
A Change Management Framework for Service
Oriented Enterprises

Salman Akram1 Athman Bouguettaya2 Xumin Liu 3 Armin Haller2 Florian Rosenberg2

Accenture, USA1 CSIRO ICT Centre, Australia2 Rochester Institute of Technology, USA3

salman.akram@accenture.com1 {firstname.lastname}@csiro.au2 xl@cs.rit.edu3

We propose a change management framework for Service-Oriented Enterprise (SOEs). We present a taxonomy of
changes that occur in SOEs, whereby we focus on bottom-up changes. We use a combination of Ordinary Petri nets

and Reconfigurable Petri nets to model the triggering changes and reactive changes, respectively. We propose an

automatic change management framework that is based on the above Petri net models. We propose mapping rules
and propagation algorithms that handle the triggering changes and reactive changes, respectively. We performed

a simulation study to prove the feasibility of our approach.

Keywords: Web services, composition, change propagation, Petri net model

1. INTRODUCTION

The Web has grown from a mere repository of information to a platform for service provision.
The Web makes it possible for businesses to share information instantly and form virtual en-
terprises to share costs, skills, and core competencies to quickly exploit worldwide sales oppor-
tunities [Hardwick and Bolton 1997]. A virtual enterprise [Park and Favrel 1999] describes an
organizational paradigm characterized by a temporary or permanent collection of geographically
dispersed entities that are dependent on electronic communication for carrying out their produc-
tion process [Travica 1997]. Virtual enterprises provide services and products that rely on the
resources of multiple businesses.

Service-oriented computing (SOC) [Papazoglou and Georgakopoulos 2003; Papazoglou et al.
2007], the prevailing software architecture style underlying modern enterprise information sys-
tems, is a key enabler of the organizational development in a Web-based virtual enterprise.
These Web-based virtual enterprises are typically referred to as Service-Oriented Enterprises
(SOEs) [Erl 2004]. In service-oriented computing functionality is provided as self-describing,
platform-agnostic computational Web services that support the composition of distributed appli-
cations for enterprise application integration and collaboration [Alonso et al. 2003]. An emerging
domain where SOC is applied to is Cloud computing where highly scalable services are delivered
across a network [Buyya et al. 2009]. Enterprises involved in the Cloud present a set of services
for consumption to end users. Unlike the services in an SOA which are typically a set of software
services, a cloud service may be a pool of hardware, storage, data, or applications.

One of the much-touted potentials of Web services is the ability to construct SOEs on demand,
relieving entrepreneurs from the intricate details of how technologies work so they can focus on
the business aspects, thus unleashing a new wave of innovations in this sector.

One key aspect of SOEs is how to manage change to enable a full view of the integrated lifecycle
of how Web services are created, modified, and disposed of. This is especially important when
Web services are composed and need to evolve due, for example, to internal or external market
forces.

Change management has been a popular research topic in many areas, such as software engi-
neering, database, and workflow systems. Most of the proposed frameworks deal with the changes
in a tightly-coupled system [Madhavji 1992; Chawathe et al. 1996; van der Aalst and Basten 2002;
Shazia et al. 1999; Kradolfer and Geppert 1999; Cobena et al. 2002]. A central monitoring mech-
anism is usually used to detect, propagate, and react to the occurrence of changes. Our work

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

92 · Salman Akram et al.

addresses the issue of change management in SOEs. These are the results of the composition of
a set of loosely-coupled Web services. No central mechanism is assumed.

As the number of services available on the Web increases, it is expected that the complexity
of managing changes of SOEs will grow [Casati et al. 2003]. Any attempt to manually manage
changes within a large service space would not be practical. One of the important objectives of
an SOE is the ability to facilitate long-term and short-term business relationships. This requires
an agile and automated management of changes. For instance, SOEs must be able to dynamically
plug-in or plug-out Web services with little overhead, while guaranteeing the correctness of SOE’s
functional and non-functional properties. The functional properties refer to the ones that are
related to the functionality that an SOE fulfills. The non-functional properties refer to the
events surrounding the functional properties. Change management is therefore an important
research issue and a prerequisite to enable the deployment of SOEs. Our work provides such an
infrastructure for change management in SOEs.

We identify two main approaches in dealing with changes:

(1) Top-down changes: Additionally, the business process of an SOE is usually susceptible to
various changes over its lifetime that are the result of market forces and/or new legislations.
In this respect, they may change their member services at will. For example, an SOE that
optimizes the selection of its member services based on quality may want to replace services
with lower quality with services with better quality, thus reorganizing itself.

(2) Bottom-up changes: SOEs have a lifecycle that include changes, like their physical counter-
part, about what and how their component services are provided. Web services can change
independently their functionalities without consent of the SOEs that utilize their services.
Examples are changes in a member Web service state from available to unavailable, alter-
ing the operations provided by the service, etc. Indeed, the SOE must be cognizant of any
changes to its member services.

A top-down approach focuses on changes that are usually government or business mandated [Akram
and Bouguettaya 2004; Liu and Bouguettaya 2007a; 2007b]. An SOE may add a new service to
its composition to take advantage of a temporal business opportunity or comply with a govern-
ment regulation. The effects of these changes trickle down to the member Web services, where
the changes are physically executed. Top-down changes are motivated by the SOE’s business
goal, and do not consider the uncertainty of the underlying member services. The treatment of
this type of changes is outside the scope of this paper. The second type of changes is referred to
as bottom-up changes because Web service providers are at the bottom of the “food chain”, and
are the initiators of changes. Bottom-up changes are initiated by the member services [Akram
et al. 2003]. These changes are initiated in the Web service environment, and eventually translate
into top-down changes of the SOE. A member service operation may become unavailable during
execution and trigger the SOE to replace the service. In this paper, we focus on this aspect.

There are some existing standards providing related functionalities that can be adapted to
dealing with changes of services. For example, Web Services Eventing (WS-eventing) and Web
Services Notification (WSN) [OASIS 2006; W3C 2006] focus on providing an event-based frame-
work that monitors the activities of Web services. Once an event occurs in a service, it can be
sent to the other services via message passing. By affiliating a change with an event, the change
in one or more member services of an SOE can be propagated to the other SOE participants.
The standards can be leveraged as a tool for detecting and propagating bottom-up changes.
Nevertheless, the design focus of this framework is not for change management purpose. Once a
change is propagated, there are no further steps, such as identifying and reacting to the change.
As a result, the existing standards are not sufficient for dealing with bottom-up changes.

We present an approach to automatic management of bottom-up changes using Petri nets. In
our work, we use Petri nets to model triggering and reactive changes in SOEs. Petri nets have been
used to model a variety of concurrent and discrete event distributed systems [Gracanin et al. 1993;
Kristensen et al. 1998; Gou et al. 2000; Hamadi and Benatallah 2003; Iordache 2003; Llorens and

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 93

!"#$%#&'"()
*+,",&+"-./)#0+&)

!"#1,(%#",&)

$-",,+,2

!3453(+6+3, 7+((3-0)

8#&')(6#"6+3,

9(6":-+('.
;)-"6+3,(

9(6":-+('.
;)-"6+3,(

<)#4+,"6).
9,6)#5#+()

=%(+,)((.
;)>%+#)4),6.",?..
;)2%-"6+3,(

!'",2).
@","2)4),6

A5?"6)

@3?+BC

@3,+63#

D+B).!C&-)

D!/./&')4"

!3,&#)6).
/)#0+&)(

EE

!$
*/

!"#/)"#&'

!/

!1

Figure 1: A Car Brokerage Enterprise Scenario

1 A Car Brokerage Scenario

As a way to motivate and illustrate this work, we use an application from the car brokerage domain.

We categorize the SOE into two layers: service and business. The service layer consists of actual
Web services, and the business layer represents the SOE business process. The business layer consists
of Web service-like operations typically ordered in a particular application domain. They determine
the domain of services that are required by the SOE. We refer to these services as virtual services. The
service layer represents the Web service space. It consists of the potential services. These potential
services are a priori unknown, and need to be discovered and matched with the virtual services at
the time of SOE orchestration. We refer to the selected services as member services. An important
feature of the virtual services is that they are not bound to any actual Web service. This is crucial
since Web services are continuously evolving and the SOE is always looking for the “best” services to
fulfill business requirements.

Let us assume that an entrepreneur, say John, establishes a car agency, Enterprise Car (EC)
(Figure 1). The business goal of this SOE is to provide a car brokerage package for users, including
searching cars, purchasing cars, and applying for loans. During the planning phase, the following
virtual services are identified: CarSearch, CarPurchase, Financial Service, and CarInsurance.
Second, the entrepreneur develops a specification for EC listing the services it will compose. The
third step is the orchestration of EC, where it selects and invokes the member services that match the
virtual service description. We assume the CS, CP, FS, and CI services are selected and orchestrated.
Finally, EC may disband and gracefully terminate all partnerships, or wait for another orchestration
request.

This is the ideal sequence of events in EC’s lifecycle. However, changes to member services may
trigger inconsistency and uncertainty in SOE composition and orchestration. Each service layer change
describes a functional or non-functional change that may occur in a member service. In turn, these
changes trigger one or more reactions at the business level. An example is that the participating

1

Figure. 1: A Car Brokerage Enterprise Scenario

Oliver 2004]. We model changes using Petri nets because of their applicability to SOE modeling.
The behavior of an SOE is described by the evolution of its Petri net model. As the Petri net
evolves, the system attains different safe and unsafe states that can be completely defined by
the marking of a Petri net model. For example, Petri nets readily model the states when a SOE
is unsafe because of a triggering change, and the subsequent safe state achieved after managing
the triggering change. Furthermore, Petri nets map directly to our change specification. They
also preserve all the details of our change specification while modeling the changes accurately.
For example, Petri nets can easily represent the safe an unsafe states of SOEs. They represent
changes between these states as transitions. Moreover, the use of reconfigurable Petri nets allows
us to incorporate our mapping rules into the Petri net model. This allows us to completely model
our change specification, without the need to use additional modeling tools.

The remainder of this paper is organized as follows. In Section 2, we use a scenario from the
automotive domain to motivate our work. It will also be used as a running example. Section 3
presents a bottom-up specification of changes. In Section 4, we describe our change management
model which is based on Petri nets. Section 5 presents a framework for change management.
Section 6 presents an extensive simulation study of the proposed framework. We provide some
related work in section 7. Finally, we conclude in section 8.

2. A CAR BROKERAGE SCENARIO

As a way to motivate and illustrate this work, we use an application from the car brokerage
domain. We categorize the SOE into two layers: service and business. The service layer consists
of actual Web services, and the business layer represents the SOE business process. The business
layer consists of Web service-like operations typically ordered in a particular application domain.
They determine the domain of services that are required by the SOE. We refer to these services
as virtual services. The service layer represents the Web service space. It consists of the potential
services. These potential services are a priori unknown, and need to be discovered and matched
with the virtual services at the time of SOE orchestration. We refer to the selected services as
member services. An important feature of the virtual services is that they are not bound to any
actual Web service. This is crucial since Web services are continuously evolving and the SOE is
always looking for the “best” services to fulfill business requirements.

Let us assume that an entrepreneur, say John, establishes a car agency, Enterprise Car (EC)
(Figure 1). The business goal of this SOE is to provide a car brokerage package for users,

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

94 · Salman Akram et al.

Figure. 2: Taxonomy of Triggering Changes

including searching cars, purchasing cars, and applying for loans. During the planning phase,
the following virtual services are identified: CarSearch, CarPurchase, Financial Service, and
CarInsurance. Second, the entrepreneur develops a specification for EC listing the services it
will compose. The third step is the orchestration of EC, where it selects and invokes the member
services that match the virtual service description. We assume the CS, CP, FS, and CI services are
selected and orchestrated. Finally, EC may disband and gracefully terminate all partnerships, or
wait for another orchestration request.

This is the ideal sequence of events in EC’s lifecycle. However, changes to member services
may trigger inconsistency and uncertainty in SOE composition and orchestration. Each service
layer change describes a functional or non-functional change that may occur in a member service.
In turn, these changes trigger one or more reactions at the business level. An example is that the
participating carSearch Web service may increase its price and affect the profitability of EC. In
this case, EC must employ change management mechanisms and select an alternate service for
the SOE to remain profitable.

3. CHANGE SPECIFICATION

Managing bottom-up changes is highly dependent on the services that compose the SOE. There-
fore, it is necessary to first define the changes that occur to Web services, and then map them
onto the SOE level. In this section, we define a taxonomy of bottom-up changes. We first de-
scribe the set of triggering changes followed by the set of reactive changes. We then present a
mapping between these two sets of changes. Some detailed descriptions of change specifications
are omitted due to space limitation. They can be found in [Akram 2005].

3.1 Taxonomy of Changes

We distinguish between service and business layer changes: triggering changes (δ) occur at the
service level (e.g., a change to service availability) while reactive changes (∆) happen at the
business level (e.g., the selection of an alternative service).

3.1.1 Triggering Changes. Changes can occur synchronously or concurrently. In this paper,
we focus on dealing with changes in synchronous mode and take dealing with the concurrent
change as our future work. In our scenario, we suppose that for example service CS may not change
its data types while the triggering change of unavailability is being managed. Another assumption
we make is that the service is associated with a set of states. We associate each change with a
transition between two states: precondition and postcondition. In our scenario, a precondition for
CS’s unavailability is that it was previously available and the postcondition is that it has become
unavailable. Triggering changes and their respective preconditions and postconditions will be

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 95

modeled using Petri nets. Our classification of triggering changes is based on the traditional
approaches from the fields of software engineering and workflow systems [Madhavji 1992; van der
Aalst and Basten 2002]. A triggering change is initiated at the service level, which means that it
is the result of the change of the properties of a single member service, such as the operations,
the access points, the availability, etc. Therefore, we can classify triggering changes based on the
properties of a Web service.

The properties of a Web service can be classified into two categories: functional and non-
functional. We can thus classify triggering changes into the two categories, as depicted in Figure 2.

Non-Functional Changes. Without loss of generality, we assume that the non-functional param-
eters represent the trust, usability, and dependability aspects associated with a member service.
We assume this information is maintained by an independent third party service provider. Trust-
worthiness of a Web service record the changes to one or more of the following aspects of a Web
service: security, reputation, and privacy. Cost represents changes in the service cost. Finally,
dependability is associated with changes in the availability and reliability of the Web service. Ser-
vice dependability takes one of two possible values (i.e., available or unavailable). Alternatively,
service trust and cost values may take more than two possible values. For instance, the service
cost obviously draws its values from the real domain. Changes are triggered by values that exceed
or fall below a threshold. This threshold consists of minimum/maximum values beyond which
the SOE needs to be notified about this change. In our scenario, suppose that EC’s threshold for
any airline service cost is $10. In this case, each time a change occurs in the cost of a mem-
ber CS service, it is compared with the threshold. Only if the change exceeds the threshold, we
consider that a triggering change has occurred. Table I summarizes the non-functional changes
of triggering changes.

Table I: Summary of Non-Functional Changes
Change Attribute δ Pre Post

changeAvailability WSA δA WSA WS’A
changeReliability WSL δL WSL WS’L
changePrivacy WSP δP WSP WS’P
changeSecurity WSS δS WSS WS’S
changeReputation WSN δN WSN WS’N
changeCost WSC δC WSC WS’C
changeResponsiveness WSR δR WSR WS’R

Functional Changes. Unlike non-functional changes, which are based on attributes, functional
changes deal with changes to a service’s WSDL description [Christensen et al. 2001]. We represent
functional changes as a combined execution of a remove followed by an add. We further classify
functional changes into structural and behavioral changes (Figure 2). Structural changes refer to
the operational aspects of a Web service. For example, a structural change in an airline service
can be caused by changing the operations offered to a consumer. Changes to the behavior of a
Web service are indicated by changing its interaction with external entities. Functional changes
to a member Web service occur when its WSDL description is modified. Table II gives a summary
of functional changes.

3.1.2 Reactive Changes. Reactive changes may occur at the composition and orchestration
levels of an SOE. In our scenario, when EC is interrupted by a δA change in CS, it must suspend
execution and react to the change. This may be accomplished by declaring a fault, compensating
for the change at the composition layer, and invoking the alternate service. We split the taxonomy
of reactive changes into composition and orchestration (cf. Figure 3). A third type of reactive
change is referred to as user action. We assume that each reaction may be overwritten by the
user. The user always has precedence over the default changes to the business layer, and may

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

96 · Salman Akram et al.

Table II: Summary of Functional Changes

Change Attribute δ Pre Post

removeNameSpace WSN δ−N WSN WS−
N

addNameSpace WSN δ+N WSN WS+
N

removeType WST δ−T WST WS−
T

addType WST δ+T WST WS+
T

removeMessage WSM δ−M WSM WS−
M

addMessage WSM δ+M WSM WS+
M

removeOperation WSO δ−O WSO WS−
O

addOperation WSO δ+O WSO WS+
O

removePortType WSP δ−P WSP WS−
P

addPortType WSP δ+P WSP WS+
P

removeBinding WSB δ−B WSB WS−
B

addBinding WSB δ+B WSB WS+
B

removeLocation WSD δ−D WSD WS−
D

changeLocation WSD δ+D WSD WS+
DM. S. Akram Chapter 4. Change Specification 116

���������
	 ���
�� ���������

�������� ��	 �
	 � �

��� � � ����� � ���
	 � �

��� ��� � � � � 	 �

 !� � � � ���"� � �

�����"�$���%�

& � � ��	 �%�

'����(� � 	 � �)	 � �

�����"�����%�

Figure 4.2: Taxonomy of Reactive Changes

unavailability of a marketing service may trigger ET to remove the service from

its composition. We specify the following changes to enterprise composition:

• changeMember: A changeMember consists of removeMember and/or

addMember changes. A Web service is removed from the enterprise by mod-

ifying its specification. For example, if a marketing service is no longer

required, it is removed from the enterprise composition by the entrepreneur.

Services are added into the enterprise when their need is determined. A

service is added in the initial composition of the enterprise, and if a change

occurs in a Web service. For example, the AA service may become less re-

sponsive. In this case, another Web service may be added to the enterprise

to replace the existing service. However, if the newly added service also has a

low response rate, both the new and the old airline services may be retained

and the requests can be distributed between them.

• changeParameter: Bottom-up changes may sometimes require more than

just the removal and/or addition of Web services. For example, a change in

AA’s input/output data type may be managed by changing the parameters

in ET’s interface with AA. It is not necessary to replace the entire service

based on this slight change. Therefore, this reconfiguration process updates

the composition of an enterprise to reflect changes in member services.

Figure. 3: Taxonomy of Reactive Changes

explicitly execute a reactive change. For example, if CS becomes unavailable, the user may decide
to replace the service, or to execute EC without CS. Table III gives a summary of the reactive
changes defined in our model.

Table III: Summary of Reactive Changes

Change Attribute ∆ Pre Post

removeMember VEM ∆−
M VEM VE−

M

addMember VEM ∆+
M VEM VE+

M

removeParameter VEP ∆−
P VEP VE−

P

addParameter VEP ∆+
P VEP VE+

P

removeInstance VEP ∆−
C VEC VE−

P

addInstance VEC ∆+
C VEC VE’C

changeState VES ∆S VES VE’S
changeServiceInstance VEI ∆I VEI VE’I
changeOrder VEO ∆O VEO VE’O

3.2 Mapping of Changes

A mapping specifies how change instances in one layer corresponds to changes in another layer [Vele-
grakis et al. 2004]. These mappings must remain consistent in the presence of frequent changes.
When a change occurs at the service level, the business layer must react to manage the changes.
Changes in the business layer are sympatric and translated with respect to the service layer
changes. For example, a δ change in availability maps to a ∆ change of changeServiceInstance.
Figure 4 maps each service level change to the corresponding business change. A dot at the in-
tersection of service and business level changes indicates a relation between the δ and ∆ changes.
Each δ change is also mapped directly to user action.

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 97
M. S. Akram Chapter 4. Change Specification 119

���������	��
 ��
 �� ��������������������
 ��

�
�
�

�

� �����

�
! "
#$
!%
&'
!(
)

#$
!%
&'
!(
)

*

+
,

-
�
�
.
.
/
/

0
0

�
�

1
1

2
2

� 33 44 56 7

Figure 4.3: Change Mapping Matrix

4.4.1 Mapping Rules

Our approach of mapping changes is based on mapping rules. These rules are

based on the triggering changes and their corresponding reactive changes. Some

changes may have more than one rule associated with them. For example, if

a Web service cost increases, the enterprise may continue to use the service or

decide to select an alternate service because the current service has become too

expensive. Other changes may not cause any reaction. For example, if a Web

Figure. 4: Change Mapping Matrix

Our approach of mapping changes is based on mapping rules. These rules are based on the
triggering changes and their corresponding reactive changes. Some changes may have more than
one rule associated with them. For example, if a Web service cost increases, the SOE may
continue to use the service or decide to select an alternate service because the current service
has become too expensive. Other changes may not cause any reaction. For example, if a Web
service’s cost decreases, the SOE will ignore this change, because it does not conflict with the
service’s goals. Due to space limitations we can not include the full set of mapping rules in this
article and refer the interested reader to [Akram 2005].

4. CHANGE MODEL

In this section, we propose a formal change model to accurately identify the types of changes that
may occur in composite Web services. The change model will serve as the basis of our change
management framework.

4.1 Modeling Triggering Changes with Ordinary Petri Nets

Ordinary Petri nets or OPN are a well-founded process modeling technique that have formal
semantics. They have been used to model and analyze several types of processes including
protocols, manufacturing systems, and business processes. Visual representations provide a high-
level, yet precise language, which allows expression and reasoning about concepts at their natural
level of abstraction [Aalst 1998; Adam et al. 1998]. Services are basically a partially ordered set
of changes. Therefore, it is a natural choice to map it into a Petri net. Moreover, the semantics
delivered by Petri nets can be used to model the standard behavior of composite Web services
described by BPEL, as well as the exceptional behavior (e.g. faults, events, compensation) [Hinz
et al. 2005].

We formalize the change model for triggering changes by introducing T -Change which is de-
fined as follows.

Definition 4.1: T -Change. T -Change is a Petri net {W, ε, S, i, o}, where:

â W is a finite set of places representing the states of a Web service

â ε is a finite set of transitions representing changes to Web service

â S ⊆ (W × ε) ∪ (ε ×W) is a set of directed arcs representing a precondition and postcondition
of changes in service state

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

98 · Salman Akram et al.

Figure. 5: Ordinary Petri Nets for Triggering Changes

â i is the input place, or starting state of the Web service

â o is the output place, or the ending state of the Web service

Figure 5 (PNn) models non-functional changes to Web services. It consists of eight places and
seven transitions. WS is the initial place of PNn. It represents the initial state of the Web service
(when the SOE is composed). WS consists of seven tokens, each representing one of the seven
non-functional changes. Every time a change occurs, the corresponding token is fired. If more
than one change occurs, the corresponding token for each change type is fired. For example, if
a member service becomes unavailable, the transition εA will be enabled and the corresponding
token will be fired.

The subnet representing dependability changes is PNd = (Wd, εd, Id, Od), where Wd = {WS,
WS’L, WS’A}, εd = {εA, εL}, Id = Wd × εd, and Od = εd ×Wd. The place WS indicates that the
service is both available and reliable. It contains two tokens (one for availability and the other
for reliability). WS’A represents a service that has become unavailable. When a service becomes
unavailable, the availability token is moved from WS to WS’A. Similarly, WS’L represents a
service that has become unreliable, and the token is moved to WS’L. If a service becomes both
unreliable and unavailable, both the tokens are fired. The subnet PNd also consists of two tran-
sitions. εA represents the change changeAvailability, and εR represents changeReliability.
Similar to changes in the dependability of a service, changes to cost and trust are also represented
by a subnet of PNn.

Figure 5 (PNf) models functional changes to Web services. Changes to a service structure
are modeled by the subnet PNs = (Ws, εs, Is, Os), where Ws = {WS, WS−

N , WS+
N , WS−

T ,
WS+

T , WS−
M , WS+

M , WS−
O, WS+

O}, εs = {ε−N , ε+N , ε−T , ε+T , ε−M , ε+M , ε−O, ε+O},
Is = Ws × εs, and Os = εs × Ws. Similarly, changes to service behavior are represented by
the subnet PNb = (Wb, εb, Ib, Ob), where Wb = {WS, WS−

R, WS+
R, WS−

P , WS+
P , WS−

B ,
WS+

B}, εb = {ε−R, ε+R, ε−P , ε+P , ε−B , ε+B}, Ib = Wb × εb, and Ob = εb × Wb.

4.2 Modeling Reactive Changes with Reconfigurable PNs

An SOE can practically be modeled as a composition of Web services. This composition can be
based on BPEL or another language. However, to maintain a generic and expressive model of an
SOE, we use Petri nets to visualize the composition of Web services. We model each service as
a place. The invocation of member services is represented by a Petri net transition. A transition
also represents the return of control and data from the member service to the SOE. The execution

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 99M. S. Akram Chapter 5. Change Model 143

Figure 5.4: RPN for Reactive Composition Changes

T4}, that indicate removal of a Web service, B is the set of transitions {T5, T6, T7,

T8} that indicate addition of a service, and C is the set of transitions {T9, T10, T11,

T12}. Figure 5.4 presents an RPN representing changes to service composition. It

presents the initial state of the VE (top), change in service composition (left),

removal of service (center), and addition of service (right).

Figure 5.5: Petri Net Representing Concurrent Changes

Figure. 6: RPN for Reactive Changes

of Web services can be modeled as a sequential, parallel, iterative, and conditional execution [Gou
et al. 2000]. In our scenario, without loss of generality, we assume that the execution of Web
services is sequential. That is, EC first invokes an CS service, receives the output, then invokes a
CP service, and so on.

We have surveyed several extensions of Petri nets for modeling reactive changes. Reconfigurable
PNs provide a formalism for modeling these changes. They support internal and incremental de-
scription of changes over an external and uniform description. Therefore, this type of Petri net
is a natural choice for modeling reactive changes. Reconfigurable petri nets are an extension of
Petri nets and a subclass of net rewriting systems. They merge Petri nets with graph grammars
and are best represented by Valk’s Self-Modifying Nets [Llorens and Oliver 2004]:

Definition 4.2: Reconfigurable Petri net (RPN). A reconfigurable Petri net is a structure N =
(P, T, R, γ0), where P = {p1,...,pn} is a nonempty and finite set of places, T = {t1,...,tm} is a
nonempty and finite set of transitions disjoint from P(P ∩ T = ∅), R = {r1,...,rh} is a finite set
of rewriting rules, and γ0 is the initial state.

We define γ0 as the initial state when the SOE is composed, since change management will
be initiated some time after the initial composition. Therefore, we say that the domain of γ0

is SOE0, or DOM(γ0) = SOE0, where SOE0 is the initial state. In our scenario, we group the
places SOE as SOEU , SOEV , and SOEW . SOEU is the set of places {SOE1, SOE2, SOE3, SOE4},
where U represents changeState. SOEV is the set of places {SOE5, SOE6, SOE7, SOE8}, where
SOEV represents changeServiceInstance. SOEW is the set of places {P9, P10, P11, P12}, where
SOEW is changeOrder. We distinguish the roles A, B, and C between transitions T. A is the set
of transitions {T1, T2, T3, T4}, that indicate removal of a Web service, B is the set of transitions
{T5, T6, T7, T8} that indicate addition of a service, and C is the set of transitions {T9, T10,
T11, T12}. Figure 6 presents an RPN representing reactive changes. It presents the initial state
of the SOE (top), change in service orchestration (left), removal of service (center), and addition
of service (right).

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

100 · Salman Akram et al.

Figure. 7: Change Management Process

4.3 Petri Net Representation

Petri Nets are traditionally represented as an incidence matrix. M is an i × j matrix whose j
columns correspond to the transitions and whose i rows correspond to the places of the net. M
is generated by using the following equation:

Mij = output(tj ,pi) - input(pi,tj), for 1 < i < n, 1 < j < m.

Since there are no self-loops in the triggering Petri net, we may safely create this matrix. Note
that self loops in a Petri net cancel each other to yield a zero in the matrix, thus losing track
of the existence of the self-loop. Since the Petri nets defined for changes are sparse, we have
compressed them and use arrays as a representation. Here, we give two examples of the Petri
nets that represent removeNameSpace and addNameSpace triggering changes in Table 4.3.

5. CHANGE MANAGEMENT

One of the most important requirements for managing changes is to guarantee consistency and
correctness of an SOE in the presence of frequent changes. The SOE is likely to undergo significant
functional and non-functional changes during its lifetime. Therefore, it is necessary for the
SOE to automatically check for and safeguard its consistency. In this section, we present an
approach to automatic management of bottom-up changes using Petri nets. The automatic
management of changes is slated to play a major role in SOEs. Change management requires
a systematic approach that is specifically defined and executed automatically. We use our Petri
net change specification as the basis for managing changes in SOEs. We divide the process of
change management into three distinct steps: detection, propagation, and reaction (Figure 7).

5.1 Detecting Triggering Changes

Change detection is the awareness that a change has occurred and the subsequent identification
of its cause. Our approach to detecting changes is based on using agents that play the role

Table IV: Triggering Petri Nets
Change Petri Net

δ−N [0 1 0]

δ+N [0 0 1 0]

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 101

of monitors and notifiers [Maes et al. 1999; Benatallah et al. 2000]. These agents are Web
services that monitor the participant Web services for relevant changes (e.g. functional and non-
functional) and notify SOE agents about the change. Change may be detected by a periodic pull
or push [Olston 2003]. In a periodic push, the Web service itself propagates changes to the service
agents in regular intervals, sometimes in large batches. Alternatively periodic pulling requires
that the service agents access remote Web services periodically to read current descriptions and
update local replicas as necessary.

5.1.1 Push Based Detection. We assume that changes to Web services are detected through
a push-based strategy using soft states [Raman and McCanne 1999]. Soft states is a method
used to maintain membership of entities in a loosely coupled system, such as the SOE. This
method requires that a member periodically send “refresh” messages to renew its membership.
These messages are sent to a node that maintains the membership information. In our case, the
provider Web services are members or participants in the SOE. The membership information is
stored in the SOE schema. A schema is a publish/subscribe mechanism generated for each SOE
orchestration instance and maintained in the SOE ontology. SOE agents act as intermediaries
between the schema and the service agents. They are also responsible for the maintenance of
the schema by updating it at the time of change. A participating Web service is assigned to
each service agent that monitors changes in the status of that service. This agent periodically
verifies the state of the service and its operations [Deolasee et al. 2002]. To verify changes in
the state of a service, the agent will send “alive” messages to the Web service within a chronon.
A chronon is the minimum granularity of time for our system [Elmasri and Navathe 2000]. Let
us assume that for our example, the chronon is set to the duration between invocation of two
consecutive Web services. If the Web service responds, it is assumed to be alive and its state
is updated in the schema. However, if a response message is not received from the Web service
within an acceptable time limit, the service is considered as unavailable. Any change to a service
description (e.g., rename, change of parameters, etc.) implies that the change was made explicitly
by the Web service programmers. This justifies our assumption that the Web service description
in the UDDI and OWL-S registries will be appropriately updated after an operation change. We
assume that these changes will further be propagated

5.1.2 Detection and mapping rules. We use the Petri net based model of changes to represent
the detection of triggering changes. We identify the following rules for detecting functional and
non-functional changes.

â For the non-functional changes, we compare the existing and new values of each attribute. If
the attribute value is changed, we further compare the new value with the predefined threshold
for that value.

â For the functional changes, we compare the existing and new WSDL descriptions of Web
services.

Once changes have been detected by the service agent, we define the following rule for mapping
the changes onto a Petri net:

Change detection mapping rule: Map the current service state as a set of precondition places
in the triggering Petri net. Map the updated service state as the set of postcondition places in
the triggering Petri net. Compare the values for precondition and postcondition places of the
Petri net. If there is a difference between any precondition and postcondition place, we place a
token in the respective precondition place. This token will enable the change transition.

5.1.3 Detection Algorithm. The change detection algorithm (cf. Algorithm 1) takes two in-
puts: oldDesc and newDesc which represent the old description and new description of a Web
service. Each description is composed of semantic description and syntactic description. The
semantic description consists of the ontological markup for the member Web service. We as-
sume that this information is presented in OWL-S. For detection purposes, we only utilize the

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

102 · Salman Akram et al.

extensible list of attributes defining non-functional properties of a Web service. The syntactic
description of a service is presented in a WSDL format. The detection algorithm continuously
checks for triggering changes. It initiates a loop for checking semantic and syntactic descrip-
tions of each Web service. This loop is executed for each member service extracted from the
composition. When a change is detected, the algorithm generates an incidence matrix for the
Web service. Finally, a functional Petri net and a non-functional Petri net will be returned to
represent the detected triggering changes.

Algorithm 1 ChangeDetection (Input: oldDesc, newDesc)

1: while newDesc do
2: Compare (oldDesc[Functional], newDesc[Functional])
3: if oldDesc[Functional] 6= newDesc[Functional] then
4: GeneratePetriNet (FunctionalPetriNet)
5: end if
6: Compare (oldDesc[NonFunctional], newDesc[NonFunctional])
7: if oldDesc[NonFunctional] 6= newDesc[NonFunctional] then
8: Threshold = CheckThreshold (oldDesc, newDesc)
9: if Threshold then

10: GeneratePetriNet (NonFunctionalPetriNet)
11: end if
12: end if
13: end while
14: return (FunctionalPetriNet, NonFunctionalPetriNet)

5.2 Propagating Changes

Change propagation is required when a change in one Web service affects other entities in the
SOE. In this case, all affected parties must be informed of the changes. All these changes must
be managed before the SOE can arrive at a safe state. We consider two methods of change
propagation in our work: strict and lazy.

Strict propagation uses a brute-force method of conveying changes to the SOE agent. This
implies that every change that occurs in the Web service will cause the service agent to propagate
the changes before the Web service is orchestrated. If the SOE finds that the service has changed,
it will dump the contents of its local schema and refresh it using the latest information from the
service provider. This can have some very significant performance implications, especially when
the service resides on a distant network. Therefore, this method of propagation should be used
only when it is absolutely necessary that the service being orchestrated is always up-to-date at the
time its invocation. It also tends to completely defeat the local caching done by the SOE if there
are several updates taking place concurrently on member services. Strict change propagation
does not guarantee that the member service is in its most current form. It only indicates that
the next time the service is executed, the SOE will see the latest description. In our approach,
we do not perform polling or background operations to constantly propagate changes. We only
perform propagation when the SOE must execute the service.

Lazy change propagation is the default policy and is the most desirable in terms of efficiency
and performance. Lazy change propagation works by only propagating changes when the SOE
cannot locate the desired Web service. At this point, the SOE must physically re-cache the
service data. Eventually, the SOE will dump its cache and retry the orchestration that it was
in the process of executing when it found that the service had changed. We assume that the
SOE can cache a fairly large amount of service data. This policy tends to be very efficient and
will provide the best performance overall. However, it does leave the job of requesting change
propagation up to the SOE agent. The amount of memory used for buffering service data can
affect how often the SOE agent requests change propagation using lazy change propagation.

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 103

5.3 Reacting to Triggering Changes

In this section, we define how we execute reactive changes based on the information propagated
by the service agents. First, the SOE agent receives a matrix indicating the change that has
occurred. It then maps the triggering change to the appropriate reactive change. We use our
mapping matrix for this conversion. Finally, the reactive change is executed by the SOE agent.

5.3.1 Reaction Techniques. We consider the following types of reactive changes:

â RemoveMember: A Web service is removed from the SOE by making its operations
unavailable to the SOE. A remove partner operation followed by an add partner operation
constitutes a “replace” or “change” partner operation.

â AddMember: A service is added in the initial composition of the SOE if a change occurs
in a Web service. However, if the newly added service also has a low response rate, both the
new and the old services may be retained and the requests can be distributed between them.

â SelectPartner: Whenever a need for a service is determined (e.g., adding a service), the
select operation identifies the required Web service. After this service is selected, it is added
to the SOE.

â ComposeEnterprise: The operations of the newly added Web services are plugged into
the SOE.

â changeOrchestration: Often bottom-up changes require more than just the removal
and/or addition of Web services. For example, a change in the Web service’s input data type
may be managed by reconfiguring the SOE input/output parameters. It is not necessary to
replace the entire service based on this slight change. Therefore, the reconfigure operation
updates its composition to reflect changes in member Web services.

â RecacheDescription: If a service description changes, it must be reflected in the SOE
composition. This will ensure successful orchestration of a member service.

â RemovePartner: A Web service is removed from the SOE by making its operations
unavailable to the SOE. For example, if a Web service becomes permanently unavailable,
it is removed from the SOE composition. A remove partner operation followed by an add
partner operation constitutes a “replace” or “change” partner operation.

â ComposeEnterprise: The operations of the newly cached service descriptions are
plugged into the SOE.

â changeState: When a SOE is interrupted by a stimulating change, it must change its
execution phase to react to the change.

â Fault: If a service is not required for the SOE, the SOE may continue its orchestration.
However, if a critical service becomes available, the SOE orchestration must be temporarily
paused.

â Compensate: After a change has been detected and a fault executed, the SOE can
proceed with performing a compensation function. This compensation function involves
either a composition or orchestration change.

â Invoke: A paused SOE is resumed by the unfreeze operation. For example, if an alternate
service is selected to replace an unavailable service, the SOE is immediately resumed.

â Terminate: If a SOA is unable to function because of missing critical services, the SOE
is terminated or dissolved.

Reaction to change depends on the (i) type of change and (ii) availability of alternate services.
In case of a functional change, an alternate service must be selected to fulfill the user request.
The service selection stage is initiated and provided with the description of the required service.
If an appropriate service does not exist (or cannot be located), the user request must be canceled.
However, if an alternate service is selected successfully, it is registered with the participant list
and request processing is resumed.

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

104 · Salman Akram et al.

5.3.2 Selecting an Alternate Service. Reaction to change depends on the type of change and
availability of alternate services. In case of a functional change, an alternate service must be
selected to fulfill the user request. The service selection stage is initiated and provided with the
description of the required service. At this point, the quick and dynamic discovery of alternate
services is crucial to the successful execution of the SOE. If an appropriate service does not exist
(or cannot be located), the user request must be canceled. However, if an alternate service is
selected successfully, it is registered with the participant list and request processing is resumed.

The problem of discovering and selecting the Web services necessary to construct SOE is par-
ticularly challenging in the dynamic Web context [Doan 2002]. Discovering appropriate services
dynamically is essential to fulfilling the goals of an SOE. Our approach to the problem is based
on the idea of organizing Web services into ontologies. A Web service ontology is used to cap-
ture the functionality a Web service offers [The OWL Services Coalition 2004]. It specifies the
information about the data items that a service operates on and the operations that a service
offers. By the nature of ontologies, Web services can be classified into categories (i.e., service
communities) based on their functionalities [Medjahed et al. 2003]. In our scenario, the onto-
logical description of a Web service defines the type of travel services it provides. For example,
Web services that offer car search services belong to an carSearch ontology. Therefore, we can
leverage the existing Web service ontology to organize Web services based on their functionality,
such as OWL-S and WSMO [The OWL Services Coalition 2004; WSMO Working Group 2004].
This enables an efficient functionality-based service discovery to help select an alternative service
on demand.

Let us take the example of an SOE that requires Web services from the carSearch category.
In this case, a search is initiated in the OWL-S registry for a service description that matches
“carSearch.” If such a service is located, the search will continue to check other relevant prop-
erties of the Web service. An example of a relevant property is that the service must provide
functionality for the “travel” domain. The fulfillment of these steps would indicate that a Web
service has been located successfully. After a service has been located, it is verified for compos-
ability [Medjahed et al. 2003].

5.3.3 Reaction Algorithm. We present the change reaction algorithm as Algorithm 2 in this
section.

Algorithm 2 ChangeReaction (Input: FunctionalPetriNet, NonFunctionalPetriNet)

1: ReactivePetriNet = φ
2: while FunctionalPetriNet do
3: ReactivePetriNet = Map (FunctionalPetriNet, ReactivePetriNet)
4: end while
5: while NonFunctionalPetriNet do
6: ReactivePetriNet = Map (NonFunctionalPetriNet, ReactivePetriNet)
7: end while
8: if ReactivePetriNet then
9: Execute (ReactivePetriNet)

10: end if

The ChangeReaction algorithm takes a functional Petri net and a non-functional Petri net as
input and maps them to the reactive Petri net. The mapping function implements the semantics
of the change mapping matrix as shown in Figure 4. The chosen reactive Petri net is executed
in the end.

5.4 Change Management Algorithm

Now we present the change management algorithm in this section. The algorithm has two input
parameters: executionTime and schema. Parameter executionTime is the time required to

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 105

orchestrate an SOE. Parameter schema contains the list of all Web services that are currently
participating in the SOE.

Algorithm 3 ChangeManagement (Input: executionTime, schema)

1: time = executionTime
2: while time > 0 do
3: for all Web Service WSi in schema do
4: (FunctionalPetriNet, NonFunctionalPetriNet) = ChangeDetection (oldDesc(WSi),

newDesc(WSi))
5: Propagate the FunctionalPetriNet and NonFunctionalPetriNet to the SOE agent
6: ChangeReaction (FunctionalPetriNet, NonFunctionalPetriNet)
7: end for
8: time=time-usedTime {usedTime is the time used during the for loop}
9: end while

10: update the schema

Within the executionTime, the ChangeManagement algorithm generates a functional Petri
net and a non-functional Petri net using the ChangeDetection algorithm for each Web service in
the schema. The functional and non-functional Petri nets are propagated from the service agent
to the SOE agent. A reactive Petri net is generated and executed using the ChangeReaction
algorithm.

6. SIMULATION STUDY

We have chosen to perform a simulation study instead of an experimental study because it is
difficult to perform change management experiments in a “real” service environment. To the best
of our knowledge, there is not any sizeable Web service testcase available that can be used for
experimental purpose. The purpose of our simulation is to assess the feasibility and correctness of
our approach. The most important factor to access the feasibility and correctness of the proposed
techniques in our simulation is the accuracy of change management. Accuracy (AT) is defined as
the level of conformity of the reaction to the triggering Petri net generated after change detection.

6.1 Simulation Setup

We utilize only services that offer carSearch, carPurchase, financial, and carInsurance function-
alities in our simulations. We assume that the Web service space consists of 100 services. Each
service has two operations, therefore, a total of 200 operations are present in the services space.
Furthermore, each service is utilized by one or more SOEs concurrently. The system consists of
two SOEs, EC1 and EC2. In our work, we have defined a total of 21 triggering changes [Akram
2005]. These changes are triggered by the change simulator on behalf of the member services
under a Poisson distribution. A Poisson process is often used to model a sequence of random
events that happen independently with a fixed rate over time [Cho and Garcia-Molina 2003].
Therefore, it is ideal for simulating changes in the Web environment. Each round of simulation
triggers each of the 21 changes at least once. The total number of changes that are triggered in
each simulation are 100. Since each triggering change has a respective reactive change, the total
number of reactive changes is also 100. Services that trigger a particular change are selected
based on a Zipf distribution. The Zipf distribution is a widely used model to represent Web
sites popularity [Krashakov et al. 2006]. We expect that the popularity of Web services would
exhibit a similar pattern as that of Web sites. Therefore, we use the Zipf distribution to model
the selection of a service from a pool of available services.

We first measure the accuracy of the change that is detected by the service agent. This detection

accuracy AD is determined by
∑δ(t)
d=1

Ad

δ(t) , where δ(t) is the number of changes triggered and Ad

represents the presence of the triggering change Petri net in the triggering set. Each Ad instance
is either 0 or 1. It is 0 if the generated Petri net was in the triggering set and 1 if it was not

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

106 · Salman Akram et al.

present in the triggering set. Second, we measure the accuracy of the change that is generated in

reaction to the triggering change. The reaction accuracy AR is determined by
∑∆(t)
r=1

Ar

∆(t) . Each

Ar instance is either a 0 or 1. It is 0 if the generated Petri net was in the reactive set and 1 if it
was not present in the reactive set.

6.2 Simulation results

We did three sets of simulations to measure the accuracy of our change management methods
under three different factors: different mapping relationship ratios, different number of changes
and different number of member services.

The first set of simulations measure the accuracy of change management under different map-
ping relationships between triggering changes and reactive changes. Variable δ(m) is defined as
the number of triggering changes versus the number of reactive changes that are required. Four
cases were simulated. The first simulation (1:1) considers the accuracy of change management
when a single change is triggered and only one reactive change is required to manage this change.
The second simulation (m:1) tests the accuracy of change detection and reaction when multiple
triggering changes occur and require a single reactive change. Similarly, the third simulation
(1:m) tests for the accuracy when one triggering change requires the execution of multiple reac-
tive changes. Finally, the fourth simulation (m:n) tests the accuracy in the presence of multiple
triggering changes that require multiple reactive changes. Figure 8 (1) depicts the results of these
simulations. The results indicate that the accuracy of change detection and reaction is 100% if
there is a one-to-one or a many-to-one mapping between the triggering and reactive changes.
However, when there is a one-to-many or many-to-many relationship between the triggering and
reactive changes, the accuracy drops to 82%. The reason for reduced accuracy is that the change
management framework always executes the first reactive change indicated by the reactive net.
Since 82% of the one-to-many and many-to-many changes require a selection of alternate service,
their reaction is executed accurately. For others, the reaction is invalid and does not comply with
our change mapping rules. For example, if a triggering change of availability occurs, the reaction
is to either select an alternate service, or to execute the SOE without the service. Since selecting
an alternate service is hierarchically above the service deletion reaction, the reaction to service
unavailability is always to select an alternate service. In our future work, we plan to prioritize
changes and determine a reaction that will result in the optimal SOE.

We assume that all changes triggered in these set of simulations have a one-to-one mapping of
changes.

Figure 8 (2) depicts the results of these simulations. The results indicate a slight drop in
accuracy as the number of changes increase. For example, when the number of changes is 100,
the accuracy of change management is 100%. As the number of changes approaches 500, the
accuracy drops to 98%. At 2000 changes, the accuracy of our approach is measured at 81%. This
drop in accuracy is attributed to the highly volatile nature of EC during change management.
First, EC and its member services’ attributes are constantly changing. Because changes occur
simultaneously, it is possible that the state of the service retrieved by the service agent is not
accurate. Second, EC’s membership will change over time. For example, if CS becomes unavailable
and no alternate service exists, EC will orchestrate without CS. In this case, any change generated
by the change simulator that references to a carSearch service is inherently inaccurate.

The third set of simulations measure the accuracy of our change management approach as the
number of member service increases from 1 to 12. We consider the number of changes to remain
constant at 100. Also, the mapping of changes is set as one-to-one. Figure 8 (3) depicts the
results of these simulations. The simulations indicate that the accuracy of change management
remains optimal when the number of member services is between 1 and 3. However, the accuracy
drops to slightly below optimal when Nms is 6. The accuracy further decreases when Nms is
12. The increase of the number of member services implies a high probability of changes. This
introduces the drop of the accuracy.

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 107

Figure. 8: Accuracy under different mapping ratios, different number of changes and different number of member
services.

7. RELATED WORK

Researchers have long been interested in enabling adaptive, market-driven enterprises [Benatallah
et al. 2000]. The focus has over the years shifted from the traditional single-entity enterprises
to service-based enterprises [Petrie and Bussler 2003; Benatallah et al. 2000; Casati et al. 2000].
Various standards efforts have already been adopted to facilitate the integration of Web services
at different levels through compositions, orchestrations, and choreographies [Weerawarana et al.
2005]. However, managing the changes in the lifecycle of composed Web services has received
little attention in the standardization community. Exceptions are WS-Eventing [OASIS 2006]
and WS-Notification [W3C 2006] that provide some syntactic support for change notification.
Composition standards mostly deal with changes as exceptions, much like workflow technology
does. For example, WS-BPEL [OASIS 2006], a composition language for Web services, handles
changes as exceptions, usually by invoking the fault method. This traditional, workflow-based
approach does not offer an adequate change management solution for SOEs. Therefore, most
changes in BPEL-based SOEs are manually managed. The challenge is to automate the change
management process to make it transparent to users.

Workflows are the popular means of composing enterprises. They provide the ability to ex-
ecute business processes that span multiple organizations [Tagg 2001]. Traditional workflows
do not provide methods for dynamic change management. Workflows are geared towards static
integration of components. This characteristic inhibits the profitability, adaptability, utility, and
creativity in an enterprise. Furthermore, workflows do not cater for the behavioral aspects of
Web services. For example, they do not distinguish between the internal and external processes
of a Web service [Bussler 2003].

In [Rinderle et al. 2004], a Petri net based approach to maintain correctness between process
type and instances is presented. A process type represents a particular business process described
by a schema. Process instance is a real time execution of the process type. Changes to process
type occur when the process schema is modified in response to the environment. For exam-
ple, a business process may adapt to comply with new legislation, or it may be optimized for
performance reasons. The respective process type changes must be propagated to the process
instances. Inversely, process instances may be changed to accommodate for changes in the exe-
cution environment. For example, an exception may cause the process to skip a task. A mapping
of this instance to the process type results in a schema that is different from the original process
schema. When process type and instance changes are executed independently, they are no longer
in harmony with each other. In contrast to our work, this work only supports change propagation
between schema-level and instance-level. It does not support automatically updating the business
process to adapt to an unexpected change.

In [Brambilla et al. 2005], a framework to detect and react to the exceptional changes that can
be raised inside a workflow-driven Web application is proposed. It first classifies these changes into
behavioral (or user-generated), semantic (or application), and system exceptions. The behavior
exceptions are driven by improper execution order of process activities. For example, the free user

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

108 · Salman Akram et al.

navigation through Web pages may result in the wrong invocation of the expired link, or double-
click the link when only one click is respected. The semantic exceptions are driven by unsuccessful
logical outcomes of activities’ execution. For example, a user does not keep paying his periodic
installments. The system exceptions are driven by the malfunctioning of the workflow-based
Web application, such as network failures and system breakdowns. It then proposes a modeling
framework that describes the structure of activities inside hypertexts of a Web application. The
hypertext belonging to an activity is broken down into pages which are univocally identified
within an activity. The authors propose a framework to handle these changes. The framework
consists of three major components: capturing model, notifying model, and handling model. The
capturing model captures events and stores the exceptions data in the workflow model. The
notifying model propagates the occurred exceptions to the users. The handling model defines a
set of recovery policy to resolve the exception. For different types of exceptions, different recovery
policies will be used. In contrast to our work, this work does not deal with bottom-up changes
in an SOE.

In [Ryu et al. 2008] a framework that manages the business protocol evolution in service-
oriented architecture is proposed. It uses several features to handle the running instances under
an old protocol. The features of the approach include impact analysis and data mining based
migration analysis. The impact analysis is to analyze how protocol changes impact the running
instances. It will be used to determine whether ongoing conversations are migrateable to the new
protocol or not. The data mining based migration analysis is used for cases where the regular
impact analysis cannot be performed. Service interaction logs are analyzed using data mining
techniques. It then uses the result of the analysis to determine whether a conversion is migrateable
or not. In contrast to our work, this work only focus on dealing with running instances once a
schema-level change occurs. It does not support change detection, propagation, and reaction.

In [Ellis and Keddara 2000], the work focuses on modeling dynamic changes within workflow
systems. It introduces a Modeling Language to support Dynamic Evolution within Workflow
System (ML-DEWS). A change is modeled as a process class, which contains the information of
roll-out time, expiration time, change filter, and migration process. The roll-out time indicates
when the change begins. The expiration time indicates when the change ends. The change filter
specifies the old cases that are allowed to migrate to the new procedure. The migration process
specifies how the old cases migrate to the new process. In contrast to our work, ML-DEWS only
supports an automatic implementation of a planned and predefined change. It does not support
automatic change reaction to an unexpected change.

A large body of work is proposed within the scope of autonomic computing, in particular
self-adaptation research [Salehie and Tahvildari 2009]. The focus is on models and mechanisms
that allow a software system to modify its own behavior in response to changes in the operating
environment [Oreizy et al. 1999]. Recently, this principle has also been applied to SOEs to
transparently handle top-down and bottom up changes.

In [Moser et al. 2008], a non-intrusive WS-BPEL extension called VieDAME is proposed. It
can adapt services in a WS-BPEL process based on different selection strategies. For example,
it can adapt the process to replace an existing service with a service that has the best response
time or the lowest failure rate. The adaption is based on the assumption that a transformation
rule from the service currently bound in the WS-BPEL process to the alternative service exists.
In contrast to our work, VieDAME only provide a limited number of bottom-up changes, in
particular non-functional changes. It does not facilitate explicit support for change management
because the runtime transparently handles the changes.

In [Michlmayr et al. 2010], a QoS-aware middleware (VRESCo) is presented that addresses
adaptability of service-oriented applications. They propose several infrastructure components
and services including dynamic binding and invocation, querying, eventing and composition that
are based on a unified metadata model. Applications built on top of VRESCo are then able to
handle several changes types automatically. These include non-functional changes leading to a

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 109

service replacement in a composition or service versioning in case a new version of a service is
available. In contrast to our work, VRESCo does not provide explicit and automated support for
various changes types. The focus of VRESCo is on non-functional changes whereas this paper
focuses on both change types within a unified framework.

8. CONCLUSION

We have identified a taxonomy of changes in SOEs using a bottom-up approach. In this approach,
we first describe triggering changes that may occur in Web services. These changes are then
mapped to reactive changes in SOEs. We propose a formal change model based on Petri nets
to accurately represent these changes. We describe a change management framework based on
our change model to provide automatic management of changes in SOEs. Finally, we conduct an
extensive simulation study to prove the feasibility of the proposed techniques.

Future work includes extending our change management approach. We plan to include a top-
down approach to specifying changes. Top-down changes are motivated by the dynamic business
environment. These changes are usually voluntary, and in reaction to changes in the business
environment. A prime application of top-down change management is to modify SOE membership
to increase competitiveness, efficiency, or customer base. Using a top-down approach, we will
first analyze the types of changes that are initiated at the business level. We will then translate
and map those changes to the Web service level.

Change management in SOEs presents vast opportunities for research. This paper attempts
to initiate work in this field. Future work includes investigating the following issues: prioritizing
changes, changes to service semantics, top-down changes, cascading changes, verifying changes,
estimating frequency of changes, and preserving mapping consistency between triggering and
reactive changes.

REFERENCES

Aalst, W. 1998. The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and

Computers 8, 1, 21–66.

Adam, N. R., Atluri, V., and Huang, W.-K. 1998. Modeling and analysis of workflows using petri nets. J.
Intell. Inf. Syst. 10, 2, 131–158.

Akram, M. S. 2005. Managing Changes to Service Oriented Enterprises. M.S. thesis, Virginia Polytechnic Institute

and State University, Falls Church, Virginia, USA. http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.106.7479&rep=rep1&type=pdf.

Akram, M. S. and Bouguettaya, A. 2004. Managing Changes to Virtual Enterprises on the Semantic Web. In
Fifth International Conference on Web Information Systems Engineering. Brisbane, Australia, 472–478.

Akram, M. S., Medjahed, B., and Bouguettaya, A. 2003. Supporting Dynamic Changes in Web Service

Environments. In First International Conference on Service Oriented Computing. Trento, Italy, 319–334.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. 2003. Web services: Concepts, architectures and appli-
cations.

Benatallah, B., Medjahed, B., Bouguettaya, A., Elmagarmid, A., and Beard, J. 2000. Composing and

maintaining web-based virtual enterprises. In First VLDB Workshop on Technologies for E-Services. Cairo,
Egypt.

Brambilla, M., Ceri, S., Comai, S., and Tziviskou, C. 2005. Exception handling in workflow-driven web

applications. In WWW ’05: Proceedings of the 14th international conference on World Wide Web. ACM

Press, New York, NY, USA, 170–179.

Bussler, C. 2003. The Role of Semantic Web Technology in Enterprise Application Integration. Data Engineering
Bulletin 26, 4 (December), 62–68.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. 2009. Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer
Systems 25, 6, 599 – 616.

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., and Shan, M.-C. 2000. Adaptive and Dynamic Service

Composition in eFlow. In CAiSE Conf. Stockholm, Sweden, 13–31.

Casati, F., Shan, E., Dayal, U., and Shan, M. 2003. Business-oriented management of web services. Commu-
nications of the ACM 46, 10 (October), 55–60.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom, J. 1996. Change detection in hierarchically

structured information. In ACM SIGMOD Conference on Management of Data. Montreal, Canada, 493–504.

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

110 · Salman Akram et al.

Cho, J. and Garcia-Molina, H. 2003. Estimating frequency of change. ACM Transactions on Internet Tech-

nology 3, 3 (August), 256–290.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. 2001. Web Services Description Language

(WSDL) 1.1. Tech. rep., W3C, https://www.w3.org/TR/wsdl. March.

Cobena, G., Abiteboul, S., and Marian, A. 2002. Detecting changes in xml documents. In Proceedings of the
18th International Conference on Data Engineering. San Diego, USA, 41–52.

Deolasee, P., Katkar, A., Panchbudhe, A., Ramamritham, K., and Shenoy, P. 2002. Adaptive Push-Pull:
Disseminating Dynamic Web Data. IEEE Transactions on Computers 51, 6.

Doan, A. 2002. Learning to Map between Structured Representations of Data. Ph.D. thesis, University of
Washington.

Ellis, C. A. and Keddara, K. 2000. A workflow change is a workflow. In Business Process Management, Models,

Techniques, and Empirical Studies. Springer-Verlag, London, UK, 201–217.

Elmasri, R. and Navathe, S. B. 2000. Fundamentals of Database Systems - Third Edition. Addison-Wesley,

Reading, Massachusetts.

Erl, T. 2004. Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services. Prentice

Hall, Upper Saddle River, NJ.

Gou, H., Huang, B., Liu, W., Ren, S., and Li, Y. 2000. Petri net based business process modeling for virtual

enterprises. In IEEE International Conference on Systems, Man, and Cybernetics. Nashville, United States,
3183–3188.

Gracanin, D., Srinivasan, P., and Valavamis, K. 1993. Fundamentals of parameterized petri nets. In Interna-
tional Conference on Robotics and Automation. Atlanta, USA, 584–591.

Hamadi, R. and Benatallah, B. 2003. A petri net-based model for web service composition. In Proceedings of
the Fourteenth Australasian database conference on Database technologies. Australian Computer Society, Inc.,

191–200.

Hardwick, M. and Bolton, R. 1997. The Industrial Virtual Enterprise. Commun. ACM 40, 9, 59–60.

Hinz, S., Schmidt, K., and Stahl, C. 2005. Transforming BPEL to Petri Nets. In Proceedings of the Third

International Conference on Business Process Management (BPM 2005), W. M. P. v. d. Aalst, B. Benatallah,

F. Casati, and F. Curbera, Eds. Lecture Notes in Computer Science, vol. 3649. Springer-Verlag, Nancy, France,
220–235.

Iordache, M. V. 2003. Methods for the supervisory control of concurrent systems based on petri net abstractions.

Ph.D. thesis, University of Notre Dame.

Kradolfer, M. and Geppert, A. 1999. Dynamic workflow schema evolution based on workflow type versioning

and workflow migration. In Conference on Cooperative Information Systems. Washington, DC, USA, 104–114.

Krashakov, S. A., Teslyuk, A. B., and Shchur, L. N. 2006. On the universality of rank distributions of website

popularity. Comput. Netw. 50, 11, 1769–1780.

Kristensen, L. M., Christensen, S., and Jensen, K. 1998. The practitioner’s guide to coloured petri nets.

International Journal on Software Tools for Technology Transfer 2, 1, 98–132.

Liu, X. and Bouguettaya, A. 2007a. Managing top-down changes in service-oriented enterprises. In IEEE

International Conference on Web Services 2007. Utah, USA.

Liu, X. and Bouguettaya, A. 2007b. Reacting to functional changes in service-oriented enterprises. In Collab-

orateCom 2007. White Plains, NY.

Llorens, M. and Oliver, J. 2004. Structural and dynamic changes in concurrent systems: Reconfigurable petri
nets. IEEE Transactions on Computers 53, 9 (September), 1147–1158.

Madhavji, N. H. 1992. Environment evolution: The prism model of changes. IEEE Trans. Softw. Eng. 18, 5,
380–392.

Maes, P., Guttman, R. H., and Moukas, A. G. 1999. Agents that Buy and Sell. Communications of the
ACM 42, 3 (March), 81–91.

Medjahed, B., Bouguettaya, A., and Elmagarmid., A. 2003. Composing Web Services on the Semantic Web.

The VLDB Journal, Special Issue on the Semantic Web 12, 4 (November).

Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. 2010. End-to-End Support for QoS-Aware Service

Selection, Binding and Mediation in VRESCo. IEEE Transactions on Services Computing. (to appear).

Moser, O., Rosenberg, F., and Dustdar, S. 2008. Non-Intrusive Monitoring and Service Adaptation for WS-

BPEL. In Proceeding of the 17th International Conference on World Wide Web (WWW’08), Beijing, China.

ACM, 815–824.

OASIS 2006. Web Service Business Process Execution Language 2.0. OASIS. URL: http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wsbpel.

OASIS. 2006. Web Services Eventing (WS-Eventing). http://www.w3.org/Submission/WS-Eventing/.

Olston, C. A. R. 2003. Approximate Replication. Ph.D. thesis, Stanford University.

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

A Change Management Framework for Service Oriented Enterprises · 111

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici, A.,

Rosenblum, D. S., and Wolf, A. L. 1999. An architecture-based approach to self-adaptive software. IEEE
Intelligent Systems 14, 54–62.

Papazoglou, M. P. and Georgakopoulos, D. 2003. Service-Oriented Computing. Commun. ACM 46, 10,

25–28.

Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. 2007. Service-Oriented Computing: State
of the Art and Research Challenges. IEEE Computer 40, 11, 38–45.

Park, K. H. and Favrel, J. 1999. Virtual enterprise – Information system and networking solution. Computers

& Industrial Engineering 37, 1-2, 441–444.

Petrie, C. and Bussler, C. 2003. Service Agents and Virtual Enterprises: A Survey. IEEE Internet Comput-

ing 7, 4 (July-August), 68–78.

Raman, S. and McCanne, S. 1999. A model, analysis, and protocol framework for soft state-based communi-

cation. Proceedings of the conference on Applications, technologies, architectures, and protocols for computer

communication.

Rinderle, S., Reichert, M., and Dadam, P. 2004. On Dealing with Structural Conflicts Between Process
Type and Instance Changes. In Second International Conference on Business Process Management. Postdam,

Germany, 274–289.

Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B., and Saint-Paul, R. 2008. Supporting the dynamic
evolution of Web service protocols in service-oriented architectures. ACM Trans. Web 2, 2, 1–46.

Salehie, M. and Tahvildari, L. 2009. Self-adaptive software: Landscape and research challenges. ACM Trans-

actions on Autonomous and Adaptive Systems 4, 2, 1–42.

Shazia, S., Olivera, S., Maria, M., and Orlowska, E. 1999. Managing change and time in dynamic workflow

processes. International Journal of Cooperative Information Systems.

Tagg, R. 2001. Workflow in Different Styles of Virtual Enterprise. In Workshop on Information technology for

Virtual Enterprises. Queensland, Australia, 21–28.

The OWL Services Coalition. 2004. Owl-s: Semantic markup for web services. Tech. rep.,

http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html. July.

Travica, B. 1997. The design of the virtual organization: a research model. In Proceedings of the Americas
Conference on Information Systems (AMCIS 1997). Indianapolis, IN, USA, 134–143.

van der Aalst, W. M. P. and Basten, T. 2002. Inheritance of workflows: an approach to tackling problems

related to change. Theor. Comput. Sci. 270, 1-2, 125–203.

Velegrakis, Y., Miller, R. J., and Popa, L. 2004. Preserving Mapping Consistency Under Schema Changes.
The VLDB Journal 13, 3 (September), 274–293.

W3C. 2006. Web Services Notification (WSN). http://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=wsn.

Weerawarana, S., Curbera, F., Leymann, F., Storey, T., and Ferguson, D. F. 2005. Web Services Platform
Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.

Prentice Hall PTR.

WSMO Working Group. 2004. Web Service Modeling Ontology (WSMO). http://www.wsmo.org/ .

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

112 · Salman Akram et al.

Salman Akram is a Security Consultant in Accenture’s Security Practice with over five
years of experience in the identity and access management field. In addition to his indus-
try focus on security, he continues to pursue research activities around service oriented
computing and change management. Salman’s research has been published in various
international conferences, such as the International Conference on Service Oriented Com-
puting (ICSOC) and International Conference on Web Information Systems Engineering
(WISE). He received his Master’s in computer science from Virginia Tech.

Athman Bouguettaya received the PhD degree in computer science from the University
of Colorado at Boulder in 1992. He is a science leader at CSIRO ICT Centre, Canberra.
He was previously a tenured faculty member in the Computer Science Department at
Virginia Polytechnic Institute and State University (commonly known as Virginia Tech).
He currently holds Adjunct Professorships at the University of Queensland (Brisbane,
Australia) and Macquarie University (Sydney, Australia). He is on the editorial boards
of several journals, including the VLDB Journal, the Distributed and Parallel Databases
Journal, and the International Journal of Cooperative Information Systems. He guest
edited the IEEE Internet Computing special issue on database technology on the Web
and the ACM Transactions on Internet special issue on Semantic Web services. He served
as the program chair of the 2008 International Conference on Service Oriented Comput-
ing (ICSOC 2008), the 20th Australasian Database Conference (ADC09), and the IEEE
RIDE Workshop on Web Services for E-Commerce and E-Government (RIDE-WS-ECEG
2004). He has published more than 130 articles in journals and conferences in the area
of databases and service computing (e.g., IEEE Transactions on Knowledge and Data Engineering, ACM Transac-
tions on the Web, VLDB Journal, SIGMOD, ICDE, VLDB, and EDBT). His current research interests are in the
foundations of Web service management systems. He is a Fellow of the IEEE and a senior member of the ACM.

Xumin Liu is an Assistant Professor in the department of computer science at Rochester
Institute of Technology. She received her PhD in computer science from Virginia Tech.
Her research interests lie in the general field of data management and service comput-
ing with special focuses on change management and service composition. Dr. Liu’s
research has been published in various international journals and conferences, such as
the International Journal on Very Large Data Bases (VLDB journal), IEEE International
Conference on Web Services (ICWS), International Conference on Collaborative Com-
puting: Networking, Applications, and Worksharing (CollaborateCom), etc. Dr. Liu
frequently serves as a program committee member or a reviewer for various international
conferences. She is also a reviewer for various journals, including IEEE Transactions on
Services Computing and the International Journal on Distributed and Parallel Databases.

Armin Haller is a Postdoctoral Fellow and W3C Office Manager of the Australian Office
in the CSIRO ICT Centre, Australia since February 2010. He received his PhD from the
National University of Ireland, Galway in December 2009 with a thesis centered around
the application of ontologies to workflow models while working as a research assistant
at the Digital Enterprise Research Institute. He is actively involved in different research
projects on semantic Web services, service-oriented computing and workflow management.

Florian Rosenberg is a research scientist at the CSIRO ICT Centre in Australia. He
received his PhD in June 2009 with a thesis on ”QoS-Aware Composition of Adaptive
Service-Oriented Systems” while working as a research assistant at the Distributed Sys-
tems Group, Vienna University of Technology. His general research interests include
service-oriented computing and software engineering. He is particularly interested in all
aspects related to QoS-aware service composition and adaptation. More information can
be found at http://www.florianrosenberg.com.

International Journal of Next-Generation Computing, Vol. 1, No. 1, July 2010.

