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The real workload on a large scale computer system varies from time to time. Often it has many idle nodes
during most operation time. These idle nodes consume energy, but do nothing useful. To save the huge amount of
energy wasted by such active idle nodes, most modern compute nodes are equipped with multiple level dynamic
sleep mechanisms to reduce power consumption. However, awaking sleeping nodes takes time. The deeper a node
sleeps, the less energy it consumes, but the longer wakeup latency. How to balance between the systems energy
consumption and the response time is a key problem in the power management of large scale systems. This paper
proposes a self-adaptive approach to manage the sleep states of idle nodes to achieve low energy consumption
and high performance at the same time. The proposed approach has two distinctive features. First, idle nodes
are hierarchical organised. In this model, idle nodes are classified into several groups according to their sleep
states. Each group contains nodes of same level of sleep depth and forms a reserve pool of a certain readiness
level. When a resource is requested, nodes in the pool of highest level of readiness are preferentially allocated.
When the nodes in the pool of the highest readiness level are not sufficient, the nodes in the pool(s) of next
level(s) of readiness are allocated. After each allocation and reclaim of nodes, the numbers of nodes in each level
of pools are adjusted by changing the sleep depth of the nodes up and down. Thus, the reserve pools can be
maintained for high performance requirement. When resources are released from applications, they are placed
back to reserve pools and put into different levels of sleep states to save energy. Second, the sizes of reservation
pools are self-adaptive. Obviously, a key factor that affects the effectiveness of the idle node management is the
sizes of the reserve pools. Fixed sizes of reserve pools would not be effective due to the time varying nature of
workload on large scale systems. The proposed approach employs a self-adaptive mechanism in which the sizes
of reserve pools are dynamically adjusted during the execution of the system according to how well the research
pools meet the need of computation resources. Our experiments demonstrated that our approach can significantly
improve energy efficiency in large scale systems without significant scarification of performance.

Keywords: Large scale computer systems, Power Management, Dynamic Sleep, Idle node

1. INTRODUCTION

To satisfy the steadily rising demands on computing performance, both the number of compute
units in data/compute centers and the system integration density grow rapidly. Consequently, in
the past years, the so-called Moore’s law of power consumption has been observed; that is,‘the
power consumption of computer nodes doubles every 18 months’ [Feng 2003]. Power management
has becomes a grave challenge to the development and operation of large scale computing systems.

Large scale high performance computing systems consume a tremendous amount of energy.
According to the recent TOP500 list of supercomputers [Meuer et al. 2012], the average power
consumption of Topl0 systems is 4.65 MW. The peak power consumption of the most power
consuming supercomputer, i.e. the K computer, reaches 12.659 MW, which equals the power
usage of a middle scale city. In 2006, US servers and data centers consumed around 61 billion
kWh at a cost of about 4.5 billion US Dollars. This is about 1.5% of the total US electricity
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consumption or the output of about 15 typical power plants [U.S. Environmental Protection
Agency 2007]. In 2007, the electricity consumption of global cloud computing was 623 billion
kWh which is larger than the 5th largest electricity demand country in the world, i.e. India
[Cook 2012]. Many data center projects have been cancelled or delayed because of an inability to
meet such enormous power requirements. High density power consumption causes overheating,
which leads to problems of system reliability and availability. Huge construction costs of large
scale systems are also incurred in order to accommodate the huge amount of energy demand.

On the other hand, the workload of data centers varies significantly with time where on average
the resources in a large scale system typically sit at a low level of utilization. Consequently, a large
number of nodes are idle in most time [Krioukov et al. 2011]. Unfortunately, nowadays nodes
are not power-proportional. A node in idle state is highly energy inefficient. It can consume the
power about 50% of its peak power [Mustafa et al. 2011]. In the result, idle nodes in large scale
systems waste a huge amount of energy.

To reduce the power consumption of idle nodes, most compute nodes are now equipped with
dynamic sleep mechanisms so that a node can be put into one of multiple sleep states when it
is idle and be waken up when it is needed [Liu and Zhu 2010]. Each sleep state consumes less
power than idling in the active state. The deeper a node sleeps, the less power it consumes, but
the more energy and the more time delay are needed to wake it up. Considering the overhead of
state transitions, the deepest sleep state obviously is not always the best choice for idle nodes. In
this paper, we propose a self-adaptive solution for the management of sleep states of idle nodes in
large scale systems to make an effective tradeoff between energy conservation and system response
times.

2. RELATED WORK

Dynamic speed scaling and dynamic resource sleeping are two types of power management mech-
anisms widely supported in current information industry. Employing the dynamic speed scaling
mechanism, the energy consumption of idle nodes can be reduced by scaling down the speed of
its hardware equipment. However, even if all the components are scaled down to their lowest
speeds, the power consumption of an active idle node is still significantly higher than that in a
sleep state [Liu and Zhu 2010]. A huge amount of wasted energy can be still saved.

Dynamic cluster configuration is such a power management technique for large scale systems
widely used in practice [Krioukov et al. 2011; Mustafa et al. 2011; Srikantaiah et al. 2008; Chase
et al. 2001; Pinheiro et al. 2001]. The basic idea is to put idle nodes into a certain sleep state
and waking them up on demand. To balance between energy and performance, most researchers
on dynamic configuration of cluster focus on server consolidation, i.e. allocating tasks only on an
appropriate active portion of the cluster. The remanding nodes thus become idle and are simply
turned off [Horvath and Skadron 2008].

Gandhi et al investigated the importance of employing multiple sleep states for servers in data
centers [Gandhi et al. 2011]. However, their solution does not dynamically manage the sleep
depths of idle servers. Horvath et al. propose an energy management policy that exploits the
multiple sleep states of idle servers [Horvath and Skadron 2008]. They predicate the incoming
workload based on history resource utilization change and determine the optimal number of spare
servers for each power states accordingly. Extra spare servers are put in the deepest possible sleep
states. Obviously, the inaccuracy in workload prediction will have significant impact on either
energy consumption or system performance. Our approach differs from their approach in that
we dynamically adjust the number of nodes in different sleep depths according to the workload
at runtime rather than predications.

[Xue et al. 2007] also manage a pool of active resources whose computing capacity is adjusted
dynamically in accordance with the time-varying workload demand. However, in their power
management solution spare nodes are simply turned off. They have not taken the advantages of
multiple sleep states. Therefore, system performance is slowed down when additional computing
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capacity is required, because it will take a long time to wake up the nodes switched off. In this
paper, we explore the benefits of multiple sleep states to improve the energy efficiency of large
scale systems with minimal sacrifices of system performance.

3. PROPOSED MANAGEMENT MODEL

This section presents the proposed idle node management model ASDMIN, which stands for
Adaptive Sleep Depth Management of Idle Nodes. We will first review the key features of dynamic
sleep mechanisms, then, present the structure and algorithms of the proposed model.

3.1 Basics of Dynamic Sleep Mechanism

The nodes in a cluster environment can be classified into two categories according to whether
there is an application running on them, i.e. busy nodes and idle nodes. If a node has been
allocated to any application, the node is busy. Otherwise, it is idle. An idle node, even in active
standby state, does not produce any useful computation.

To reduce the energy waste on an idle node, it should be put into a low power consumption
sleep state. Currently, a node is usually equipped with mechanisms that support multiple sleep
states. For example, in ACPI specification [Hewlett-Packard Corporation et al. 2011], a node can
be in one of the power states SO, S1, S2, S3, S4 or S5, where SO is the active state, S1, ..., S5
denote different levels of sleep state with S5 as the deepest sleep state. The deeper a node sleeps,
the less power it consumes, but the more energy and latency is required to wake it up. In each
sleep state, the power consumption, wakeup energy and wake up latency are constants, which
are denoted by P;, F; and D;, i = 0,--- , M, respectively, where M is the number of supported
sleep states of the node. These parameters satisfy formula (1) below.

Note that, the power consumption in a sleep state is always lower than the power usage in
the active state. Also, additional state transition energy is required to put a node into sleep and
wake it up. Thus, to conserve energy by dynamic sleep mechanism, it is necessary to ensure the
continuous period of sleep to be long enough so that the energy saved by sleeping is greater than
the energy spent on state transition.

Moreover, a node in a sleep state is not available. Before providing any functional service, it
must first be waken up. This means that the wake up latency may depress the response speed
of the sleep node. The deeper a node sleeps, the longer the latency of wakeup. Consequently,
sometimes it is not the best choice to put a node into its deepest sleep state when it becomes idle.
An effective power management solution is required to schedule the appropriate sleep or waken
up timing of idle nodes to maximize the energy efficiency of the whole system with minimal effect
on system performance.

3.2 Structure of ASDMIN model

As shown in Figure 1, in ASDMIN model, the idle nodes are classified into a number of node
groups according to their sleep depths. Each group is therefore a reserve pool of nodes of certain
readiness. The higher the power consumption is, the higher the readiness level is. The pool of
level i, denoted as B;, is composed of all of the nodes with the same power consumption level P;.
From the cluster-wide point of view, node sleep depth management means to distribute the idle
nodes among different groups of corresponding power states.
Assume that the number of nodes in B; is IV;, and the total number of all idle nodes in the
system is IV, then we have that:
M
N:ZNi, N; >0 2)
i=0
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Figure 1. ASDMIN model for adaptive sleep depth management of idle nodes

Thus, the power consumption of all idle nodes, P,q., equals

M
Pigie = Y _ P;- N; (3)
i=0

In order to minimize the impact on system performance due to wake-up latency and to maximize
the energy saving, ASDMIN’s resource allocation policy will preferentially allocate nodes required
by an incoming application from the highest reserve pool as many as possible, which has the
shortest wakeup latency. When the nodes in the pool of the highest readiness level are not
sufficient, the nodes in the pool(s) of next level(s) are allocated.

Let A be the number of nodes required by an incoming application. The highest level of reserve
pools that can cover the need of A nodes is denoted by Level(A). Formally, we have that

Level(A) =1 Y N;<A<> N; (4)

Assume that allocated nodes are waked up in parallel. Then, the overall wakeup latency for
an allocation of A nodes, denoted by Delay(A), is determined by the largest wakeup latency of
the allocated nodes. By (1), we have that

Delay(A) = Max{Dy, D1,--- ,D;} = D, (5)

where | = Level(A).

Constrained by the service level agreement on response time, the level of the reserve pool that
covers an allocation should not be lower than the requirement. In other words, enough nodes
should be reserved in the pools whose sleep depth are lower than [. Therefore, we set a reserve
capacity threshold, denoted by R;, to control the minimum number of nodes in pool B;. When
the number of nodes in B; is less than R;, nodes in the lower level pools will be upgraded to
fill the reserve capacity. On the other hand, when resources are released by applications, the
number of nodes becomes more than the required, hence some idle nodes in a reserve pool will
be downgraded to a sleep state as deep as possible.

Generally speaking, the less the reserve capacity thresholds for the highest reserve pools are,
the more idle nodes are downgraded, and the less total power consumption by the idle nodes,
hence the more energy is saved. However, the wakeup latency is longer and the performance loss
caused by dynamic sleep is more significant. Thus, a trade-off between energy consumption and
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performance must be made by assigning appropriate values to the reserve capacity threshold R;.
In the optimal scenario, the systems response speed matches closely to the speed when all nodes
are put in the active standby state (i.e., in the highest reserve pool), and the energy conservation
matches to that when all nodes are in deepest sleep state (i.e., in the lowest reserve pool).
Unfortunately, this is hardly achievable with fixed values of R; because of the unpredictably time
varying nature of workload on large scale systems.

Our solution to this problem is to adjust the reserve capability thresholds dynamically and
adaptively. The management algorithms are given in the next subsection.

3.3 Power Management Algorithms

The operation of ASDMIN model depends on two sets of algorithms: (a) the downgrading and
upgrading algorithms for changing the sleep depths of the idle nodes, and (b) the allocation and
reclamation algorithms for deciding which node is to be allocated for an application.

3.3.1 Downgrading and Upgrading Idle Nodes. Once an idle node is allocated to an applica-
tion, the amount of reserve in the corresponding reserve pool is reduced. If the amount of reserve
is lower than the required capacity, the pool needs to recruit nodes from lower pools. Conse-
quently, this recruiting of nodes may cause reserve shortage of the lower pools. The progress of
recruiting is thus a recursive process propagates from the top level to the lowest level as shown
in Algorithm 1 below.

Algorithm 1. Upgrade(); (* Upgrade the power states of idle nodes *)
State Variables:
<BO,B1 ...... BM>: Sets of idle nodes in the reserve pools;
Local Variable:
k: integer; (* The level of the target pool to recruit *)
Begin
for i from O to M-1 do {
k =1 +1;
while (Ni < Ri) {
if (k > M) break;
if (Nk >= (Ri - Ni)) {
Select (Ri - Ni) nodes from Bk and move them into Bi;

Ni = Ri;
Nk = Nk - (Ri - Ni);
} else {

Take all nodes in Bk into Bi;
Ni = Ni + Nk;
Nk = 0; k = k+1;
i3
End

When a node is reclaimed due to the finish of a task, it is put into a reserve pool. Consequently,
the amount of resource in the pool may exceed the required capacity. The excessive nodes
can therefore put into a deeper state of sleep. However, we do not want to put them into
sleep immediately because this may result in the frequent changes of the states of nodes, which
consumes energy, too. A question is that how long the delay should be so that the stability of
the sizes of reserve pools and nodes’ sleeping states can be maintained and the balance between
performance and energy consumption can be achieved.

Let’s first introduce a few more terminologies.

—Piercing a reserve pool. We say that a reserve pool is pierced at certain time moment during
the operation of the system, if all the nodes in the pool are allocated but the resource is still
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insufficient to meet the amount of required nodes.In this case,at least one node in the lower
level reserve pool is used.

—Continuous time period without piercing (CTPOP). For a given reserve pool, it is the continuous
period of time during which no piercing happened.

—Length of CTPOP. At a certain time moment in the operation of a system, the length of a
CTPOP is the length of time period since the last piercing of the reserve pool.

The length of a CTPOP gives a good indication of how sufficient the resources in a reserve pool
is with respect to the runtime characteristics of the application software. If the capability is too
small, the pool will be frequently pierced, thus the length of CTPOP is short. Consequently, the
performance of the system is slowed down. If the capability is too big, the reserve pool will be
rarely pierced, and the length of CTPOP will be long. In this scenario, the power consumption
is unnecessary and some of the nodes can be put in a deeper sleep state. Therefore, to balance
between energy consumption and performance, the length of CTPOP must be managed at a
certain ideal target value T; for each reserve pool B;. This target value is called state continuance
threshold.

—State continuance threshold (T;). For a given reserve pool B;, it is the value set to judge
whether its length of CTPOP is long enough.

By setting the state continuance thresholds for the reserve pools, we can manage the reserve
pools as follows.

At a time moment, if the length ¢; of the CTPOP of pool B; is greater than the value T;, the
reserve pool B; has not being pierced for a period long enough. Thus, its reserve capacity is
superfluous than required. The over-reserved nodes in B; can be downgraded into deeper sleep
state to save energy. In such situation, a subset of B;, notated as D.S;, is selected as the target
nodes to be downgraded into the deeper pool B; 1.

In other words, downgrading a node must meet two constraints: (a) the size of the reserve pool
is greater than the reserve capacity R;, and (b) the length of CTPOP is greater than the state
continuance threshold T;. Details of the algorithm are given below.

Algorithm 2. Downgrade(); (* Downgrade the power states of idle nodesx)
Input:
NO, N1 ,..., NM: Integer; (* The current sizes of reserve pools *)
t0, t1 ,..., tM: Integer; (* The current lengths of CTPOP of reserve poolsx)
State variables:
BO, B1, ..., BM: The sets of idle nodes in reserve pools;
Begin
for i from 0 to M-1 do {
if ((ti > Ti) && (Ni > Ri)) {
select a subset DSi of Bi such that || DSi || = Ni - Ri;
Bi = Bi - DSi ;
Bi+1 = Bi+1 + DSi;
Ni=Ni- || DSi |I;
Ni+1 = Ni+1 + || DSi |[;
1
End

3.3.2  Resouce Allocation and Reclaim. When a new application or task is initiated and K
nodes are required, the recursive resource allocation (RRA) algorithm is invoked; shown in Al-
gorithm 3.

Assume that K is the number of nodes required by an incoming application. If the number of
nodes in By (i.e.the top level reserve pool) is less than K (i.e. Ny < K), level 0 piercing occurs.
Thus, the length of CTPOP of By is reset to 0. Beside all nodes in By are allocated to the
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application, further (K — Ny) nodes are allocated from the next level of pool (B). Similarly, if
B; still cannot satisfy the requirement, level 1 pool piercing occurs, and its length of CTPOP is
reset. The allocation progresses recursively until the application gets all its required nodes.

The allocation of nodes results in the decrease of amounts of resources in the corresponding
reserve pools. Thus, the remaining number of nodes in the reserve pools may be less than their
reserve capacity thresholds. Therefore, the upgrading algorithm described in Algorithm 1 is
invoked at the end of each allocation.

Algorithm 3. Allocate(); (* Recursive resource allocation algorithm *)
Input:
K: Integer; (* The number of nodes required *)
OQutput:
Ba: the set of nodes allocated to the application;
State Variables:
BO, B1, ..., BM: the sets of idle nodes in reserve pools;
Local Variables:
n: Integer; (*the number of allocated nodes *)
k: Integer; (* the level of target pool *)
Begin
if (Na > Sum of Ni for i=0 to M ) {
Report error: '"require resource is more than system’s capability";
Return;
}
k =0; n = 0; Ba = EmptySet;
while (n < K){
if (Nk >= (K - n)) {
Select (K- n) nodes from Bk and add them to Ba;
Nk= Nk - (K - n); n = K;
} else {
Take all nodes in Bk into Ba;
n = n + Nk; Nk = 0; tk = 0;
k=k + 1;
1}
Upgrade(); (* to make up the loss of resources in *)
(* reverse pools due to the allocation *)
End

Note that, the above algorithm leaves the node selection policy issue open. Therefore, it can
be combined with other optimization goals. For example, an idle node is allocated first if its
temperature is lower than the others.This will help to maintain the system as cool as possible.

When an application or task terminates, all its occupied nodes are freed and become idle.
These nodes will be reclaimed and placed in reserve pools. Here, we use a simple and conservative
resource reclaim algorithm shown in Algorithm 4. It simply puts all reclaimed nodes into the
highest reserve pool By. This works well with the downgrading algorithm, which in turn puts
the idle node gradually to the lower level reserve pools if they are not required for a period of
time.

Algorithm 4: Reclaim(); (*#Reclaim idles nodes into reserve pools *)
Input:
Ba: The set of nodes freed by an application;
State Variables:
BO, B1, ..., BM: the sets of idle nodes in reserve pools;
Begin
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BO
NO
End

BO U Ba;
NO + || Ba |I;

Note worthy: other reclaim policies can be easily employed in the model to select the target
pools for the newly freed nodes. For example, an aggressive policy may put all reclaimed nodes
into the deepest sleep state. It can also be combined with other optimization goals. For example,
the idle nodes can be put into different levels of reserve pools according to their temperatures so
that the hotter ones are in deeper sleeping states thus they can be cooled down.

3.3.3 Adjustment of the Reserve Capacity Threshold. The users’ requirements on the balance
between performance and energy efficiency has been represented in the state continuance thresh-
olds for the reserve pools and dealt with by the algorithms presented in the previous subsection.
This subsection is devoted to a mechanism that deals with the time-varying nature of many
applications run on large scale system.

In general, a piercing of level ¢ reserve pool means that the amount of nodes reserved in B;
is not sufficient. Therefore, its reserve capacity threshold R; should be increased to meet the
demand of workload. Here, we propose the following formula (6.a) to guide the adjustment of
reserve capacity threshold when handling the piercing of level i reserve pool.

_J Rita-(Ci— N, C;>N; (a)
Ri= { Maz{Ri — 8- (N; — C1),0}, Cs < Ny (b) (6)

where C; is the number of nodes required to allocate from B;, and « is a performance weight
factor to reflect the user’s preference for system performance.The bigger the « is, the faster the
reserve capacity threshold increases. Consequently, the more idle nodes will stay in higher reserve
pool, and the more weight is given to system performance.

On the other hand, there may be some residual nodes in a reserve pool after its providing nodes
to the application. It means that the reserve capacity of the pool is larger than the requirement.
The superfluous nodes in a pool should be put into deeper sleep state to save energy. We thus use
Formula (6.b) to decrease the reserve capacity threshold, where § is an energy weight factor. The
bigger the [ is, the faster the reserve capacity threshold decreases, and the energy conservation
is more preferable to the performance.

After each resource allocation, the reserve capacity threshold adjustment algorithm, shown
as Algorithm 5, is called for each reserve pool. The threshold is adjusted according to the
difference between the requirement and the original reserve capacity. If a pool is not covered by
the allocation, its C; is zero.

Algorithm 5. Adjust(); (*Adjust reserve pool capabilities *)
Input:
Ni: Integer; (* the number nodes in Bi before a node allocation *)
Ci: Integer; (* the number of nodes to be allocated from Bi *)
Ri: Integer; (* the current reserve capacity threshold of Bi *)
Output:
R’i: Integer; (* the new reserve capacity threshold of Bi *)
Begin
R’ i= R 1i;
if (Ci>Ni) {R’i = Ri + alpha * (Ci -Ni) } ;
if (Ci<Ni) {R’i = Ri + beta * (Ci - Ni)} ;
if (R’i < 0) R’i = 0;
Return R’i;
End
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4. IMPLEMENTATION AND EVAULATION

We have implemented the above algorithms and conducted two simulation experiments. This
section reports the main results of the experiments.

4.1 Design of the Experiments

4.1.1 The Benchmark. The times that a node becomes idle or busy and the numbers of nodes
that are idle in the system are closely related to the workload trace on the system. Consequently,
an evaluation of a power management technique must take into consideration of the workload
characters.

Parallel Workload Archive [Feitelson 2011] contains dozens of workload logs on real parallel
systems. Each log contains the following information on the jobs:

—submit time, the time moment when a job is submitted to the system;
—wait time, the time period when the job is waiting;
—run time, the time period when the job is executed;
—number of allocated processors, the number of processors that are allocated to the job.
From such information and the system scale, one can work out the number of busy nodes in
the system at each second.

Table I summarizes the characteristics of the workload logs used in our experiment as the
benchmark.

Table I: Characteristic Data of the Workload Logs Used in the Experiments

Name System | Workload | No. Jobs | Average No. | No. Turning Average
Scale Scale idle nodes points change rate
RICC 1,024 562 1,663 7,847 1,340 2.74
PIK IPLEX 320 259 54 2,545 154 1.62
Sandia Ross 1,524 657 16 1,047 41 0.67
ANL Intrepid 40,960 38,912 631 24,897 1,116 303.47
SDSC DataStar 184 184 108 146 218 1.42
SDSC Blue Horizon 144 143 133 1,070 333 0.77
LANL CM-5 1,024 65 307 992 522 0.41
LANL Nirvana 2,048 2,048 2,158 862 1,333 23.90

In Table I, system scale is the number of nodes in the system, and workload scale is the highest
workload in terms of the number of nodes used during the execution. The average number of
idle nodes gives the space of energy saving.The change rate C'R; of scale at a time moment ¢ is
the number N; of nodes minus the number N;_; of nodes at the previous time moment ¢ — 1. It
is positive, if the scale increases; and negative if the scale decreases. The average change rate is
the calculated from the absolute value of the change rate over the whole period of time. A scale
turning point is a time moment when the change rate changes from previously positive to either
zero or negative,or from negative to either zero or positive.

4.1.2 The Power Characteristics of the Nodes. There is no data about the power characters
of idle nodes in the ANL Intrepid log. We measured the power consumption and wakeup time of
a real compute node, which contains two 6-core Xeon CPUs and 8 GB DIMMs. The results are
shown in Table II. These data are used in the simulations.

The compute nodes have four different idle states SO, S1, S3 and S4. SO is the active idle
state, and S1, S3, S4 are sleep states ranking on sleep depth. The state transition energy con-
sumptions are not considered in the experiments, because they are difficult to measure precisely
and small enough to be considered as negligible for the length of continuous sleep states in our
experiments,where the time granularity of our simulations is 60 seconds.
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Table II: Power Characteristics of Compute Node

State | Power (Watt) | Wakeup latency (Sec.)
Busy 350

S0 207 0

S1 171 2

S3 32 10

S4 26 190

4.1.3  The Simulation Scenarios. Five different scenarios in power management are simulated
and compared in the experiments.Four of them using the flat reserve pool structure to simulate
the existing power management solutions that do not take advantages of multiple sleep states of
compute nodes.The other scenario uses our proposed hierarchical structure of reserve pools.The
details of the scenarios are given below.

—Flat reserve pool structure. This is the trivial case when there is only one level of reserve pool.
The simulation is conducted in four different sub-scenarios, where, in each scenario, the nodes
in the reserve pool are at the same sleep state SO, S1, S3 and S4, respectively, whenever it
becomes idle. The power states of all idle nodes are same and remain unchanged during their
idle period. We will also use S0, S1, S3 and S4 to denote these scenarios, respectively. The
wakeup latency is added to the wait time of a job. Hence the wakeup latency is accumulated
to latter jobs if the number of idle nodes in system is less than the requirement of the incoming
job. Maintaining submit time matching with the Figure 2, the workload running trace on time
is influenced by wakeup latency correspondingly.

—Hierarchical reserve pool structure. The sleep depths of idle nodes are managed adaptively
according to the ASDMIN model, where there are 4 levels of reserve pools. Each pool contains
idle nodes of power state SO, S1, S3 and S4, respectively. At the time 0 of each simulation, all
nodes are idle and in lowest reserve pool Bs. That is, initially, we have that No = Ny = Ny = 0,
and N3 is the number of nodes in the system. The initial values of Ry, R; and Ry are configured
as 0. Because the Bs is the lowest pool and the nodes in Bs cannot be downgraded any further,
the value of R3 always equals to the number of nodes in the system.

Note worthy: first, in scenario S0, all idle nodes are active. Thus, in this scenario, the system
has its highest possible response time,but no energy saving.

Second, scenario S4 is when all nodes are put into the deepest sleep state whenever it is idle.
Therefore, it is the most energy efficient, but the least responsive in performance.

Finally, in our experiments we have omitted the scenario S2 that idle nodes are put into the
S2 sleep state. This is because S2 state is same as S1 state except the CPU and cache context is
lost. S1 is the basic state in ACPI. Few commodity CPUs and platforms support S2.

4.1.4 Measurements and Metrics Used in The Experiments. There are a number of metrics
used to compare the energy consumption efficiency in green computing research [Liu and Zhu
2010]. Here we use the same metrics used by the Green500 list [CompuGreen 2013]. That is,
energy efficiency is measured by the M FLOPS/W. Formally, let 2 be the number of instructions
executed in a period of time ¢ while consumes w energy. The energy efficiency (EE) of the
computation is

x

EE = (D)/w (7

Suppose that in scenario S0, the computation take ¢y time to complete with energy consumption
wg. We have that the energy efficiency FFEy of the computation in scenario SO equals

EE, = <%>/wo (8)
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When a power management solution S; is applied to the same computation, it takes time
t; to complete the tasks while consumes w; energy. The energy efficiency FFE; of the power
management solution S; is

= ()/w )

Since the data about the number x of instructions executed are not available in the workload
archive, we can only calculate the energy efficiency improvement for each power management
solution with regard to the situation when no power management solution is applied, i.e. the SO
scenario. Here, the Energy Efficiency Improvement Ratio (EEIR) for solution S; is defined as
follows:

EE, (()/wo)

FEIRS) = T, = (@w) = B0 G

(10)

In a large scale system, at each time moment, there are many computation tasks executed in
parallel. Let P be a given period of time in the execution of a system. Let C; be the set of tasks
executed in the period P of time with power management solution .S;, and for each a in Cj, ¢
and z{ be the time to complete the task and the number of instructions executed for task a,we

have that
(Zaeco ZS) Co
a | /Wq to Ci x8
EFEIR(S;) = g“ec@t = Zaeci ; X wlc X 72“60“ 2 (11)
(Eaec ) Jul \ Laecy 1 wy Yaec, ¥

When the period of time is significantly longer than the lengths of tasks, we have that C, =~ C;.
Thus, we have that

Zaeco xg
ZGECi xfil

Therefore, we can use the following as a measure of EEIR.

EEIR(S;) ~ (Zwt> X (“’2) = SD(S;) x ES(S;) (13)

~1 (12)

> accy th
acCy 0 Wy

2aco, ti

2accy to

C'
Y s th 1 t d of ti
Co IS € overall energy savmg rate over a glven perlo [0) me.

where SD(S;) = is the overall slowdown rate over a given period of time and ES(S;) =

"In a system with power management on idle nodes,the time to complete a job, denoted as
execution time, i.e. its end time minuses its submit time, consists of three parts as in formula
(14): the wait time and the run time as logged in the workload archive when no dynamic sleep
mechanism is not used, and the wakeup delay is the additional delay caused by awakening idle
nodes that are allocated to the job.

execution time = wait time + wakeup delay + run time (14)

4.2 Experiment 1: The Impact of Configuration Parameters

The first experiment was conducted to study the influence of configuration parameters on the
effectiveness of the proposed approach. Due to the labor-intensive nature of this experiment,
only one of the workload logs was used in this experiment.

4.2.1 The Benchmark. The ANL Intrepid log in the archive is selected as the workload trace
in this experiment. The ANL Intrepid comprises 40,960 quad-core nodes, which is the largest
system scale among all logs in the archive [Feitelson 2011]. Our simulations start at the time of
0 of the log. However, to avoid the fulfilling effect of the system starting,the data of the first
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month (i.e. 30 days) are neglected, and the workload on the following 48 hours, shown in Figure
2, is investigated as the input of our simulations.

40000

35000

30000 |

25000

s A" s Mnll LI A
| PP e

5000

The Number of Busy Nodes

Figure 2. ANL Intrepid Workload Distribution

In Figure 2, the grey area exhibits the number of busy nodes in the ANL Intrepid system along
with the time. The top line is the system scale, i.e. 40,960 nodes. The white area is the number
of idle nodes at run time. On average, 60.78% of nodes in the system are idle.

4.2.2  The Impact of the Size of Downgrading Subset. According to the downgrading algorithm
given in the previous section, a subset D.S; of the nodes in the reserve pool B; is selected as the
target nodes to be downgraded to the deeper sleep state. Constrained by the reserve capacity
threshold, the maximal size of D.S; that can be downgraded from B; is (N; — R;). We employ
d; - (N; — R;) as the size of DS; in the simulation, where J; is a fractional constant, i.e. 0 < § < 1.
In each simulation, the §;’s are invariant. Multiple simulations are executed with different values
of §;’s. The results of the simulations are shown in Figure 3.

Because the execution time in ANL Intrepid workload is much greater than the wakeup delay
and the management on the power state of idle node only affects the wakeup delay,the job
execution time varies trivially in different scenarios. Generally speaking, the energy consumed
by all nodes varies with § (i.e.the size of the DS), which forms a bathtub curve, while the job
execution time only varies slightly. In the result, the energy efficiency also forms a bathtub curve
with 6. When § is 0.4, the energy efficiency is the best. Therefore, in the further experiments we
used 0.4 - (N; — R;) as the optimal configuration of downgrading set size ratio.

4.2.3 The Impact of Adjustment Speed. The speed of adjustment of the reserve capacity
thresholds can be tuned by setting two coefficients: the performance weight factor « and the
energy weight factor 5. They are employed to reflect the user’s preferences in system perfor-
mance and energy conservation. In our simulation experiments, we give the equal weight to
performance and energy consumption. Thus, we configure the performance weight factor to be
equal to the energy weight factor, i.e. «; = ;. Moreover, for the sake of simplicity, all reserve
pools hold the same configuration values of these two factors. That is,for all B; and B; of reverse
pools, we have that a; = o; and 8; = ;. Simulation experiments were carried out to investigate
how the value of o and § affect performance and energy consumption. The results are shown in
Figure 4. In general, the system energy, job execution time and energy efficiency all varies with
the increase of adjustment weight. When «; and S; are 0.15, the energy efficiency is the best.

4.2.4  The Impact of State Continuance Threshold. Another parameter that affects the effec-
tiveness of power management is the state continuance threshold 7; used in the Algorithm 2. It
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Figure 3. Average management effect with different size of DS.

controls the length of time when idle nodes will stay in a reserve pool before downgrading. Its
effect to power management is shown as Figure 5.

Both the energy consumed by all nodes and the overall execution time varies slightly with the
threshold. However, the energy efficiency is the best when T; is 7.

Based on the results of the above simulation experiments, we configured the ASDMIN in such
way that d; = 0.4, a; = 8; = 0.15, T; = 7. This configuration is used in the further experiments
that compare ASDMIN with existing power management solutions.

4.3 Experiment 2: Comparison with Existing Power Management Solutions

The simulations are executed on the benchmark in 5 different scenarios discussed in subsection
4.1.3. Figure 6 shows the power consumptions by the idle nodes in 5 different scenarios in the
experiment using the ANL Intrepid workload.It clearly demonstrated that the power consumption
in the ASDMIN scenario is almost the same as that of the S4 scenario, which is the scenario in
which energy consumption is the lowest.

On the other hand, as shown in Figure 7, where the y-axis is the job execution time, in the
ASDMIN scenario, the execution time is almost the same as in scenario SO, where all nodes are
kept active idle and the system is in its highest performance.

Figure 6 and 7 shows that, on the ANL Intrepid workload benchmark, the ASDMIN model
achieved energy efliciency with a close match to power management solutions represented in sce-
nario S4 and at the same time achieved a performance with a close match to solutions represented
in scenario S0. The same phenomena are observed in the simulation experiments with all of the
workload logs,as shown in Figure 8 below.

In Figure 8, BUSY is the number of busy nodes in the system, NO,..., N3 are the number of
nodes in reserve pool BO0,...,B3, respectively. The distributions of idle nodes during the experiment
are summarized in Table III.

In Table 11, column N; (i = 0,1, ...,3) are the average numbers of idle nodes in reserve pool
B;, and BUSY are the average number of busy nodes. On average, there are 94.98% of idle nodes
in the lowest pool (NV3). In other words, most idle nodes are in the deepest sleep state in most of
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Figure 4. Average management effect with different weight
Table III: Distributions of Idle Nodes over Different Reserve Pools
Workload log BUSY NO N1 N2 N3
RICC 319.92 7.67 4.28 2.09 690.05
PIK IPLEX 16.27 3.11 2.10 0.09 298.43
Sandia Ross 477.01 6.06 2.35 0.01 1038.56
ANL Intrepid 16,383 | 679.47 | 463.94 | 152.01 | 23,281.58
SDSC DataStar 39.31 2.40 1.69 0.13 140.48
SDSC Blue Horizon 82.66 1.73 1.71 0.02 57.89
LANL CM-5 32.15 0.94 0.98 0.002 989.93
LANL Nirvana 1211.17 | 65.76 27.82 12.74 730.50
Overall 18,561 767 505 167 27,227
time.

Our proposed model does not only saving energy, but also achieves high performance. The
main results of the experiments are summarized in Table IV.

The effects of idle node management in the five different management solutions on the 8 systems
are shown in Figure 9.

In comparison with scenario SO, in which all idle nodes are in active state, on average of 8
workload logs, ASDMIN reduces overall system energy consumption by 50.93% at the cost of
increasing the average job execution time by 3.49%. In this scenario, thus, by applying Formula
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Figure 6. The variation of power consumption by all nodes with the time of executions on the benchmark

(13), we have that the energy efficiency is improved by 49.32%.

In scenario S4 all idle nodes are always put into the deepest sleep state. Thus is consumes the
least energy, i.e. 47.62% of SO. However, its job execution time is much higher, 111.25% of that
in SO scenario.In comparison with the S4 scenario, ASDMIN improves the energy efficiency by

4.21%.

5. CONCLUSION

To save the huge amount of energy wasted by active idle nodes in large scale systems, this paper
proposes a self-adaptive solution to manage the sleep depths of idle nodes to balance between
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energy consumption and system response speed. Idle nodes in the same sleep depth form a reserve
pool and the system consists of a hierarchy of reserve pools with different sleep depths. The nodes
in a pool of lower sleep depth are allocated with higher priority because they have shorter wakeup

Figure 9. The results of different management scenarios.
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Table IV: Main Results of the Comparison Experiment

(a) System Energy Consumption

‘Workload Log SO S1 S3 S4 ASDMIN
RICC 741,220,891 667,997,705 385,406,394 372,934,620 379,286,204
PIK IPLEX 196,723,003 165,050,561 42,784,236 37,483,092 40,752,095
Sandia Ross 1,104,659,470 | 996,021,910 576,701,412 558,803,232 563,224,823
ANL Intrepid 31,041,595,008 | 28,464,589,696 | 18,528,119,808 | 18,077,460,480 | 18,653,846,315
SDSC DataStar 125,108,554 109,912,162 51,335,784 48,804,912 51,409,516
SDSC Blue Horizon 119,470,344 113,008,612 88,147,638 87,085,692 89,116,071
LANL CM-5 623,507,152 520,625,394 123,415,416 106,243,416 107,497,740
LANL Nirvana 1,709,196,453 1,620,065,725 1,277,229,696 1,262,147,364 1,310,535,398
(b) Overall Job Execution Time
Workload Log S0 S1 S3 S4 ASDMIN
RICC 42,496,355 | 42,499,681 | 42,512,985 | 42,812,325 | 42,539,093
PIK IPLEX 93,990 94,098 94,530 104,250 98,176
Sandia Ross 4,956 4,988 5,116 7,996 5,908
ANL Intrepid 5,535,305 5,536,567 5,541,615 5,644,314 5,653,541
SDSC DataStar 423,556 423,772 424,636 444,076 430,782
SDSC Blue Horizon 951,832 952,098 953,162 977,102 962,500
LANL CM-5 1,925,360 | 1,025,974 | 1,928,430 | 1,983,690 | 1,937,316
LANL Nirvana 8,831,008 8,835,324 8,852,588 9,232,118 8,865,616
(c) Energy Efficiency Improvement Ratio
Workload Log SO S1 S3 S4 ASDMIN
RICC 1 0.901,283 | 0.520,165 | 0.506,877 | 0.512,219
PIK IPLEX 1 0.839,964 | 0.218,734 | 0.211,337 | 0.216,381
Sandia Ross 1 0.907,477 | 0.538,917 | 0.816,154 | 0.607,803
ANL Intrepid 1 | 0.917,191 | 0.597,561 | 0.593,831 | 0.602,910
SDSC DataStar 1 0.878,982 | 0.411,376 | 0.409,000 | 0.417,930
SDSC Blue Horizon | 1 | 0.946,178 | 0.738,851 | 0.748,284 | 0.754,287
LANL CM-5 1 0.835,261 | 0.198,253 | 0.175,559 | 0.173,479
LANL Nirvana 1 | 0.948,316 | 0.749,095 | 0.771,986 | 0.769,760

latency. The state of an idle node is dynamically upgraded to a lower sleep depth pool to be
ready for wakeup with a shorter latency, or downgraded to a deeper sleep depth in order to
save energy. Corresponding resource allocation and reclaim algorithms, dynamic state transition
algorithms are designed to maintain the proper distribution of idle nodes among different pools.
It is recognized that for such a power management solution to be efficient in energy consumption
and having little impact on system performance, the sizes of the reserve pools must match well
with the characteristics of systems workload, which is highly time varying and hard to predict
accurately. To address this problem, a self-adaptive mechanism is employed to adjust reserve pool
capabilities based on the notion of lengths of continuous time period without piercing (CTPOP),
where a piercing of a reserve pool occurs when it is insufficient to provide required amount of
resources on demand. When the length of CTPOP is small than a set threshold (which is called
the state continuance thresholds), adjustment of the reserve pool capacity happens. Because
piercing means longer wakeup latency, state continuance threshold determines the degree that
the system will be tolerant of performance slowdown. This parameter can be set by the user.
Thus, it represents the users preferences between performance and energy efficiency. It determines
how fast the downgrading of sleep states of the idle nodes should be made and how often the
adjustment of the capabilities of reserve pools should be performed.

In comparing with existing solutions of power management for large scale systems, which do
not utilize the multiple sleep state mechanisms, our simulation experiments demonstrated that
our solution can upgrade the energy efficiency by 49.32% on average. The proposed self-adaptive
sleep depth management for idle nodes is an effective approach to optimize the system energy
efficiency.
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For future work, we are exploring the combination of various policies in the selection of idle
node for downgrading and upgrading their sleeping states to achieve other system management
goal, such as to select nodes according to their temperature in order to save cooling power
consumption.
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