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Multidimensional arrays are good storage for managing large amount of data especially scientific and engineering
applications. The Traditional Multidimensional Array (TMA) is also efficient in accessing the array elements by

computing the addressing function. Thats why array based files are widely used. But TMA is not dynamically

extendible during run time i.e the length of dimension and number of dimension is fixed for a TMA. We describe
an extendible array file that is dynamically extendible during run time. If the length of dimension and number of

dimension of a multidimensional array is large then the address space required for the array overflows quickly. The

proposed array scheme handles the address space problem efficiently. The main idea of this scheme is to represent
n dimensional array by a set of two dimensional extendible arrays. We evaluate our proposed scheme both

analytically and experimentally for different array operations. Our experimental result shows that the proposed

scheme outperforms the existing methods.
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1. INTRODUCTION

There are few classes of data structures which are as well understood or as extensively used as
arrays. It is quite often for scientific, statistical and engineering applications to have computation
on large multidimensional arrays for modeling and analyzing scientific phenomena (Seamons &
Winslett, 1994; Sarawagi & Stonebraker, 1994). The strong need to handle large scale data
efficiently has been promoting comprehensive research themes on organization or implementation
schemes for multidimensional arrays.

The fast random accessing capability of multidimensional arrays is a fascinating characteristic
that enables various statistical computations including aggregation to be performed efficiently
(Li & Srivastava, 2002; Zhao et al., 1997). But this capability depends on the fact that the size
of each dimension should be fixed so that a simple addressing function can be used to access
an arbitrary element of the array. However, such kind of multidimensional arrays go through
following two important problems:

—The size of the multidimensional array is not dynamically extendible (Hasan et al., 2009; 2005)
when a new data value is added, size extension along the corresponding dimension is necessary
and this implies reorganization of the entire array.

—One more problem with the multidimensional array is the contiguous address space require-
ment. To allocate memory, consecutive memory location is required for multidimensional array.
But when the length of dimension and number of dimension of a multidimensional array is large
then the address space overflows soon.
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The introduction of extendible array (Hasan et al., 2009; 2005; Otoo & Merret, 1983; Ahsan &
Hasan, 2011) solves the problem (i) above. An extendible array can be extended in any dimension
without any repositioning of previously stored data (Hasan et al., 2005; Otoo & Merrett, 1983
). Such advantage makes it possible for an extendible array to be applied into wide application
area where required array size cannot be predicted before and/or can vary dynamically during
operating time of the system. In this paper, we are going to propose a basic extendible data
structure that will solve the problem (i) above. To solve the second problem we have segmented
the subarrays in such a way that the subarrays are always 2 dimensional that solves problem (ii)
in our model.

An n dimensional Array A[l1, l2, l3, . . . , ln] is an association between n-tuples of integer indices
〈j1, j2, . . . , jn〉 and the elements of a set of E such that, to each n-tuples given by the ranges
0 6 j1 6 l1, 0 6 j2 6 l2, . . . , 0 6 jn<ln there corresponds an element of E. The domain from
which the elements are chosen is immaterial and we make the assumption that k bytes of storage
area are needed to each n-tuples. The set of contiguous memory locations into which the array
maps is denoted by A[0 : D], where D = ((Πi=1...nli)− 1) and the size of the array is denoted by
S = D × k. If number of dimension n and the length of each dimension li(1 6 i 6 n) increase
the total address space or array size S becomes very large that causes the existing data types to
overflow even for 64 bit machines. Hence it is impossible to memory for allocate such a large size
multidimensional array.

An extendible array, however, does not store an individual array; rather, it stores an array and
all its potential extensions. In this paper, we propose a new scheme called Extendible Karnaugh
Array (EKA) (Ahsan & Hasan, 2011). The main idea of our proposed EKA is to represent
multidimensional array by a set of two dimensional extendible arrays. To evaluate our proposed
scheme we have implemented and compared the results with TMA. The experimental result
shows that EKA outperforms the TMA in various cases. The scheme is fully general to be
applied in different applications such as implementation of multidimensional database systems
(Hasan et al., 2005; Pedersen & Jensen, 2001), or data warehouse systems (Li & Srivastava, 2002;
Hasan et al., 2007). It can also be applied to design extendible and flexible database (Markus &
Gabriele, 2005; Roland & Bayer, 2005) and parallel database design (Hasan et al., 2006; Chen et
al., 2006)

2. RELATED WORK

There are some well known existing multidimensional array systems to represent multidimensional
data such as Traditional Multidimensional Array (TMA) (Seamons & Winslett, 1994; Sarawagi &
Stonebraker,1994), Extended Karnaugh Map Representation (EKMR)(Chun et al., 2002; 2003),
Extendible multidimensional Array (Otoo & Meritt, 1983; Rotem & Zhao, 1996) . TMA is a good
storage for storing multidimensional data set. The TMA represent n dimensional data by an array
cell in an n dimensional array. The TMA is modeled in the positive orthant of n-dimensional
space where array positions lay on the lattice points. To extend the TMA dynamically, it is
necessary to reorganize the entire array which causes massive cost?(Hasan et al., 2007 ). One
more problem with the TMA is that if the length of dimension and number of dimension increases
then the address space requirement overflows soon. Extended Karnaugh Map Representation
(EKMR) represent n dimensional data by a set of two dimensional arrays(Li & Srivastava, 2002).
But EKMR is not dynamically extendible and the length of dimension as well as number of
dimensions is same as TMA, hence it also overflows like TMA.

The Extendible Array (Otoo & Meritt, 1983; Rotem, & Zhao, 1996) has the property of
extendibility and the indices of the respective dimensions can be arbitrarily extended without
reorganizing previously allocated elements. If the extendible array is n dimensional then the
subarray is n−1 dimensional. Hence it will overflow soon for address space because the subarrays
are n−1 dimensional although it can be extended dynamically. The extendible array is employed
by Otoo & Meritt (1983) to extend the array and it only treats an organization scheme of the
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history tables. The subarrays are n dimensional hence it will be difficult to apply in actual
implementation when address space overflow is concerned.

An extendible array model proposed by Otoo & Rotem (2006) where there is record for each
dimension called axis vector. Each element of the vector stores necessary information like the
auxiliary tables in our EKA scheme to retrieve an element correctly. In this approach the
sequence of the two consecutive extensions along the same dimension, although occurring at two
different instances, is considered as an uninterrupted extension of that dimension and handled
by only one expansion record entry in the axial-vector. Therefore number of element in an axial
vector is always less than or equal to the number of indices of the corresponding dimension.
If round robin expansion occurs, then it is similar to extendible array Otoo & Meritt (1983).
Zaho et al. (1997) and Rotem et al. (2007) present the chunking of multidimensional arrays. In
this scheme the large multidimensional arrays are broken into chunks for storage and processing.
All the chunks are n dimensional with smaller length than the original array. But the dynamic
extension is not possible. Kumakiri et al. (2006) proposed an array system based on extendible
array proposed by Otoo & Meritt (1983) that can insert a row in the middle of the dimension.
All the array models mentioned in this Section do not handle the address space overflow. Many
of them have a concept of subarray which is n− 1 dimensional if the array having n dimensions.
Maximum value of coefficient vector is fairly large even for n−1 dimensional subarray, and quickly
overflows. On the other hand, the proposed EKA is a set of two dimensional arrays; therefore
maximum value of coefficient vector is relatively small even for large number of dimensions. And
hence, delays the overflow.

3. THE EXTENDIBLE KARNAUGH REPRESENTATION OF ARRAY

In this section we are going to propose an extendible array model namely Extendible Karnaugh
Array (EKA). The idea of EKA is based on Karnaugh Map (K-map) (Mano, 2005). The K-
map is used for minimizing Boolean expressions usually aided by mapping values for all possible
combinations. Fig. 1 (a) shows a 4 variable K-map to represent possible 24 combinations of a
Boolean function. The array representation of K-map for 4 variable Boolean function is shown in
Fig. 1(b). The length of each of the dimensions is 2 for both Fig. 1(a) and (b). This is because
the Boolean variables are binary that causes the length to be 2.

Definition 1 (Adjacent Dimension): The dimensions (or index variables) that are placed to-
gether in the Boolean function representation of K-map are termed as adjacent dimensions (writ-
ten as adj(i) = j ). The dimensions (w, x) are the adjacent dimensions in Fig. 1(a) and (b) i.e.
adj(w) = x or adj(x) = w.
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3.1 The Extension Realization of the EKA Scheme

EKA is an array system that is the combination of subarrays. It has three types of auxiliary
tables namely history table, coefficient table and address table. For each dimension these tables
exist. These tables help the elements of the EKA to be accessed very fast. The subarrays are
further divided into segments. The number of segments determines the number of entries in the
address table and is calculated from the length of adjacent dimension. The subarrays are always
2 dimensional for an n dimensional EKA, EKA(n).

Fig. 2 presents a 4-dimensional array with a logical view of the array after extending in a
dimension. During each extension the history table is populated with a strictly monotonically
increasing number, i.e. it counts the construction history. Address table stores the first addresses
of each segments of the subarray. In an n dimensional conventional fixed size array of size
[ln, ln−1, . . . , l1] is allocated on memory using an addressing function like this:
f(xn, xn−1, . . . , x2, x1) = l1l2 . . . ln−1xn + l1l2 . . . ln−2xn−1 + · · ·+ l1x2 + x1
Here, l1l2 . . . ln−1, l1l2 . . . ln−2, . . . , l1l2, l1 is called as coefficient vector. Coefficient table holds

the coefficient vector of each segment. Since segments are 2 dimensional, in our model, the
coefficient vector is simply l1.

Fig. 3 shows the dynamic extension of an EKA(4). Fig. 3(a) illustrates the initial setup of
the scheme. The history counter is zero and the history tables contain one entry namely 0. The
address tables contain first address. Each of the coefficient table contains value 1 since length
of each dimension is 1. During the extension of d1 and d3 dimension size of the segment is
l2 × l4 which is a two dimensional array, and so coefficient vector is one dimensional. Hence,
for our example we use l2 as coefficient vector for d1 and d3 dimensions. Similarly, l3 is used as
coefficient vector for d2 and d4 dimension and coefficient table is maintained. When an extension
along d2 direction is done as shown in Fig.3(b), the history counter is increased by 1. The value
of history counter is stored in the history table Hd2. The subarray size [l1, l3, l4] is calculated
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and dynamically allocated; the values of first address are stored in address table Ad2; since l3 is
1 Cd2 stores this value.

Fig. 3(c) shows an extension along d3 direction. Here the history counter incremented by 1
and this is stored in history table Hd3. The size of the subarray [l1, l2, l4] is calculated and the
first address for this subarray is stored in the address table Ad3. In Fig. 3(d) an extension along
direction d4 is done. As a result of the extension history counter becomes 3 and subarray size
becomes 4. Here, Hd4 memorizes the value of 3. Similarly, the extension along direction d1 is
shown Fig. 3(e) and finally Fig. 3(f) shows one more extension along direction d3.

3.2 Generalization to Higher Dimensions

The EKA scheme can be generalized to n dimensions using a set of EKA(4)s. Fig. 4(a) shows
the logical structure and Fig. 4(b) shows the physical implementation of a EKA(5) where the
length of 5th dimension d5 is 2. Fig. 5 shows an EKA(6) represented by a set of EKA(4) in two
level. If the current length of 6th dimension (d6) is 2 and 5th dimension (d5) is 3 respectively,
then the EKA(6) is represented by the two level tree like structure as shown in Fig. 5. Each
higher dimensions (d5 and d6) are represented as one dimensional array of pointers that points
to the next lower dimension and each cell of d5 points to each of the EKA(4). So each EKA(4)
can be accessed simply by using the subscripts of higher dimensions. For the case of EKA(n),
similar hierarchical structure will be needed. The set of EKA(4)s stores the actual data values
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and the hierarchical arrays are indexes to EKA(4)s and used to locate the appropriate EKA(4).
Hence the EKA(n) is a set of EKA(4)s and a set of pointers are used for indexing purpose only.
At this stage (Fig. 5), if dimension d1 (or d2, d3, d4) is extended dynamically, all the EKA(4)s
will be extended along that dimension and the auxiliary tables are maintained. And if there is
an extension in number of dimension i.e. addition of a new dimension (d7), we will simply add a
pointer array as a root of the tree and set the appropriate next level links and store the actual
data values in the EKA(4)s.

4. OPERATIONS ON EKA

4.1 Retrieval

4.1.1 Retrieval on EKA(4). Let the value to be retrieved is indicated by the subscript
〈x1, x2, x3, x4〉. The maximum history value among the subscripts
hmax = max(Hd1 [x1], Hd2[x2], Hd3[x3], Hd4[x4]) and the dimension (say d1) that corresponds to
history value hmax is determined. hmax is the subarray that contains our desired element. This
is because; the subarray that has the maximum history value was constructed at last (since the
history values are linear numbers). Hence the desired element remains in the subarray having
history value hmax. Now the first address and offset from the first address is to be found out. The
adjacent dimension adj(d1) (say d3) and its subscript x3 is found. The first address is found from
Hd1[x1]. Ad1 [x3]. The offset from the first address is computed using the addressing function
(described in Section 3.1); the coefficient vectors are stored in Cd1. Then adding the offset with
the first address, the desired array cell for the given subscript can be found.

Example 1: Let four subscripts 〈1, 0, 2, 1〉 from Fig. 3(f)
hmax = max(Hd1[1], Hd2[0], Hd3[2], Hd4[1]) = max(4, 0, 5, 3) = 5, and dimension corresponding
to hmax is d3 whose subscript is 2 and adj(d3) = d1 and x1 = 1. So the first address is in
Ad3[2][1] = 20, and offset is calculated using the coefficient vector stored in coefficient table Cd3
which is 2. Here offset = Cd3[2]× x4 + x2 = 2× 1 + 0 = 2. Finally adding the first address with
the offset the desired location 20 + 2 = 22 is found (encircled in Fig. 3(f)).

4.1.2 Retrieval on higher dimensional EKA(n), n > 4. Let the value to be retrieved is indi-
cated by the subscript (xn, xn−1, . . . , x2, x1). Each of the higher dimensions (n > 4) are the set
one dimensional pointer arrays that points to next lower dimensions. Hence using the subscripts
xk(dk > 4) the pointer arrays are searched to locate the lower dimensions (see Fig. 5). If n 6 4,
then using the above computation technique the location in EKA(4) can be found.

International Journal of Next-Generation Computing, Vol. 4, No. 1, March 2013.



94 · SK. MD. MASUDUL AHSAN et al.

4.2 Range Key Retrieval

A range key query (Bertin & Kim, 1989) has a single predicate of the form (column subscript
<value) or (column subscript <value) or (column subscript between value1andvalue2). Fig. 6
(which is obtained by extending the Fig. 3(f) in d2 dimension) shows the candidate range (bold
dotted line) of a range key query for a EKA(4). Assume that the candidate range of the subscripts
of the corresponding dimension d1 has NRQ subscripts. Let the specified range involve in the
known column has subscripts xk1, xk2, . . . , xkNRQ of dimension dk. Let h1, h2, . . . , hNRQ be the
history values that correspond to the subscripts and the minimum of them is hmin.

Definition 2 (Major and Minor subarray): All the elements of the subarrays correspond-
ing to the history values h1, h2, . . . , hNRQ are candidate for retrieval (see Fig.6) and are called
Major subarray. The subarrays that have history values greater than hmin and belong to the
adjacent dimension adj(dk) are called Minor subarray. One or more segments of the minor sub-
arrays are candidate for a range query. The candidate subarrays are those which are sufficient to
be searched and these subarrays have history values greater than hmin. The major and minor
subarrays are candidate subarrays and rest of the candidate subarrays do not belong to the known
dimension dk and have history values greater than hmin.

Example 2: In Fig. 6, the subarray having history value 4 is the major subarray and the
subarray having history value 5 is the minor subarray. Hence all the elements of subarray 4 are
candidate for retrieval and one segment of subarray 5 are candidate for retrieval. The remaining
candidate subarrays have history value greater than 4 (see definition 2) and the elements inside
the subarray are found by calculating the offsets and adding the first address as described in
Section 4.1

5. THEORETICAL ANALYSES

In this section, we model the processes of retrievals and extensions for multidimensional ar-
ray under two different implementation strategies namely Traditional Multidimensional Arrays
(TMA) and our proposed Extendible Karnaugh Arrays (EKA). The TMA reorganizes the ar-
ray whenever there is an extension to it. That is, the whole array will be relinearized on disk to
accommodate the new data due to the extension of length of dimension. The second strategy ex-
tends the initial array with segment of subarrays containing the new data as described in Section
3. In this Section, we show that the EKA strategy can reduce the cost of array extensions signif-
icantly. We will derive the cost functions for both extensions and retrievals in the following. All
the array schemes are assumed to be stored in secondary storage and performed the operations.
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5.1 Parameters

The cost functions are represented as the number of array cells required to access. The parameters
that are assumed are described in Table 1. All the lengths and sizes are in bytes. Some parameters
are provided as input while others are derived from input parameters.

Assumptions: To simplify the cost model we make a number of assumptions.

—The length of dimension extends in round robin manner for both TMA and EKA.

—The length of each dimension is equal. We denote the length of dimension after ith extension
as li.

—All the basic CPU operations are executed in constant time.

5.2 Retrieval Cost

In TMA, the array is linearized in a single data stream using the addressing function described in
Section 3 and all offset values of the array elements are consecutive. Hence the range of candidate
offset values for a query can be determined uniquely. But for EKA, the same data stream is
distributed over different subarrays (See Fig. 6).

5.2.1 Retrieval Cost for TMA. The retrieval on TMA is dependent on the known dimension
of an array. We use the term known dimension (or known subscript) to indicate the specified
dimension of the query operation. In an n dimensional TMA, if the query is along dimension n
(i.e. subscript xn is known) then all the candidate offsets are consecutive and the volume of the
range of the query is ln−1

i . This is explained with an example in the following. The addressing
function of a 4 dimensional array with li = l is f(x4, x3, x2, x1) = l3x4 + l2x3 + lx2 + x1

If l = 6 and x4 is known (say, x4 = 0, and xj = 0, . . . , l − 1) then the candidate offset values
in the query are consecutive in the range 0 to 215 (total 216 offsets) out of 1296 offsets which is
l3 (i.e. 63 ). If x1 is known (say, x1 = 0) then the candidate offset values in the query are in the
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range 0 to 1290 (total 1291 offsets) out of 1296 offsets. Hence the volume of the candidate range
of target elements are determined by l4− (l− 1). If the subscript x2 is known then the volume of
the candidate range of offsets is l4 − l(l− 1). In general, if the subscript xk(1 > k > n) is known
then the volume of the target elements are determined by ln − lk − 1(l − 1). For the range key
query in the range of known subscripts NRQ along the dimension k, the volume of the target
elements are determined by NRQ× (ln − lk − 1(l − 1)).

Example 3: Consider a 3 dimensional array of size 3× 3× 4 stored as row major order shown
in Fig.7. let the known subscript is x1 = 0, then, the candidate values for the query can be
represented as shown in Fig 8(a). Or if x1 = 1 the candidate values would be as in Fig. 8(b),
and so on, i.e. each of the candidate values are totally discrete and spread over the entire range.
If the known subscript is x2 = 1 then, the candidate values can be shown as in Fig. 8(c). Here
some of the candidate values are grouped together. If the known dimension is 3, and x3 = 0
then, the candidate values can be represented as shown in Fig. 8(d). Here many of the candidate
values are contiguous in nature and a single read is enough to collect them.
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5.2.2 Retrieval Cost for EKA. In EKA scheme, the target elements are distributed in dif-
ferent subarrays and the subarrays are divided into segments (see Fig. 6). So for retrieval
operations, EKA will take more CPU operation to be performed for accessing different streams
in secondary memory. On the other hand each of the segments of the subarray is two dimensional
and candidate and non candidate items can be separated in EKA. And thus retrieval cost will
be lower. As the segments are 2 dimensional then the maximum volume of the target elements
for a query in a segment is determined by NRQ × (l2 − (l − 1)). If the number of segment is s
then the maximum volume of the target elements are determined by s×NRQ× (l2 − l(l − 1));
where s depends on the size of the subarray.

5.3 Extension Cost

Fig. 9(a) shows a 2D TMA of size 3× 4. Let the italicized values represent the location of each
cell after linearization. From Fig. 9(a), the location of cell 〈2, 1〉 is 9 and its value is 76. Now
let we extend the array one unit in d2 dimension. Fig. 9(b) shows the array after extension
and linearization, where location of cell 〈2, 1〉 is now 11. That is if we would simply append the
extension subarray at the end, and read from location 9 for subscript 〈2, 1〉 we will get wrong
value (82). After extension, location is changed due to the change in the parameters of addressing
function. So for exact retrieval, during extension we first need to read the previously allocated
data, reorganize them and then write the array along with extension subarray.

5.3.1 Extension Cost for TMA. Let a TMA(n), with length of each dimension li = l. There-
fore initial volume of the array, V = l1× l2× l3×· · ·× ln = ln. For extending TMA, it requires to
reorganize the array and rewrite both existing and new data elements. The existing elements of
the initial array need to be faced and recalculate the new offsets due to the extension for TMA.

Hence the cost of facing (FC) the existing array elements becomes, FCTMA = ln (Assumption
(ii)). If TMA is extended by λ unit then a new TMA of length l + λ is to be reallocated, hence
reallocation cost, RCTMA = (l1 + λ)× (l2 + λ)× · · · × (ln + λ) = (l + λ)n

So, Total extension cost for TMA(n)

EC
TMA(n)
λ = FCTMA +RCTMA = ln + (l + λ)n = ln +

∑n
i=0

nCil
n−iλi

= ln + nC0l
n +

n∑
i=1

nCil
n−iλi = 2ln +

n∑
i=1

nCil
n−iλi (1)
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5.3.2 Extension Cost for EKA. First we consider an EKA(4) with li = l. Therefore,
initial volume of the array before extension V = l1 × l2 × l3 × l4 = l4.
If we extend one unit along each dimension di, the size of extension subarray SEi are
SE1 = l2 × l3 × l4 = l3 , and due to this extension l1 = l + 1
SE2 = l1 × l3 × l4 = (l + 1)× l2, and l2 = l + 1[∵ l1 = l + 1]
SE3 = l1 × l2 × l4 = (l + 1)2 × l, and l3 = l + 1[∵ l1 = l + 1, l2 = l + 1]
SE4 = l1 × l2 × l3 = (l + 1)3, and l4 = l + 1[∵ l1 = l + 1, l2 = l + 1, l3 = l + 1]

Now in general, extending a λ unit along dimension di, the size of extension SEi can be written
as
SE1 = λ× l2 × l3 × l4 = λl3, and for this extension l1 = l + λ
SE2 = λ× l1 × l3 × l4 = λ(l + λ)l2, due to extension l2 = l + λ
SE3 = λ× l1 × l2 × l4 = λ(l + λ)2l, and l3 = l + λ
SE4 = λ× l1 × l2 × l3 = λ(l + λ)3, and then l4 = l + λ

Therefore, Total Extension Cost for EKA(4), having λ unit extension in each dimension, be-
comes

EC
EKA(4)
λ = SE1 + SE2 + SE3 + SE4 = λ

k∑
i=0

lk−i(l + λ)i,where k = 3

Similarly for EKA(n), Total Extension Cost, for λ unit extension in each dimension, can be
written as

EC
EKA(n)
λ = SE1 + SE2 + · · ·+ SEn−1 + SEn = λ

k∑
i=0

lk−i(l + λ)i,Where k = n− 1 . . . (2)

If we expand the summation, then

k∑
i=0

lk−i(l + λ)i = lk(l + λ)0 + lk−1(l + λ)1 + lk−2(l + λ)2 + · · ·+ l1(l + λ)k−1 + l0(l + λ)k

= lk+

lk−1(1C0l +1 C1λ)+

lk−2(2C0l
2 +2 C1λl +2 C2λ

2)+

lk−3(3C0l
3 +3 C1λl

2 +3 C2λ
2l +3 C3λ

3)+

...

+ l0(kC0l
k +k C1λl

k−1 + · · ·+k Ck−1λ
k−1l +k Ckλ

k)

After multiplying and collecting the coefficients of lp, p = 0, 1, . . . , k, we get
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k∑
i=0

lk−i(l + λ)i = lk
k∑
i=0

iC0 + lk−1λ

k∑
i=1

iC1 + · · ·+ λk
k∑
i=k

iCk

=k+1 C1l
k +k+1 C2l

k−1λ+ · · ·+k+1 Cklλ
k−1 +k+1 Ck+1λ

k

[
∵

p∑
j=0

jCr =p+1 Cr+1

]

=

n∑
i=1

nCil
n−iλi−1,Where n = k + 1

Putting the above value in eq. (2), we get

EC
EKA(n)
λ = λ

∑k
i=0 l

k−i(1 + λ)i, Where k = n− 1,

= λ

n∑
i=1

nCil
n−iλi−1 =

n∑
i=1

nCil
n−iλi (3)

Extension Gain: The difference of extension cost between the TMA and EKA strategies is

referred to as Extension Gain (EG), EGnλ = EC
TMA(n)
λ − ECEKA(n)

λ = eq.(1) − eq.(3) = 2ln.
Hence we conclude that the extension gain of EKA(n) over TMA(n) is twice of initial volume
of TMA. And EG is independent of the length of extension λ.

Table 2. Assumed parameters for constructed prototypes

n λ max(li) Initial V = ln

4 10 100 (30)4

5 5 45 (20)5

6 2 22 (10)6

6. PERFORMANCE RESULTS

We have constructed the TMA and EKA systems having the parameter values shown in Table
2 placing the TMA and EKA in secondary storage. The auxiliary tables of EKA are placed
in main memory since the sizes of the auxiliary tables are negligible comparing to the main
array. All the tests are run on a machine (Dell Optiplex 380) of 2.93 GHz processor and 2 GB
of main memory having disk page size 4KB. We will show that the overall retrieval time has
advantages for EKA than TMA. We also show that we can extend the length of dimension of a
multidimensional array effectively if implemented using EKA.

6.1 Retrieval Cost

Fig. 10 shows the retrieval performance for range key query of TMA and EKA for the parameter
values shown in Table 2. In Fig. 10(a) the retrieval performance for EKA(4) for different known
dimension is shown. It shows that, the retrieval time is higher when x2 and x4 are known. The
retrieval time is lower when the known x1 and x3 is known. This is because the segments of
the subarrays of EKA(4) are two dimensional hence the element inside the subarrays can be
organized as row major order or column major order. If the elements are organized in one order
(say row major) then it is searched in column order; the target elements for the query are not
consecutively organized. Therefore that known subscript takes longer time. Hence two known
subscripts will take higher time than other two known subscripts.
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When the number of dimension n increases then it (Fig. 10(c) and 10(g)) shows that retrieval
from EKA takes higher time the known subscripts of only two values. Fig. 10(b) shows the
retrieval time for TMA for n = 4. It shows that d1 dimension takes higher time than other
known dimensions which proves the theory. When n = 5 or 6 for TMA, the same situation i.e.
for one known subscript TMA takes higher time than others as shown in Fig. 10(d) and 10(h).
Fig. 10(e) and 10(f) shows the average retrieval cost for EKA and TMA for n = 4 and 5. It
can be concluded that, on average, the retrieval performance for EKA is better and there is no
retrieval penalty for EKA over TMA up to n = 6. From a closer look to the absolute retrieval
times, we will also find that EKA needs less time for some known dimension and gives fairness
rather than TMA.

6.2 Retrieval Cost

Fig. 11 shows the extension cost for TMA and EKA for the parameter values shown in Table
2. The extension gain is shown in Fig. 11(d). ). The TMA needs to reorganize the entire array
whenever there is an extension made on it. That is, the whole array will be relinearized on disk
to accommodate the new data due to the extension of length of dimension. For this process, the
TMA scheme needs to face the existing elements then reorganize for the extension. On the other
hand, the EKA extends the initial array with segment of subarrays containing the new data as
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described in Section 3. That is, the EKA strategy just append the extended subarray at the
end, hence it can reduce the cost of array extensions significantly.

From theoretical analysis we can find that the extension cost is an exponential function both
for TMA and EKA. For example the extension cost for TMA is approximately O(ln) whereas
for EKA this value approximates to O(ln−1). Extension times in Fig. 11(a), 11(b), and 11(c)
resembles this phenomenon and hence we validate our cost model. The extension cost as well
as extension gain depends on the initial volume of the array i.e. the values of n and l before
the array is extended. And we find that (see section 5.3) extension gain is also an exponential
function, hence if n and l increase then the gain increase sharply which is shown in Fig. 11(d).
We can conclude that if the initial volume is large then the extension cost for TMA is much
higher than that of EKA. Therefore It will be expensive to extend a large array even for small
values of (length of extension).

6.3 Overflow

In multidimensional array, the location of an element is calculated using the addressing function
described in Section 3. For an n dimensional array with each dimension length = l, maximum
value of the coefficient vector can be ln−1 which is again multiplied by subscript value (maximum
l − 1). So the resulted value can be written approximately as ln. This value quickly reaches the
machine limit for TMA (eg. for 32 bit machine maximum value can be 232) and thus overflows.
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But in EKA since each of the segments are two dimensional, maximum value will be l2, which
greatly delays the overflow. One more reason is that TMA requires consecutive memory locations
up to ln and hence it overflows soon when l and n is large. On the other hand, in EKA the
segments of the subarrays are always two dimensional and distributed. Hence consecutive memory
location requirement is less in EKA than TMA. Therefore EKA delays the overflow situation
even for large values of l.

Fig. 12(a) shows the maximum length of dimension reached before overflowing the physical
memory. It is found that, TMA(4) reaches a length of 120 each dimension whereas EKA(4) is
much greater than that. This is also true for higher dimensional array. Fig.12(b) shows the total
storage requirement for EKA and TMA, specifically n = 6, for different length of dimension. It
is found that both EKA and TMA need almost same amount of storage. In fact, EKA needs
slightly higher amount of storage due to its auxiliary tables, but this is very negligible compared
to the total requirement. So we can conclude that the nature of storage requirement is almost
same for EKA and TMA.

7. CONCLUSION

In this paper, we proposed and evaluated a new scheme namely Extendible Karnaugh Array
(EKA) for multidimensional array representation. The main idea of the proposed model is to
represent multidimensional array by a set of two dimensional extendible arrays. To extend the
TMA dynamically re-linearization is necessary but this is very costly when the array size is large.
Therefore we need an array system to extend in all dimensions without costly shuffling of the
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existing data. Most of array systems do not consider the address space overflow problem. We
extend dynamically the multidimensional array and it handles the overflow problem efficiently.
We found better results for the proposed model than that of the traditional array representation.
This scheme can be successfully applied to database applications especially for multidimensional
database or multidimensional data warehousing system. One important future direction of the
work is that, the scheme can be easily implemented in parallel platform. Because most of the
operations described here is independent to each other. Hence it will be very efficient to apply
this scheme in parallel and multiprocessor environment.
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