keywords and both have overlaps with the
query time-interval (with various periods of overlap).

In this paper, we first present a simple baseline indexing technique to answer the temporal-
textual queries. The baseline approach uses only one textual index structure and calculates the
temporal relevance on-the-fly. We also introduce three new hybrid index structures to index
documents based on both the temporal and textual features of the documents. Using one textual
index structure (inverted file) and one temporal index structure (interval-tree) we present three
different variants of combining a textual index and a temporal index to answer temporal-textual
queries. We argue that these techniques would not be efficient in all circumstances and their
performance is highly dependent on the distribution/selectivity of the data (e.g., distribution of
textual keywords and temporal intervals in the corpus) and type of queries issued.

Next, we introduce our novel tempo-textual retrieval framework based on the classical vector
space model. Following the same intuitions and techniques used in textual searches and inspired
by the tf-idf schema in textual context, we define a new scoring schema called temporal tf-idf for
temporal context. Using textual and temporal tf-idf, we define a new tempo-textual relevance
score and ranking.

The third contribution of this paper is a novel tempo-textual index structure. Designing an
efficient index structure for both textual and temporal data has several challenges. First, text
and time are two totally different data types requiring different index structures. An ideal index
should be able to handle both the temporal and the textual data simultaneously and in an
integrated fashion. Second, the meaning of temporal relevance and textual relevance and how
to combine them into one aggregate relevance score using the index structure have to be defined
accurately. Moreover, the index structure needs to support cases where the influences of text and
time on the overall relevance are different. Third, the ranking and search processes should not
be separated. Otherwise, the ranking process will rank all the candidate documents (instead of
only the relevant documents), making the query processing inefficient. Last but not the least,
it should be straightforward to integrate the proposed index structure into the existing search
engines.

In this paper, we propose a new hybrid index structure called Tempo-Textual Inverted Index
(“T2I2” for short) for efficient search and ranking of time and text in a unified manner. T2I2 is
an inverted index capable of indexing and searching both textual and temporal data in a similar,
integrated manner. Towards this end, the time domain is divided into a number of consecutive
cells and each cell is treated similar to a textual keyword. We present the structure of T2I2, and
discuss two efficient algorithms for answering tempo-textual queries using T2I2.

Overall, we present a complete framework of indexing, query processing and ranking, for an-
swering tempo-textual queries. Using experimental evaluation, we show that the proposed frame-
work is both efficient and accurate.

The remainder of this paper is organized as follows. In Section 2, we formally define the
tempo-textual search problem. Section 3 presents our baseline approach for simple processing
of the tempo-textual queries. In Section 4, we introduce three new hybrid index structures for

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 291

the processing of tempo-textual queries. In Section 5, we introduce a new ranking mechanism
to calculate the temporal relevance and tempo-textual relevance scores. In Section 6, we present
our efficient hybrid index structure and show how it is used in query processing. We discuss how
the proposed framework can be extended to support more general scenarios in Section 7. Section
8 empirically evaluates our proposed solution in terms of effectiveness and performance. Section
9 presents the related work to our problem. Finally, Section 10 presents the conclusion.

2. PRELIMINARIES

2.1 Problem Definition

We assume a collection D = {d0,d1,...,dn} of n documents (web pages). Each document d is
composed of a set of keywords Kd and a timespan1 Td represented by two timestamps: begin
time denoted by ts and end time denoted by te. Terms ts and te represent the number of time
units (e.g. days) from a reference point in time (which is the same for all the documents). The
difference between te and ts (in number of time units) is defined as timespan length. For a better
readability, we will use a normal date format (e.g. November 7th, 1980) for ts and te in our
examples. We will use the timespan to refer to Td in this paper.

Tempo-textual query: A tempo-textual query is defined as Q = 〈Kq, Tq〉, where Tq is the
temporal part of query specified as one timespan and Kq is a set of keywords in the query.

Temporal relevance: Temporal relevance between a document d and the query q is defined
based on the type of the temporal relationship that exists between Td and Tq. We focus only on
the overlap relationship, although our approach can easily be extended to cover other temporal
relationships [Allen 1981]. Subsequently, we define temporal relevance as follows: A document d
is temporally relevant to the query q if the query’s timespan has a non-empty intersection with
the document’s timespan, i.e., Tq ∩ Td 6= ∅. The larger the area of the intersection is, the more
temporally relevant d and q are. We denote temporal relevance of document d to query q by
tmRelq(d).

Textual relevance: A document d is textually relevant to the query q if there exists at least
one keyword belonging to both d and q, i.e., Kq ∩Kd 6= ∅. The more keywords q and d has in
common, the more they are textually relevant. We represent textual relevance of document d to
query q by txRelq(d). See Section 2.2 for more information regarding textual relevance.

Tempo-textual relevance: A document d is tempo-textual relevant to the query q if it is
both temporally and textually relevant to the query q. Tempo-textual relevance can be defined
by a monotonic scoring function F of textual and temporal relevance. For example, F can be the
weighted sum of the temporal and textual relevances:

Fq(d) =

α.tmRelq(d) + (1− α).txRelq(d) if tmRelq(d) > 0

and txRelq(d) > 0

0 otherwise

(1)

α is a parameter assigning relative weights to temporal and textual relevance. The output of
function Fq(d) is the tempo-textual relevance score of document d to query q, and is denoted by
ttRelq(d). In Section 5 we show in details how to calculate tempo-textual relevance using our
proposed index.

Tempo-textual search: A tempo-textual search identifies all the documents (web pages) that
are tempo-textual relevant to q. The result are the top-k documents sorted based on documents’
tempo-textual relevance scores. The parameter k is determined by the user.

1Throughout our definitions and examples, for simplicity we consider one timespan for each document and one

timespan for each query. In Section 7, we show how to generalize this model to multiple timespans.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

292 · Ali Khodaei et al.

2.2 Textual Relevance

2.2.1 tf-idf Score. All current textual (keyword) search engines use a similarity measure to
rank and identify potential (textual) relevant documents. In most keyword queries, a similarity
measure is determined by using the following important parameters:

(1) fd,k: the frequency of keyword k in document d

(2) max(fd,k): maximum value of fd,k over all the keywords in document d

(3) fd,k: normalized fd,k, which is
fd,k

max(fd,k)

(4) fk: the number of documents containing one or more occurrences of keyword k

Using these values, three monotonicity observations are enforced [Zobel et al. 2006]: (1) less
weight is given to the terms that appear in many documents; (2) more weight is given to the
terms that appear many times in a document; and (3) less weight is given to the documents
that contain many terms. The first property is quantified by measuring the inverse of frequency
of keyword k among the documents in the collection. This factor is called inverse document
frequency or the idf score. The second property is quantified by the raw frequency of keyword
k inside a document d. This is called term frequency or tf score, and it describes how well that
keyword describes the contents of the document [Baeza-Yates et al. 1999]. The third property
is quantified by measuring the total number of keywords in the document. This factor is called
document length.

A simple and very common formula to calculate the similarity between a document d and the
query q is shown in Equation 2.

wq,k = ln(1 +
n

fk
); wd,k = ln(1 + fd,k);

Wd =

√∑
k

w2
d,k; Wq =

√∑
k

w2
q,k;

Sq,d =

∑
k wd,k.wq,k

Wd.Wq
.

(2)

n is the total number of documents in the system. Variable wd,k captures the tf score while
variable wq,k captures the idf score. Wd represents document length and Wq is query length
(which can be neglected since it is a constant for a given query). Finally, Sq,d is the similarity
measure (cosine similarity between document and query vectors) showing how relevant document
d and query q are. In this case (textual context) it is the same as txRelq(d).

3. BASELINE APPROACH

In this section, we briefly discuss our baseline index structure and algorithm that exploit existing
techniques for processing tempo-textual queries.

IIO (Inverted Index Only): The basic idea behind IIO is to leverage the inverted index to
calculate textual relevance using a classical tf-idf model of all the documents, therefore obtaining
a ranked list of the documents based on their textual relevance. The list is then scanned to
check if each (textually relevant) document’s temporal expression has a non-empty overlap with
the query’s temporal expression. For each overlapping document d, we calculate the temporal
relevance between d and the query q as a simple overlap function as follows:

tmRelq(d) =

{
Td∩Tq

Tq
if (Td ∩ Tq) < Tq

1 otherwise
(3)

where
Td∩Tq

Tq
is the area of overlap between the document time interval Td and the query time

interval Tq divided by the area of Tq. After calculating the temporal relevance, we compute the

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 293

final relevance score as shown earlier in Equation 1 for the documents returned from the inverted
index. We sort the results and return the top-k results to the user. Using this straightforward
simple approach, we do not need to calculate the temporal relevance for all the documents but
only for the documents with the textual relevance greater than 0. We can use the following opti-
mization to improve the performance of the above approach. While scanning (sorted) documents
from the inverted index, if the score of d is smaller than the score of the kth document in the
intermediatory results, then we skip this document and go to the next one. Otherwise (or if we
do not have k intermediatory results yet), we insert d into the list of k intermediatory results (in
its proper position) and remove the kth element from the list. We stop scanning when we are sure
that none of the existing documents can generate a score larger than the current kth document
in the intermediatory result set (or when we reach the end of the list). The IIO algorithm only
uses the inverted index and calculates the temporal relevance on-the-fly.

4. HYBRID APPROACHES

The baseline method described previously only makes use of a textual index structure (i.e.,
inverted file) and does not employ a temporal indexing structure. As a result, all the documents
returned from the textual index (which may be a very large set) must be accessed and temporal
relevance for most, if not all, of the documents must be computed. In this section, we propose
three hybrid index structures, each using both temporal indexing and textual indexing thus
enabling us to prune irrelevant documents both temporally and textually. As before, we use
an inverted file as the textual index structure. For temporal indexing, we use an interval-tree
[Preparata et al. 1985] which allows us to efficiently find all time intervals that overlap with
a given (query) time interval. Interval tree is an ordered tree data structure to hold intervals.
Specifically, it allows one to efficiently find all intervals that overlap with any given interval (or
point). An interval tree for a set of m intervals uses O(m) storage and has height O(log m). It can
be built in O(m.logm) time. It takes O(log m) time to process a query and return overlapping
intervals. Further details regarding interval tree can be found in [Preparata et al. 1985].

In all index structures in this section, an interval-tree is built on documents’ time inter-
vals and then used to filter documents overlapping with the query’s temporal expression. By
adding a few simple steps to the search algorithm of the interval-tree, we also calculate the
amount of overlap during the search process. Using the overlap duration, we calculate nor-
malized temporal scores (tmRelq(d) in Equation1) for each document as follows: tmRelq(d) =
overlapLengthq(d)/maxOverlapLength where overlapLengthq(d) is the length of overlap be-
tween document d’s and query q’s temporal expressions and maxOverlapLength is maximum of
such values for q.

4.1 Inverted File and Interval-Tree Index (FnT)

This hybrid index structure combines the inverted file and interval-tree separately and in an
independent fashion. In this structure, documents are indexed by both index structures sepa-
rately. While all textual information is indexed by an inverted file (as is done in textual search
engines), all the temporal information is indexed by an interval-tree. The primary difference
between the interval-tree used here and traditional interval-trees is that, here each leaf node of
the interval-tree points to a list of documents containing the time-interval corresponding to that
leaf node.

With this structure, when processing query q two independent processes take place. First,
the textual part of the query Kq is fed into the inverted file and the textual relevance for each
document is calculated. Second, the temporal part of the query Tq is sent to the interval-tree
and temporal intervals overlapping with Tq are found. Subsequently, for each overlapping time-
interval, the temporal relevance between each time-interval and Tq is computed. Finally, lists
for each leaf node (time-interval) are accessed and corresponding temporal relevance values are
assigned to the documents in each list. After finishing above steps, two sets of lists are merged,
final relevance scores are computed and top-k results are returned.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

294 · Ali Khodaei et al.

4.2 Inverted File Then Interval-Tree Index (FtT)

With the inverted file then interval-tree index structure, (vocabulary of) an inverted file is con-
structed on top of all textual keywords. However, instead of pointing to inverted lists, each
keyword in the vocabulary points to (the root node of) an interval tree. Interval tree for keyword
ki is built on temporal-intervals existed in documents containing ki. Each leaf node of each
interval-tree points to a (page) list of documents that 1) their time-interval overlaps with the
time-interval corresponding to that leaf node, and 2) contain the textual keyword pointing to
that interval-tree. In other words, we get a set of (page) lists whose entry is determined by a pair
of a keyword and a time-interval. We call a pair of a keyword and a time-interval time-interval-
keyword (TIK) if there is document which contains the textual keyword and whose temporal
expression (time-interval) overlaps with the time-interval.

For query processing, textual part of the query Kq is read first. For each keyword in the
query, corresponding interval-tree is accessed and processed until all leaf nodes (time-intervals)
overlapping with the temporal part of the query are found. For each time-interval, the temporal
relevance is calculated and saved. Next, (page) lists for each leaf node (time-interval) are tra-
versed. While traversing page lists, textual relevance of each document is also computed. Finally,
all the page lists (from all TIKs) are merged and temporal and textual relevances are combined.

4.3 Interval-Tree Then Inverted File Index (TtF)

With the interval-tree then inverted file index structure, first an interval-tree is constructed on
top of all the time-intervals in the system. Instead of pointing to a list, each leaf node of the
tree points to an inverted file. An inverted file for each time-interval (leaf node) is built on top
of all documents overlapping with that time-interval. As a result, interval-tree then inverted file
structure has one interval tree and m (number of unique time intervals in the system) inverted
files. Similar to inverted file then interval-tree, we get a set of page lists whose entry is a pair of
a time-interval and a textual keyword (this time, time-interval first and then textual keyword).

For processing query q, the temporal part of the query Tq is first fed into the interval-tree to find
overlapping time-intervals with Tq. For each time-interval, temporal relevance between that time-
interval and query time-interval (Tq) is computed and saved. Next, inverted file corresponding
to the time-interval (leaf node) is accessed and processed for the textual part of the query Kq.
While accessing the lists, the textual score is also calculated. Finally, all lists from all TIKs
(time-interval keyword pairs) are merged and textual and temporal scores are combined.

5. SEAMLESS TEMPO-TEXTUAL RANKING

In this section, we define a new scoring mechanism to calculate the temporal relevance and tempo-
textual relevance scores. Following the same intuitions and concepts used in regular (textual)
searches, we define new concepts and parameters for temporal data. Most notably, inspired by tf-
idf in textual context, we define a new scoring mechanism called temporal tf-idf for the temporal
context. Using (textual) tf-idf scores and temporal tf-idf scores, the tempo-textual relevance is
defined and can be used to rank the documents based on both the temporal and textual aspects
of the data, simultaneously and efficiently. We discuss two different approaches to calculate the
tempo-textual relevance using the temporal tf-idf score. Several variants of the final similarity
measure are also presented.

5.1 Temporal tf-idf

In order to be able to use the analogous ideas used in the regular tf-idf score, we need to treat
temporal data similar to textual data. Most importantly, we need to represent time which is
coherent and continuous in nature, as disjunct and set-oriented units of data - similar to the
textual keywords. Hence, we partition the time domain into consecutive cells and assign unique
identifiers to each cell. Therefore, each timespan in the document can be associated with a set
of cell identifiers. Since we are using overlap as our main temporal query type, these cells are

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 295

Example 1 with temporal cells

defined as the cells which overlap with the document timespan. With temporal tf-idf, the overlap
of a cell with the document is analogous to the existence of a keyword in the document with
tf-idf. However, knowing the overlapping cells is not enough. We need to know how well a cell
describes the temporal content of the document. We use the overlap area between each cell and
the document to provide a measure of how well that cell describes the document. Analogous
to frequency of term t in document d, we define frequency of cell c in document d as follows:
fd,c = Td∩c

c which is the area of overlap between the document timespan Td and cell c divided by
the area of cell c. Similar to the frequency of a keyword which describes how well the keyword
describes the documents textual contents (Kd), the frequency of a cell describes how well the
cell describes the documents temporal contents (Td). The more the overlap, the better this cell
describes the document timespan and viceversa.
Now we can define the following parameters analogous to those of Section 2.2:

(1) fd,c: the frequency of cell c in document d

(2) max(fd,c): maximum value of fd,c over all the cells in document d

(3) fd,c: normalized fd,c, which is
fd,c

max(fd,c)

(4) fc: the number of documents containing one or more occurrences of cell c

Using the above parameters, we revisit three monotonicity properties discussed in Section 2.2,
this time in temporal context: (1) less weight is given to cells that appear in many documents;
(2) more weight is given to cells that overlap largely with a document; and (3) less weight is given
to documents that contain many cells.
The first property is quantified by measuring the inverse of frequency of a cell c among the
documents in the collection. We call this temporal inverse document frequency or idftemp score.
The second property is quantified by the frequency of cell c in document d (as defined earlier).
This is called temporal term frequency or tftemp score and describes how well that cell describes
the document temporal contents (i.e. Td). The third property is quantified by measuring the
total number of cells in the document and is called document temporal length.

Among the above properties, properties (2) and (3) are more intuitive. Property (2) states
that more weight should be given to the cells having a large overlap area with the document. The
larger the overlap, the better that cell describes the document timespan. For example, in Figure
2, cell c6 better describes the document d1 than cell c5. Property (3) states that less weight
should be given to those documents whose timespan covers more cells. Assuming all the other
parameters are equal, a document with a smaller coverage (fewer number of cells) should get a
higher weight than a document with a larger coverage. Assume two documents one containing
history of the world from year 1503 to 2000 and the other one containing history of the world
only in 1938. When searching for/about year 1938, the second document should be assigned more
weight since it is a better representative of year 1938 than the first document. This is analogous
to the fact that in textual context, more weight is given to the documents that contain fewer
keywords.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

296 · Ali Khodaei et al.

Contrary to properties (2) and (3), property (1) is not very intuitive. It states that less
weight is given to the cells appearing in more documents. In the textual context, the idf score
is a weighting factor determining the importance of each keyword independent of the query. It
assigns more weight to keywords appearing in fewer documents, since those are more meaningful
keywords. However, the definition of meaningful cell is not very clear in the temporal context.
A popular cell (time) - a cell overlapping with many documents - is a very meaningful cell for
some users/applications, while for some others, a distinctive cell (time) - cell appearing in few
documents - is more meaningful. To cover both cases, we define two variants of temporal idf
of cell c: inverse of frequency of a cell c among the documents (inverted idftemp) and direct
frequency of a cell c among the documents (direct idftemp).

5.2 Tempo-Textual Relevance

In this section, we introduce two novel approaches for calculating tempo-textual relevance between
a document d and a query q. With the uni-score approach, one similarity measure and one
document length are used to combine the temporal relevance and textual relevance into one
equation. With the dual-score approach, temporal and textual relevance are calculated separately,
using two document lengths, one for each relevance. Thus a new temporal similarity measure
analogous to the textual similarity measure is defined. Both approaches can use the parameter
α to assign relative weights.

5.2.1 Uni-Score Approach. After partitioning each document timespan to a set of cells, defin-
ing the temporal tf-idf score and creating one document temporal length for each document
timespan, the cells are ready to be treated in a similar manner as the keywords. We define term
as the smallest unit of data describing each document which is either a keyword or a cell. If we
represent keywords associated with a document d by Kd and the cells associated with the same
document by Cd, then the set of terms associated with document d is represented by Ud and
defined as follows: Ud = Kd ∪ Cd.

Simply stated, the document’s terms are the union of the document’s keywords and cells. For
instance, in Example 1: Ud1 = {Iraq, war, c5, c6} (see Figures 1b and 2). In order to be able to
define a single similarity measure capturing both the textual and temporal relevance, we define
the following parameters:

(1) fd,u: the frequency of term u in document d =

{
fd,k if u is keyword

fd,c if u is cell

(2) fd,u: the normalized frequency of term u in document d =

{
fd,k if u is keyword

fd,c if u is cell

(3) fu: the number of documents containing occurrences of term u =

{
fk if u is keyword

fc if u is cell

where each parameter gets its value from the corresponding parameter in the time or text domain
(based on the term type). For instance, the value of fd,u is equal to fd,k when term is keyword
and to fd,c when term is cell. Having defined these new parameters, we can now easily redefine
Equation 2, this time using terms instead of keywords. This is a new formulation capturing the

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 297

keywords (textual relevance) and the cells (temporal relevance) in a unified manner.

wq,u =

{
(1− α). ln(1 + n

fu
) if u is keyword

α.wq,c if u is a cell
;

wd,u =

{
(1− α). ln(1 + fd,u) if u is keyword

α. ln(1 + fd,u) if u is cell
;

Ŵd =

√∑
u

w2
d,u; Ŵq =

√∑
u

w2
q,u;

Ŝq,d =

∑
u wd,u.wq,u

Ŵd.Ŵq

.

(4)

The variable wd,u captures the tempo-textual term frequency score (tftt). The variable wq,u

captures the tempo-textual inverted document frequency (idftt). The parameter α is integrated

into the weighting scheme to capture weighted relevance of time versus text. Ŵd represents tempo-
textual document length and Ŵq is (tempo-textual) query length. Finally, Ŝq,d is the similarity
measure showing how tempo-textual relevant document d is to query q.

5.2.2 Dual-Score Approach. In the uni-score approach, keywords and cells are treated in ex-
actly the same manner. Keywords and cells tf and idf scores are used in one equation and one
similarity measure (Ŝq,d) using one document length (Ŵd) to calculate the final relevance score.
There might be cases when most of the documents in the collection contain very long document
timespans but very few keywords (or vice versa). In this case, it is better to calculate the textual
and temporal relevance scores separately. Hence, we discuss another approach to calculate the
similarity measure between document d and query q in the tempo-textual context. We first cal-
culate the temporal relevance and the textual relevance of document d and query q independently
and then use an aggregation function to compute the overall tempo-textual relevance score. Using
the temporal tf-idf parameters and the definitions, we calculate the temporal similarity measure
between document d and query q analogous to the textual similarity measure as follows:

wq,c =

{
ln(1 + n

fc
) if inverted document frequency

ln(1 + fc
n) if direct document frequency

;

wd,c = ln(1 + fd,c);

W ′d =

√∑
c

w2
d,c; W ′q =

√∑
c

w2
q,c;

S′q,d =

∑
c wd,c.wq,c

W ′d.W
′
q

.

(5)

where S′q,d is the temporal similarity measure between document d and query q. This value
captures the temporal relevance tmRelq(d) defined in Section 2.1.
After calculating the temporal relevance using the above equation and computing the textual
relevance using Equation 2, the aggregation function F can be used to calculate the final tempo-
textual relevance. More formally: ttRelq(d) = α.S′q,d + (1− α).Sq,d.

5.3 Variants

We conclude this section by summarizing possible variants of the tempo-textual relevance score.
We defined two different approaches to calculate the tempo-textual relevance scores. We also
introduced two different ways to define the temporal idf factor. Combining our two main ap-
proaches with the two definitions of the temporal idf score yields four different variants for our
final similarity measure:

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

298 · Ali Khodaei et al.

term u fu type Tempo-Textual Inverted Index for u

Iraq 5 1 〈1, 1〉〈2, 1〉〈3, 1〉〈4, 1〉〈5, 1〉
war 4 1 〈1, 0.33〉〈2, 0.9〉〈3, 0.8〉〈4, 0.54〉
c1 2 0 〈2, 1〉〈6, 1〉
c2 2 0 〈2, 0.6〉〈5, 1〉
c3 2 0 〈3, 1〉〈4, 1〉
c4 1 0 〈3, 0.5〉
c5 1 0 〈1, 0.4〉
c6 1 0 〈1, 1〉

Tempo-textual inverted index for Example 1.

(1) Uni-score with Inverted document frequency (UI)

Where ttRelq(d) = Ŝq,d and wq,c = ln(1 + n
fc

)

(2) Uni-score with Direct document frequency (UD)

Where ttRelq(d) = Ŝq,d and wq,c = ln(1 + fc
n)

(3) Dual-score with Inverted document frequency (DI)
Where ttRelq(d) = α.tmRelq(d) + (1− α).txRelq(d) and wq,c = ln(1 + n

fc
)

(4) Dual-score with Direct document frequency (DD)
Where ttRelq(d) = α.tmRelq(d) + (1− α).txRelq(d) and wq,c = ln(1 + fc

n)

6. TEMPO-TEXTUAL INVERTED INDEX

Tempo-textual inverted index (T2I2) is an inverted index capable of indexing and searching both
the textual and temporal data in a unified, integrated manner using a single data structure. In
this section, we first describe the structure of T2I2 and the information it stores. Next, we show
how tempo-textual query evaluation is performed using T2I2. Two algorithms corresponding to
our two approaches are presented. Finally, we discuss briefly how T2I2 can be extended to more
general cases.

6.1 T2I2 Structure

Since T2I2 is an inverted index, its structure is very similar to the structure of the regular inverted
indexes. T2I2 consists of two parts: vocabulary and inverted lists. The vocabulary contains all
the terms in the system which includes all the (textual) keywords and cells (cell identifiers). For
each distinct term, three values are stored in the vocabulary: 1) fu representing the number of
the documents containing the term u, 2) a pointer to the corresponding inverted list and 3) the
type of term which is used to help calculate the tf and idf scores. The second component of T2I2

is a set of inverted lists each corresponding to a term. For the corresponding term u, each list
stores the following values: identifiers of the documents containing term u and the normalized
frequencies of term u for each document d. The latter is represented by fd,u. Figure 2 redraws
the Example 1 with temporal cells (each cell is 5 years) and Figure 3 shows the complete T2I2

for Example 1.

6.2 Query Processing

As discussed in Section 2.1, the tempo-textual query consists of two parts: the query keywords Kq

and the query timespan Tq. To process tempo-textual queries, we first need to convert Tq to a set
of cells Cq. Cq is the set of cells overlapping with the document timespan Tq . After calculating
Cq, we define the set of terms associated with each query by Uq as follows: Uq = Kq ∪ Cq.

Algorithms 1 and 2 show the algorithms to perform top-k tempo-textual search using T2I2 for
the uni-score and the dual-score approaches, respectively. With both algorithms, accumulators
are used to store the partial similarity scores. The main difference is that Algorithm 1 uses one
accumulator Ad while Algorithm 2 uses two accumulators Ad and A′d. After all the query terms

are processed, similarity scores Ŝq,d, Sq,d and S′q,d are derived by dividing each accumulator

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 299

value by the corresponding values of Ŵd, Wd and W ′d, respectively (first one used in the uni-
score algorithm while the last two are used in the dual-score algorithm) . Finally, the k largest
documents are identified and returned to the user.

In the uni-score approach (Algorithm 1), we assign one accumulator for each document d
which is denoted by Ad. Partial similarity scores are stored in these accumulators. Initially, all
the accumulators have a value of zero (e.g., similarity of zero). The query terms are processed
one at a time and for term u, the accumulator Ad for each document d included in the u’s
inverted list is increased by the contribution of u to the similarity of d and q. After all query
terms are processed, similarity scores Ŝq,d are derived by dividing each accumulator value by the

corresponding value Ŵd. Finally, the k largest documents are identified and returned to the user.
In the dual-score approach (Algorithm 2), two accumulators are assigned to each document:

Ad and A′d. The partial textual similarity score is stored in Ad while the partial temporal
similarity score is stored in A′d. Initially, both accumulators are empty (zero score). Again,
terms are processed one at a time and for each term u and for each document d included in u’s
inverted list, values of Ad and A′d are increased by the contribution of term u to the textual
and temporal similarity of document d to q, respectively. After processing all the query terms,
temporal similarity scores S′q,d are calculated by dividing each A′d to its corresponding W ′d. In
addition, textual similarity scores Sq,d are computed by dividing the values of Ad accumulators
to the corresponding Wd values. Finally, for each document, if both similarity scores are larger
than zero, the final similarity score is calculated as the weighted sum of these two scores.2.

Algorithm 1 top-k tempo-textual search, uni-score

Allocate an accumulator Ad for each document d
Set Ad ← 0
for each query term u in q do

Calculate wq,u and fetch the inverted list for u
for each pair < d, fd,u > in the inverted list do

Calculate wd,u

Set Ad ← Ad + wq,u × wd,u

Read the array of Ŵd values
for each Ad > 0 do

Set Ŝd ← Ad ÷ Ŵd

Identify the k greatest Ŝd values

7. GENERALIZATION

In this section, we briefly show how T2I2 can be extended into more general cases.

7.1 Multiple Timespans

is that there is no limit on the number of timespans in a document. Instead of treating the
document timespan as one long (and maybe sparse) interval, we can use several separate, disjoint
time intervals using T2I2. This is feasible because our final temporal relevance score can be
computed by separately computing the temporal score of each cell intersecting with the various
document timespans. Another advantage of T2I2 is its capability to represent the document
timespan in any arbitrary granularity and not necessarily in common time units (e.g. days,
months, years). The only information we need to calculate for temporal tf-idf score is the area
of overlap between each cell and each document timespan. The cost is negligible since the
computation is happening one-time during the index construction.

2In order to perform this algorithm efficiently, we use the Threshold Algorithm described in [Fagin et al. 2003]

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

300 · Ali Khodaei et al.

Algorithm 2 top-k tempo-textual search, dual-score

Allocate two accumulators Ad and A′d for each document d
Set Ad ← 0
Set A′d ← 0
for each query term u in q do

Calculate wq,u and fetch the inverted list for u
for each pair < d, fd,u > in the inverted list do

Calculate wd,u

if type of u is a keyword then
Set Ad ← Ad + wq,u × wd,u

else
Set A′d ← A′d + wq,u × wd,u

Read the array of Wd values
for each Ad > 0 do

Set Sd ← Ad ÷Wd

Read the array of W ′d values
for each A′d > 0 do

Set S′d ← A′d ÷W ′d
if Ad > 0 then
Ŝd = α.S′d + (1− α).Sd

Identify the k greatest Ŝd values and returns the corresponding documents

7.2 Points

We assumed that each document timespan is an interval. In the context of the web, this is a
reasonable assumption, still in the cases when the document temporal feature is only a point in
time (p) we can generalize our approach as follows. We find the temporal cell that intersects with
p and call it cp. The new document timespan is cp plus m temporal cells before and m cells after
cp. The value of m is determined by the user and is usually a small number. In case of multiple
points, we can either apply the above algorithm for each point and generate multiple timespans,
or use one (possibly long) timespan covering all the points.

7.3 Freshness

We assumed that when a user issues a query using a time-interval, all temporal cells inside
the time-interval have the same importance to the user. This assumption is true for most of
the historical queries (which is the focus of our paper). However, for some types of queries (e.g.,
queries in which end time is now), it makes more sense to use time decay to reduce the importance
of the older cells. There exists several studies on time decay in the literature [Graham et al.
2009]. We can integrate one of the existing approaches to our proposed technique as follows. For
each cell, we define a new parameter called temporal decay factor or dftemp. The weight given
to this parameter represents cell’s decay and is inverse-polynomial to the cell’s elapsed time.
The factor dftemp is defined as a monotone non-increasing function and as follows: dftemp(c) =
(tc − tbase + 1)−(tc−tbase) where c is the cell id, tc is the time associated with cell c (e.g., cell’s
start time) and tbase is the time associated with the reference point. Finally, we integrate the
inverse of dftemp into our methods similar to what we did for idftemp. Consequently, we have
three parameters tftemp, idftemp and inverse of dftemp impacting the temporal ranking.

7.4 Weights

When querying the system, there are two types of weight factors users may want to manipulate 1)
setting different weights to the temporal and textual relevances, and 2) setting different weights
to different terms in the query. For the first scenario, we have used the parameter α in this

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 301

paper. T2I2 can also support setting different weights for different terms. There are several
existing methods to solve this problem for textual keywords. Since we are treating cells similar
to keywords, those methods can also be applied to the temporal cells. As one possible solution,
we define query term weights αq,k and αq,c as the weight of keyword k in query q and the weight of
cell c in query q, respectively. By multiplying wd,k and wd,c values by αq,k and αq,c, respectively,
query term weights are integrated into the relevance scores. This opens up a wide array of
sophisticated query capabilities for the users.

7.5 Leveraging Existing Search Engines

approach is the fact that it can be integrated into the existing search engines easily and seamlessly.
Since the structure of T2I2 is very similar to the structure of the regular inverted indexes, the
same techniques used in regular search engines (built on inverted indexes) can be applied to our
time-based search technique. Structure wise, the main difference is in using T2I2 instead of the
regular inverted indexes. This essentially translates to using a larger vocabulary (combination
of cells and keywords instead of only keywords). The average size of inverted lists would not
change since that only depends on the total number of documents, which is fixed. This is very
promising because the cost of existing search engines is dominated by the cost of traversing the
inverted lists and not the size of the vocabulary. The easy integration of our approach into the
existing search engines is not only very beneficial for current search engines but also enables us to
optimize T2I2 using a large body of work that exists in this field. More interestingly, some of the
optimization techniques seem to work better on T2I2. For instance, caching is another technique
used in existing search engines. It is easy to see that with T2I2, by caching the inverted lists for
the cells nearby the current query cell, we can improve the query performance significantly. It is
very likely that nearby cells queried together.

8. EXPERIMENTS

In this section we evaluate the efficiency and accuracy of our proposed approaches in two ways.
First, we provide a cost model analysis for the proposed approaches. Next, we present results
from simulations based on real document sets.

8.1 Cost Model

In this section, we analyze the search (query processing) cost for T2I2 and three hybrid ap-
proaches. The symbols used in the cost models are presented in Table I.

8.1.1 Cost of FnT . For a query with |Kq| number of keywords and a time-interval Tq, the
search cost has three parts: 1) retrieval and processing of the interval-tree and m lists correspond-
ing to m time-intervals, 2) calculating temporal relevance for each overlapping time-interval, and
3) access and retrieval of |Kq| keywords and their corresponding |Kq| lists. In other words:
Time(FnT) = Ttree(FnT) + TtRel(FnT) + Tlist(FnT)
The cost of the retrieval and processing of an interval-tree with m leaf nodes is: Ttree =

O(log m). The time to read a list whose length is l from disk is: Tlist = O(l/B).TI/O. For all
the approaches, we will ignore the cost of retrieving |Kq| keywords from the vocabulary (we can
assume that the vocabulary reside in memory and/or implemented with a simple hash table).
Thus:

Time(FnT) = Ttree(FnT) + TtRel(FnT) + Tlist(FnT)

= O(log m) +

m′∑
i=1

O(PT (ti)/B).TI/O

+

m′∑
i=1

Ttemp +

|Kq|∑
i=1

O(PK(ki)/B).TI/O

(6)

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

302 · Ali Khodaei et al.

Table I: Symbols

Symbol Meaning

n total number of documents

m total number of time-intervals (temporal expressions)

H(q) total number of time-interval-keywords (TIKs) in the query q

PK(ki) length of the page list for the keyword ki
PC(ci) length of the page list for the temporal cell ci
PT (ti) length of the page list for the time-interval ti
PH(hi) length of the page list for the TIK hi

Ttree time cost associated with retrieving an interval-tree

TtRel time cost associated with calculating temporal relevance

Tlist time cost associated with retrieving page lists

Ttemp time cost of calculating (one) temporal relevance

TI/O time cost of one disk access

B page size

where m′ is the number of overlapping time-intervals with the query’s time-interval and |Kq|
is the number of textual keywords in the query.

8.1.2 Cost of FtT . Given a query q with temporal and textual parts (Tq and |Kq| respectively)
and assuming H(q) is the number of temporal-interval-keywords (TIKs) for query q, the search
cost for FtT approach has three parts: 1) retrieval and processing of |Kq| interval-trees, 2)
calculating temporal relevance for all leaf nodes of all trees, and 3) access and retrieval of H(q)
keywords and H(q) lists corresponding to them (one list per TIK). Assuming m is the average
number of leaf nodes for interval-trees, we have:

Time(FtT) = Ttree(FtT) + TtRel(FtT) + Tlist(FtT)

= |Kq|.O(log m) +

H∑
i=1

(q)Ttemp +

H(q)∑
i=1

O(PH(hi)/B).TI/O
(7)

8.1.3 Cost of TtF . The search cost of TtF approach is dominated by three parts: 1) retrieval
and processing of one interval-tree with m leaf nodes, 2) calculating temporal relevance for
overlapping leaf nodes (time-intervals), and 3) access and retrieval of H(q) keywords and H(q)
lists corresponding to them.

So:

Time(TtF) = Ttree(TtF) + TtRel(TtF) + Tlist(TtF)

= O(log m) +

m′∑
i=1

Ttemp +

H(q)∑
i=1

O(PH(hi)/B).TI/O
(8)

8.1.4 Cost of T2I2. For T2I2, the main search cost is dominated only by one part: 1) access
and retrieval of |Kq| + |Tq| terms and |Kq| + |Tq| lists corresponding to them. Note that for all
four approaches, textual relevance calculation is done seamlessly during the query processing. For
T2I2, the temporal relevance computation is also integrated into the search process, similar to
the textual relevance calculation. Since, values of fd,c (capturing the temporal relevance between
cell c and document d) are already calculated and stored in T2I2, we do not need to compute the
temporal relevance for each document during the search process and on-the-fly. That by itself
reduce the search cost for T2I2 in comparison with other approaches. Also, since there is no extra
tree structure, no cost is associated with retrieval of one or more (interval) trees and access and
processing of the different nodes in each tree. We can show the search cost of T2I2 as follows:

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 303

Time(T 2I2) = Tlist(T
2I2)

=

|Tq|∑
i=1

O(PC(ci)/B).TI/O

+

|Kq|∑
i=1

O(PK(ki)/B).TI/O

(9)

8.2 Performance Experiments

In this section, we present the experimental evaluation of our approaches on real-world datasets
in order to study the efficiency of our proposed index structures.

Setting and Dataset: Our experiments use two datasets with their properties summarized in
Table II. FREEBASE dataset is generated from data on freebase web-site (www.freebase.com).
Freebase is an online collection of structured data harvested from many sources, including in-
dividual wiki contribution. We used events3 data on Freebase. Based on the events’ schema
definition, “An event is a topic that can be described by the time or date at which it happened.
Long-lasting events may be described as occurring between two dates”. Among properties of
each event (web-page) on freebase are attributes start date and end date, which are used in our
experiments as tb and te of each document, respectively.

NY-Times dataset is from New York Times Annotated Corpus 4 that contains around 1.8
million articles published in NY-times newspaper between 1987 and 2007. This is the de-facto
document set used in most of recent studies in this field. For temporal expressions in the doc-
uments, we used the data generated by [Berberich et al. 2010]. This is how they extracted
temporal information from the content of the documents. Temporal expressions were extracted
using TARSQI [Verhagen et al. 2005]. TARSQI detects and resolves temporal expressions using
a combination of hand-crafted rules and machine learning. It annotates a given input document
using the TimeML [tim] markup language. Building on TARSQIs output, they extracted range
temporal expressions such as from 1999 until 2002, which TARSQI could not support [Berberich et
al. 2010]. While the publication time of this dataset is from 1987 to 2007, temporal expression
extracted from content of the documents contain time-intervals for a much larger time period
(temporal expressions basically could relate to any event in past and future) . For our NY-TIMES
dataset, we filtered in documents with time-intervals between 1512 and 2011.

All the index structures are disk resident and the page size is set at 4 KB. For T2I2, we partition
the time domain to 1-day cells (i.e., each temporal cell is a day). It is interesting to see that
cell sizes larger than one day have a much better performance than the default cell size (i.e., one
day). All of our experiments are conducted on a machine with an Intel Core2 Duo 3.16 GHz
CPU and with 4GB main memory.

8.2.1 NY-TIMES Dataset. In this section, we evaluate the performance of T2I2 in terms of
number of disk IOs and search time for the NY-TIMES dataset. We also perform the same
evaluation study and show the results for the IIO, FnT , FtT and TtF approaches.5 For each
query, we randomly choose 1 to 6 keywords from the list of top-1000 most frequent keywords in
the dataset, one random start time between January 1, 1512 and December 31, 2011 and one
random time-interval length, which can be one day, one week, one month or one year. Given start
time and time-interval length of each query, an end time is calculated and assigned to the query
(i.e., end time = start date + timespan length). Queries are performed in rounds. Each round

3http://www.freebase.com/type/schema/time/event
4http://www.ldc.upenn.edu/Catalog/docs/LDC2008T19/
5To have a fair comparison, none of the optimization techniques (early-termination,etc.) are implemented for any

of the approaches.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

304 · Ali Khodaei et al.

Table II: Dataset Details

Dataset FREEBASE NY-TIMES

Total # of documents 34,641 1,855,655

Total # of keywords 2,093,764 423,704,062

Total # of unique keywords 111,038 6,234,465

Average # of unique keywords per document 60 228
Total # of unique time-

intervals (temporal expres-
sions)

14,051 128,905

Average # of unique time-

intervals (temporal expres-
sions) per document

0.94 3.35

Time range

211 years
(1800-

2010)

500 �years

(1512-

2011)

8000

10000

12000

14000

16000

18000

20000

T
im

e
 (

m
s
)

T2I2 IIO FnT FtT TtF

0

2000

4000

6000

1 2 3 4 5 6
Number of Keywords

(a) Search Time

3000

4000

5000

6000

D
is

k
 I
/O

s

T2I2 IIO FnT FtT TtF

0

1000

2000

1 2 3 4 5 6
Number of Keywords

(b) Disk I/O

Impact of number of keywords on query cost - NY-TIMES

consists of 100 queries and is conducted for each input setting. Value of α is 0.5 unless another
value is specified.

Effect of number of keywords: With the first set of experiments, we evaluate the impact of
the number of keywords in each query (|Kq|) on the query cost. In this set of experiments, we vary
|Kq| from 1 to 6 while fixing k at 10 and query time-interval length at 30 days (one month). For
each method, we report the average query cost in processing each round. Figures 4(a) and 4(b)
show the results for search time and number of page accesses, respectively. The major observation
is that T2I2 is significantly superior to all other approaches for all the cases. The other observation
is that all five approaches perform worse as the number of keywords increase (as expected). As
expected, the impact of the increase in the number of keywords is very significant for FtT and
IIO. With FtT , the number of disk IOs increases by a factor of 7 when the number of keywords
changes from 1 to 6 and for IIO this factor is around 11. This is because more number of query
keywords for FtT results in accessing and traversing more (sometimes very large) trees. For IIO,
more number of keywords results in more lists to retrieve and process. More importantly, larger
number of candidate documents will be returned from the textual filtering step and as a result
more documents need to be retrieved and processed in the second phase.

Effect of k: In this set of experiments, we evaluate the performance of T2I2, IIO, FnT FtT
and TtF by varying the number of requested results k. We report the average query cost for each
round. Here, we fix the number of keywords at 2 and timespan length at 30 days. The value of k
varies from 1 to 100. The results are shown in Figures 5(a) and 5(b). The first observation is that
T2I2 again (significantly) outperforms all other approaches. The second observation is that for
all five approaches the query cost does not change much when k increases. This happens because
our implementation (for none of the approaches) uses any of the early-termination techniques
(as we said earlier, so that we can have a fair comparison). In both figures (similar to Figures

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 305

6000

8000

10000

12000

14000

16000

T
im

e
 (

m
s
)

T2I2 IIO FnT FtT TtF

0

2000

4000

6000

1 10 20 50 100K

(a) Search Time

2000

2500

3000

3500

4000

4500

5000

D
is

k
 I
/O

s

T2I2 IIO FnT FtT TtF

0

500

1000

1500

2000

1 10 20 50 100K

(b) Disk I/O

Impact of k on query cost - NY-TIMES

2000

2500

3000

3500

4000

4500

5000

T
im

e
 (

m
s
)

T2I2 IIO FnT FtT TtF

0

500

1000

1500

2000

day week month year
Query Time Interval

(a) Search Time

3000

4000

5000

6000

7000

8000

D
is

k
 I
/O

s

T2I2 IIO FnT FtT TtF

0

1000

2000

3000

day week month year
Query Time Interval

(b) Disk I/O

Impact of time-interval size on query cost - NY-TIMES

4(a) and 4(b)) TtF performs the worst. TtF performing the worst in almost all the experiments
indicates the sensitivity of TtF to the number of size of time intervals in the system (i.e., temporal
distribution of data). For both datasets, the number of time intervals in the dataset is fairly large
resulting in many leaf nodes and inverted files in TtF . Also, for leaf nodes that represent large
time intervals (which is common in our datasets), not much filtering is done based on the temporal
aspect of the data and hence inverted files for those leaf nodes will be fairly large.

Effect of time-interval length: In the third set of our experiments, we evaluate the impact
of changing the length of the query’s time-interval. For different rounds, we set the query’s time-
interval length to one day, one week (7 days), one month (30 days) and one year (365 days). In
this set of experiments, we fix the number of keywords at 2 and k at 10. The results for the
search time and the number of disk IOs are shown in Figures 6a and 6b, respectively. Again, for
most cases T2I2 outperforms the other four approaches. As expected, the query cost increases for
T2I2, FnT , FtT and TtF as the time-interval length increases. For T2I2, increase in the query
time-interval size translates into the increase in the number of query terms (temporal cells) and
consequently more disk IOs (and search time).

Hence, for the very long query time-intervals with small query cell sizes (e.g., one day) our
proposed solution does not significantly outperform all other approaches. Even for very long
time-intervals, T2I2 still significantly outperforms both FnT and TtF because both FnT and
TtF need to 1) process huge time-intervals, and 2) retrieve and access large number of leaf nodes
and their corresponding (page) lists (due to the size of query interval). FtT needs to traverse
smaller trees and smaller time-intervals and IIO results change slightly for different query time-
interval lengths, since its performance is not dependant on the temporal part of the query. As
we show in Section 8.2.3, increasing the temporal sizes from one day to one week, one month,
etc. significantly improve the performance of T2I2.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

306 · Ali Khodaei et al.

100

1000

10000

T
im

e
 (

m
s)

NY-TIMES

FREEBASE

1

10

day week month year

T
im

e
 (

m
s)

Cell Size

Impact of cell size on query cost

8.2.2 FREEBASE Dataset. We also evaluated the performance of T2I2 in terms of number
of disk IOs and search time for the FREEBASE dataset. Except the scale of the result the trend
is very similar to the results reported and discussed for NY-TIMES dataset. Due to the space
limitation and similarity of results between NY-TIMES dataset and FREEBASE dataset, we do
not report the results from the FREEBASE dataset here.

8.2.3 Cell Size (Temporal Granularity). Finally, we show how choosing different values for
temporal cell size (temporal granularity) affects the performance of the system. As we noted
earlier, we chose one day as the default cell size while constructing T2I2 to comply with most
of the existing studies and also because day was the smallest unit of time extracted from New
York Times Annotated Corpus in [Berberich et al. 2010]. To perform this set of experiments, we
built T2I2 four different time (one for each cell size) and for both datasets (eight time in total).
We randomly generated a set of 100 queries for each dataset while fixing k at 10, number of
keywords at 2 and query temporal size at 365 for each query. The four cell sizes are: 1 (day), 7
(week), 30 (month) and 365 (year). The results are shown in Figure 7. The main observation for
both datasets is that the performance improves as cell size increases. This improvement is the
most significant when cell size increases from one day to one week (note that the figures are in
logarithmic scale). Larger cell size results in a fewer number of temporal cells and hence fewer
retrieval of lists for the same query. For instance, for a query with a time-interval equal to 365
days, when each cell size is one day, we need to access 365 temporal cells and possibly retrieve
all their corresponding inverted lists. This number will decrease significantly for larger cell sizes
(e.g. 30). One can argue that by increasing cell sizes, the number of documents overlapping
with each temporal cell and consequently size of page lists will increase and this will affect the
performance. This is true but as it is seen in Figure 7, the impact of the increase in lists is not
significant and is dominated by the impact of decrease in number of cells, resulting in overall
decrease in the performance cost. There are two reasons for this behaviors. First, for many
documents, their time-intervals are large and contain many consecutive temporal cells. As a
result, there will be many repeated documents in the lists corresponding to these consecutive
cells. When these consecutive cells merge and become one cell (e.g., cell size changes from 1 to
7 days), not many new document will be added to the new cell. Second, increase in the number
of documents for each temporal cell, should be significantly large in order to have a significant
impact on the number of disk page IOs. This is true because each (disk) page can store a large
number of document postings for each inverted list.

8.3 Accuracy Experiments

In this section, we evaluate the effectiveness of our proposed approaches in terms of accuracy
(effectiveness).

8.3.1 Setting and Queries. Data. We used the real-world FREEBASE dataset. As we ex-
plained earlier, this dataset contains information regarding events on the freebase website. Orig-

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 307

Table III: Queries
Sports Politics Misc.

Short
ncaa men basketball
[March 24 2010-April 07
2010]

poland [March 24 1943-
April 07 1943]

film festival [September 03
2000-September 15 2000]

swimming olympics [Au-
gust 10 2008-August 18
2008]

protests [June 01 2009-
June 29 2009]

rock concert [May 15
2009-May 30 2009]

Medium
roger federer [June 01
2008-October 31 2009]

senate election [March 01
2008-August 30 2008]

earthquake [January 15
1990-July 31 1991]

nfl ravens [August 05
2004-June 31 2005]

bombing [May 15 2007-
September 31 2007]

vietnam operation [March
01 1966-April 10 1967]

Long
lakers celtics [August 01
1984-July 29 1986]

german battle [Septem-
ber 03 1916-September 15
1922]

cholera [January 01 1820-
December 30 1840]

fifa world cup [January 01
1958-December 31 1970]

Iraq war [August 01 1980-
September 29 1990]

STS shuttle [August 01
2006-June 30 2010]

inally, this data on freebase contained 74,591 events (web-pages). In the processing of this data,
we removed the events with no start or end dates, and also removed any event occurred before
the year 1800. After these steps, final dataset’s size reduced to 34,641 documents.

Queries. For queries, we generated a set of 100 queries from different freebase topics and
assigned them timestamps with different granularities in length. The topics were sports, politics
and misc.. Timestamp length granularities were ranging from one day to few decades. We
categorized the timestamp granularities into three groups: short ranging from one day to few
weeks, medium ranging from one month to few months, and long ranging from one year to several
years. we had to filter out and/or tune some query timestamps. Finally, we categorized all 100
queries into nine different groups with regards to their timestamp granularity and topic, and
randomly selected two queries for each group from our set of 100 queries. All the selected queries
are shown in Table III.

Approaches. We computed top-5 query results for each query using four approaches in Section
5: DI, DD, UD, UI, and also baseline and hybrid approaches in Section 3: BH.6

Relevance Assessment. After computing top-5 results for each of our 18 queries using all
5 approaches, we ran a user study using Amazon Mechanical Turk (https://www.mturk.com/).
One task (hit) was generated for each unique result (web-page). The web-page alongside the
query keywords and the query timestamp in regular date format (e.g. November 7th, 1980 to
December 12, 1981) were provided to the workers. Workers could choose whether the web-page
is relevant or non-relevant. They could also choose the ’I cannot assess this document ’ option
(in case their knowledge was not enough to evaluate the document). Workers could also add
their comments/explaination for each assessment. Each task (web-page assessment) was assessed
by five workers. Each worker was rewarded $0.02 by completion of each assessment. Overall,
workers chose relevant for 64% of the assessments, non-relevant for 33% of the assessments and
I cannot assess this document for 3% of the assessments.

8.3.2 Results. We evaluated the accuracy of the methods under comparison using two stan-
dard metrics: Precision at k and nDCG at k. In calculating precision at k, we consider a document
relevant if the majority of workers assessed that document as relevant and non-relevant other-
wise. When computing nDCG at k, we consider the average relevance given by the users to each
document, interpreting relevant as grade 1 and non-relevant as 0, respectively.

Overall. The overall result of our relevance assessments with k = 5 and using the five ap-
proaches under comparison is shown in Table IV. For the precision@5, The first observation
is that all of the evaluated methods generate accurate results (precision larger than 0.6) while
three of the (seamless) tempo-textual ranking methods (DI, DD and UD) generate very accurate
results (precision larger than 0.8). The second observation is that, as expected, the dual-score

6Note that all three hybrid approaches as well as the baseline approach generate the same final ranking.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

308 · Ali Khodaei et al.

Table IV: Precision@k and nDCG@k of various rankings

Method Precision@5 nDCG@5

DI 0.83 0.74

UI 0.68 0.62

DD 0.88 0.77
UD 0.82 0.74

BH 0.63 0.58

Method Sports Politics Misc.
P@5 N@5 P@5 N@5 P@5 N@5

DI 0.73 0.71 0.9 0.75 0.86 0.76

UI 0.53 0.53 0.66 0.59 0.86 0.73
DD 0.8 0.73 0.96 0.77 0.9 0.82
UD 0.76 0.70 0.8 0.69 0.9 0.85

BH 0.53 0.53 0.66 0.58 0.7 0.62

Table V: Precision@k and nDCG@k by topic

Method Short(days) Medium(months) Long(years)
P@5 N@5 P@5 N@5 P@5 N@5

DI 0.8 0.76 0.73 0.63 0.96 0.83

UI 0.8 0.70 0.6 0.52 0.66 0.64
DD 0.96 0.82 0.73 0.68 0.96 0.83
UD 1 0.83 0.66 0.67 0.8 0.73

BH 0.76 0.68 0.66 0.57 0.46 0.50

Table VI: Precision@k and nDCG@k by cell size

approaches perform the search more accurately than the uni-score approaches. Using two scores
and two document lengths generate more accurate rankings than using one combined score and
only one document length. As for the nDCG@5, the above observations are reconfirmed. Three
of our tempo-textual ranking methods outperform all other approaches pretty well. Also, baseline
and naive (hybrid) approaches gain nDCG@5 of less than 0.7. Again, the dual-score approaches
perform better than uni-score approaches.

Topic. For each query topic, we evaluate the effectiveness of each method using the same met-
rics. In Table V, we show the results of the relevance assessment for each query topic separately.
The results are in support of our prior observations. The most accurate method for all three
topics is DD.

Timestamp Granularity. In this experiment, we present the results of our relevance assess-
ment for different query timespamp lengths. The results are shown in Table VI. As it is clear,
there exists significant variations in the accuracy of the approaches across different timestamp
granularities. The best ranking varies by timestamp granularity and measure.

9. RELATED WORK

There are several studies on the versioned text data such as web-archives. In time-travel text
search [Berberich et al. 2007a], [Berberich et al. 2007b], the goal is to identify and rank relevant
documents as if the collection was in its state as of query time. In these methods, the final
score of each document is usually calculated by aggregating the scores of the document over
the query time interval. In other words, the final top-k results are the most textually relevant
documents during the query interval (or as of the query time) [Herscovici et al. 2007]. Another
type of query on the versioned text collections is durable top-k search. With this type of search,
the goal is to find the documents that are consistently in the top-k throughout the sequence of
rankings defined by the query time-interval and the query keywords [Leong Hou et al. 2010].
[Norvag et al. 2006] focused on a simpler problem of temporal text-containment queries, which
is a query for all versions of the documents that contained one or more particular word at a
particular time. Temporal text-containment queries ignore the relevance scoring of the results.
All of the above approaches work on document collection as a whole and not on specific keyword-
temporal queries. Moreover, none of these methods’ final scores and rankings are based on both
the textual relevance and the temporal relevance. A few other methods use the publication time
of documents to improve the relevance ranking. [Li et al. 2003] presents a language modeling
technique that factors publication time of documents in order to favor recent documents in its
relevance ranking. [Corso et al. 2005] also takes into account publication time of documents (and
also their interlinkage) to rank news articles. On a separate but somehow related topic, [Dai et

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 309

al. 2010], [Dai] and [Efron 2011] focus on freshness of web documents and study the integration
of freshness/recency into the relevance ranking model.

In [Pasca et al. 2008], the temporal features of documents are used to help answering time-
related questions in open-domain question answering systems. [Dakka et al. 2008] proposed
a more general framework which detects automatically the important time intervals that are
likely to be of interest for time-sensitive queries and leverages documents published within these
important time intervals. In [Kalczynski et al. 2005], a temporal document retrieval model for
business news archives is presented. In [Alonso et al. 2006], a new method is presented for
clustering and exploring search results based on temporal expressions within the text.

For the past decade, several automatic methods for extracting temporal information from web-
documents have been proposed. Using natural language processing (NLP) techniques, specifically
information extraction methods, it is possible to identify words or expressions that convey tem-
poral meaning (e.g. today, a long time ago) and use these to date documents [Wong et al. 2005].
In [Alonso et al. 2007], a three-step approach called document annotation pipeline is described.
This approach extracts temporal information based on the TimeML standard described in [tim
]. TimeML has become the standard markup language for events and temporal expressions in
natural language. There are several other tools that can extract temporal information from doc-
uments. Examples of such tools are Lingua::EN::Tagger [lin] and TempEX [Mani et al. 2000].
For a more detailed study of temporal information extraction techniques, we refer readers to
[Verhagen et al. 2009] and [Wong et al. 2005].

Finally, there are few approaches that consider the temporal information in the documents’
content for the relevance ranking and retrieval purposes. In the work of [Baeza-yates et al. 2005],
the goal is to search for information that points to the future. The presented retrieval model
called future retrieval uses a simple probability model for future events based on set of time
segments and a simple ranking function. In [Jin et al. 2008], a temporal search engine (called
TISE) supporting content time retrieval for web pages in presented. TISE extracts temporal
features from web pages through natural language processing techniques and ranks web-pages
using a simple linear combination of their textual relevance, temporal relevance and importance.
This is a short paper and does not include the detailed information regarding indexing and query
processing steps and how efficient those steps are. In addition, the proposed textual relevance
function is basic and does not generate accurate results. In [Jin et al.] and [Jin et al. 2011],
(same) authors propose several hybrid index structures for temporal-textual web search. No
ranking function or relevance model is discussed in either paper.

The studies closest to our paper are [Arikan et al. 2009] and [Berberich et al. 2010]. [Arikan et
al. 2009] describes how to integrate the temporal expressions into a language modeling approach.
Two different approaches (LMF and LMW) are presented to leverage temporal expressions and
improve retrieval effectiveness. In a similar paper, [Berberich et al. 2010] study how to integrate
the temporal expressions into a language model retrieval framework while focussing mostly on
the aspect of uncertainty in the meaning of temporal expressions. Both of these studies rank
documents according to estimated probability of generating the query, textually and temporally.
There are couple of major differences between these two approaches and our proposed study.
They both are based on probabilistic language models while our proposal is based on the classi-
cal vector space model. As [Baeza-yates et al. 2005] noted in its conclusion section, for searching
the past a probabilistic model does not make that much sense, as events in the past did (almost
always) happen. More importantly, while our proposed solution provides a complete framework
for temporal-textual indexing, query processing and relevance ranking, the aforementioned ap-
proaches only focus on the relevance ranking part. It is not clear how efficient the indexing and
search processes perform for these two studies. Furthermore, as we explained in Section 7, our
proposed solution can be easily integrated into existing systems while [Arikan et al. 2009] and
[Berberich et al. 2010] integration mechanism does not seem trivial.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

310 · Ali Khodaei et al.

10. CONCLUSIONS

Temporal-textual search is a new field of research concentrating on the integration of time dimen-
sion into the textual search engines. In this paper, we introduced the problem of temporal-textual
retrieval and proposed a complete framework with both effective ranking and efficient indexing
of temporal and textual features of (web) documents. We proposed a baseline approach and
variety of hybrid index structures to exploit popular textual and temporal index structures (i.e.,
inverted file and interval tree). We proposed a novel index structure called T2I2 that handles
the temporal and textual features of data efficiently and in a unified manner. Using T2I2, we
showed how query processing is performed efficiently and also discussed how to extend T2I2 into
more general cases. We experimentally and analytically evaluated our proposed approaches and
showed the high efficiency of T2I2.

As part of our future work, we plan to extend T2I2 with multi-resolution indexing approaches.
As we described in Section 8, having different granularities (resolutions) for the temporal cell
sizes of T2I2 will further improve the efficiency of our proposed index. Moreover, we plan to
combine this work with our previous study on the indexing and ranking of spatial and textual
features of web documents [Kho], and propose a new indexing and ranking framework to support
searches on space, time and text simultaneously and efficiently.

REFERENCES

Lingua::en::tagger.

Timeml specification language.

Allen, J. F. 1981. An interval-based representation of temporal knowledge. In IJCAI’81.

Alonso et al., O. 2006. Clustering of search results using temporal attributes. In SIGIR.

Alonso et al., O. 2007. On the value of temporal information in information retrieval. SIGIR Forum.

Arikan et al., I. 2009. Time will tell: Leveraging temporal expressions in ir. In WSDM.

Baeza-Yates et al., R. 1999. Modern Information Retrieval.

Baeza-yates et al., R. A. 2005. Searching the future. In: SIGIR Workshop MF/IR.

Berberich et al., K. 2007a. Fluxcapacitor: Efficient time-travel text search. In VLDB.

Berberich et al., K. 2007b. A time machine for text search. In SIGIR.

Berberich et al., K. 2010. A language modeling approach for temporal information needs. In ECIR.

Corso et al., G. M. D. 2005. Ranking a stream of news. In: WWW .

Dai et al., N. 2010. Freshness matters: in flowers, food, and web authority. Proceeding of the 33rd international

ACM SIGIR conference on Research and development in information retrieval .

Dakka et al., W. 2008. Answering general time sensitive queries. CIKM .

Efron, et al., M. 2011. Estimation methods for ranking recent information. In Proceedings of the 34th interna-

tional ACM SIGIR conference on Research and development in Information Retrieval. ACM, 495–504.

Fagin et al., R. 2003. Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci..

Graham et al., C. 2009. Forward decay: A practical time decay model for streaming systems. ICDE .

Herscovici et al., M. 2007. Efficient indexing of versioned document sequences. AIRS .

Jin et al., P.

Jin et al., P. 2008. Tise: A temporal search engine for web contents. Intelligent Information Technology Appli-
cations.

Jin et al., P. 2011. Indexing temporal information for webpages. Computer Science and Information Systems

ComSIS 8, 3, 711–737.

Kalczynski et al., P. 2005. Temporal document retrieval model for business news archives. Inf. Process. Manage..

Leong Hou et al., U. 2010. Durable top-k search in document archives. In SIGMOD.

Li et al., X. 2003. Time-based language models. In CIKM.

Mani et al., I. 2000. Robust temporal processing of news. In ACL.

Norvag et al., K. 2006. Dyst: Dynamic and scalable temporal text indexing. ISTRR.

Pasca et al., M. 2008. Towards temporal web search. In SAC.

Preparata et al., F. P. 1985. Computational Geometry: An Introduction.

Verhagen et al., M. 2005. Automating temporal annotation with tarsqi. In: Association for Computational

Linguistics.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

Temporal-Textual Retrieval: Time and Keyword Search in Web Documents · 311

Verhagen et al., M. 2009. Language and Linguistics Compass.

Wong et al., K. 2005. An overview of temporal information extraction. Int. J. Comput. Proc. Oriental Lang..

Zobel et al., J. 2006. Inverted files for text search engines. ACM Comput. Surv..

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

312 · Ali Khodaei et al.

Ali Khodaei received his B.S. degree in computer engineering from Iran National Univer-
sity(Shahid Beheshti University), Tehran, Iran, in 2003 and his M.S. degree in information
and computer science from University of California, Irvine, in 2006. He has worked as
a researcher/developer/manager in several companies and research institutes including
Microsoft, Samsung R&D center (SISA), and Integrated Media Systems Center (IMSC).
He is currently a Ph.D. candiate in computer science at the University of Southern Cal-
ifornia. His Research interests include web search and information retrieval, social data
analysis, geospatial databases and relevance ranking models.

Cyrus Shahabi is a Professor of Computer Science and Electrical Engineering and the
Director of the NSF’s Integrated Media Systems Center (IMSC) at the University of
Southern California. He was also the CTO and co-founder of a USC spin-off and an
InQTel portfolio company, Geosemble Technologies, which was acquired in June 2012.
He received his B.S. in Computer Engineering from Sharif University of Technology in
1989 and then his M.S. and Ph.D. Degrees in Computer Science from the University
of Southern California in May 1993 and August 1996, respectively. He authored two
books and more than two hundred research papers in the areas of databases, GIS and
multimedia. He is currently on the editorial board of the VLDB Journal and IEEE
Transactions on Knowledge and Data Engineering. Dr. Shahabi is a recipient of the
ACM Distinguished Scientist award and the U.S. Presidential Early Career Awards for Scientists and Engineers
(PECASE).

Amir Khodaei is an undergraduate student in Electrical Engineering and Computer Sci-
ences at University of California Berkeley. He has recently joined UC Berkeley AMPLab
as an undergraduate researcher. His interests include Cloud Computing and Computer
Systems.

International Journal of Next-Generation Computing, Vol. 3, No. 3, November 2012.

