
Power Efficient Virtual Machine Packing for
Green Datacenter

Satoshi Takahashi1, Atsuko Takefusa3, Maiko Shigeno2, Hidemoto Nakada3, Tomohiro Kudoh3 and

Akiko Yoshise2

1 University of Electro-Communications
2 University of Tsukuba
3 National Institute of Advanced Industrial Science and Technology (AIST)

Cloud computing is now considered to be a new computing paradigm to provide scalable Infrastructure, Platform
and Software as a Service via the Internet. While, the diffusion of Cloud computing is expected to cause an
explosive increase in power consumption for IT resources in data centers. Virtual Machine(VM)-based flexible

capacity management is an effective scheme to reduce total power consumption in the data centers. However, there
remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans
within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to
resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic

(GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing
approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under
both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the
algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing

plans within a feasible calculation time. The feasibility experiments employ two power consumption models, one
is the linear model and the other is piecewise linear model. In the linear model, the feasibility experiments show
that the reduction ratio of total power consumption observed with MBA is smaller than that of GREEDY, but
the performance degradation of MBA is less than that of GREEDY. In the piecewise-linear model, the feasibility

experiments show that MBA investigates more reducing power consumption than GREEDY. The performance
degradation of MBA is also less than GREEDY.

Keywords: Keywords related to the papers, comma separated.

1. INTRODUCTION

Cloud computing is now considered to be a new computing paradigm to provide scalable In-
frastructure, Platform and Software as a Service (IaaS / PaaS / SaaS) via the Internet. Cloud
providers manage large numbers of IT resources in data centers and provide services running
on those resources in a pay-as-you-go paradigm. However, the diffusion of Cloud computing is
expected to cause an explosive increase in power consumption for IT resources in data centers.
One of the reasons for this is the difficulty of proper planning of data center capacity plan-

ning. The frequency of service requests and their loads generally fluctuate, and thus cannot be
estimated in advance. Cloud providers need to design their data center capacity to provide IT
resources that can process assumed ’peak’ service loads, because user experience will decrease
if the capacity is insufficient. Therefore, there is a risk of a waste of IT resources when service
loads are low. In addition, the accumulated power consumption of idle servers is wasted because
their power consumption may equal about 50% of that of a saturated server, even if the server
supports DVFS (Dynamic Voltage Frequency Scaling) technology. One of the key technologies
used to reduce the total power consumption of a data center is server consolidation, which makes

This study is partially supported by JST/CREST ULP and Grant-in-Aid for Scientific Research (KAKENHI
22510135, 24·1920). Author’s address: S. Takahashi, Faculty of Informatics and Engineering, University of Electro-

Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 1828585; M. Shigeno and A. Yoshise, Faculty of Engineering,
Information and Systems, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 3058573; A. Takefusa, H.
Nakada and T. Kudoh, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono,
Tsukuba, Ibaraki, 3058568.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 163

multiple low loaded-services run on a few servers, allowing idle servers to be switched off. An
effective scheme to achieve server consolidation is Virtual Machine(VM)-based flexible capacity
management implemented using VM live migration technologies for VM host relocation. VM-
based capacity management can consolidate multiple VMs onto a few physical machines (PMs)
and allow other PMs to be put in ’stand-by’ mode. In order to avoid degradation of service
performance, stand-by PMs will be resumed when service loads increase. Hirofuchi, et al., have
proposed a VM-based server consolidation system based on their post-copy VM live migration
technology, which enables live migration with less downtime [Hirofuchi et al. 2011b]. Such a
system may achieve flexible server consolidation, and, hopefully, its users will not experience
degradation in service performance.
In order for effective VM-based server consolidation, there are VM packing issues:

(1) Trade-off between power consumption and performance: An aggressive packing scheme may
cause a remarkable reduction of power consumption while experiencing a considerable amount
of performance degradation. We have to consider both the performance metrics in order to
investigate the feasibility of packing algorithms.

(2) VM packing planning within a feasible calculation time: In order for efficient server consol-
idation, packing systems have to remap VMs periodically, because each VM load fluctuates
constantly. In addition, a VM packing problem is an NP-complete problem. It is important
to make VM packing plans within a feasible calculation time.

(3) Collision of multiple live migrations: Post-copy migration technologies enable live migration
with less downtime. However, it causes burst transfer of a VM image in the background
after an ostensible migration even though the upper bound of migration is (# of PMs)/2.
Remapping of selected VMs takes a long time if collision between multiple VM image transfers
has occurred.

To address the above issues, we propose VM packing algorithms that aim to reduce power
consumption, assure the user experience in terms of performance, and avoid collision of multiple
live migrations. We define the VM packing problem as 0-1 integer programming (IP) and propose
a matching-based algorithm (MBA) and a greedy heuristic algorithm (GREEDY). MBA is an
approach used to find an optimal packing plan in polynomial time. On the other hand, GREEDY
is an aggressive packing approach. The proposed algorithms set a limit to the number of sending
or receiving VMs for each PM in order to avoid collision of migrations.
We investigate basic performance and the feasibility of the proposed algorithms under both

artificial and realistic simulation scenarios, respectively. In two distinct simulation scenarios,
we use randomly generated artificial data and trace data from the 648 node T2K-Tsukuba su-
percomputer, provided by the Center for Computational Sciences of the University of Tsukuba,
respectively. We compare MBA, GREEDY, IP and their variations in terms of power consump-
tion, performance degradation, and calculation time. The basic performance experiments show
that the packing algorithms reduce total power consumption by between 18% and 50%, and
MBA makes suitable VM packing plans within a feasible calculation time. In the feasibility ex-
periments, we employ two power consumption models; linear and piecewise-linear model. In the
linear model, the feasibility experiments show that the reduction ratio of total power consumption
observed with MBA is smaller than that of GREEDY, but the performance degradation of MBA
is less than that of GREEDY. In addition, the results show that MBA can make packing plans
for an actual supercomputer within a feasible calculation time. In the piecewise-linear model,
the feasibility experiments show that MBA investigates more reducing power consumption than
GREEDY. The performance degradation of MBA is also less than GREEDY.

2. RELATED WORK

There have been a lot of studies on power-aware VM packing algorithms that aim to reduce
total power consumption by using VM migration technologies. A VM packing problem can be

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



164 · Satoshi Takahashi et al.

modeled as a bin-packing problem with different sized bins. However, the classical bin-packing
problem is known as an NP-complete problem [Garey and Johnson 2000]. Most of those studies
have defined heuristic algorithms based on First Fit Decreasing (FFD) and Best Fit Decreasing
(BFD) [Vazirani 2001].

Chen, et al., have defined an Effective Sizing-based correlation-aware BFD heuristic algorithm
[Chen et al. 2011]. ’Effective Sizing’ is an estimation of a VM’s resource demand through a
stochastic approach. They assume a homogeneous environment and aim to reduce the number
of active servers. Li, et al., have defined an energy-aware heuristic algorithm based on BFD
[Li et al. 2009] that aims to narrow resource gaps between each PM’s resource capacity and its
VM loads. The algorithm showed lower power consumption than FFD and BFD. Performance
degradation due to VM consolidation has not been well investigated in the above two studies. It
is important to consider both power consumption and performance degradation, since there is a
trade-off between them. Also, live migration overheads have not been considered.

Beloglazov, et al., have proposed a modified BFD algorithm with a minimizing of migrations
policy [Beloglazov et al. 2012] that aims to minimize the number of VM migrations. They have
investigated its performance in terms of total power consumption and SLA violation on hetero-
geneous environments over the CloudSim simulation platform [Calheiros et al. 2011]. Verma, et
al., have considered an FFD-based algorithm with optimization functions [Verma et al. 2008],
which consists of performance, power, and migration factors. The performance and power factors
depend on SLA and power consumption, respectively. The migration factor is determined by live-
migration cost, estimated by quantifying the decrease in throughput because of live migration and
estimating the revenue loss because of the decreased performance. Sinha, et al., have proposed
a BFD algorithm with dynamic higher and lower thresholds for CPU utilization for PMs at the
data center [Sinha et al. 2011]. This idea is that the thresholds are defined to meet both power
efficiency requirements and quality of service to the user by minimizing Service Level Agreement
violations, since VM consolidation will work on dynamic and unpredictable workloads, avoiding
unnecessary power consumption.

Y. Wang and X. Wang have defined a heuristics-based optimization algorithm to find a polyno-
mial time approximate solution [Wang and Wang 2010]. The algorithm begins with the extended
Minimum Bin Slack problem, which can be solved in pseudo-polynomial time [Fleszar and Hindi
2002]. Then, it allocates VMs to power-efficient servers, preferentially. In order to take migration
overheads into account, they provide a migration cost function, which can be defined by a DC ad-
ministrator. The algorithm showed better performance than the FFD-based algorithm. Nakada,
et al., have investigated heuristic algorithms, based on FFD, the 0-1 Integer Programming (IP)
model, and a Genetic Algorithm (GA) [Nakada et al. 2010]. This study showed that the 0-1 IP
and GA-based algorithms are not feasible because of the long calculation time needed to solve
the problem, while the FFD-based algorithm finds it difficult to minimize the total number of
migrations.

The above five studies have considered three performance matrix; power consumption, per-
formance degradation, and migration cost, related to the number of migrations. However, per-
formance degradation due to collision of simultaneous live migrations has not been taken into
account. In this work, we propose VM packing algorithms to avoid migration collision and
investigate the performance based on power consumption and performance degradation metrics.

Takeda and Takemura have defined an extended FFD algorithm that selects a migration des-
tination server on the basis of server rank [Takeda and Takemura 2010]. This rank represents a
server selection priority. In order to improve search efficiency, only VMs hosted by a high-load
or low-load PM become migration candidates. In addition, multiple VMs are not allowed to
simultaneously migrate to a PM due to live migration overheads. This idea is similar to one in
our algorithm, but we propose both heuristic and optimal algorithms, which aim to solve VM
remapping in polynomial time.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 165

Detail of VM packing system.

3. VIRTUAL MACHINE PACKING PROBLEM

As a method to reduce energy consumption in data centers, the virtual machine consolidation
technique is widely used. The efficiency of the ’static’ VM consolidation technique is largely
limited by the maximum load-based capacity planning, where all the VMs are assured all the
time to have sufficient resources to process any possible maximum load. In the ’dynamic’ VM
consolidation method, where VMs are dynamically assigned resources based on load, data center
resources can be utilized more efficiently.

The ‘VM Packing Problem’ is designed to minimize the energy consumption of the whole data
center while assuring all the VMs are assigned sufficient resources to handle the load at that time.

3.1 VM Packing Implementation

Hirofuchi et. al. proposed a virtual machine management system with a rather naive virtual
machine packing implementation [Hirofuchi et al. 2010]. Figure 1 illustrates the virtual machine
packing system that is proposed by [Hirofuchi et al. 2010]. There are three active PMs before
migration. After migration, the system allocates a VM to a standby mode PM. The virtual
machine packing system consists of a load monitor and a relocation engine. The load monitor
observes virtual machines’ resource usage amounts and stores observed data into a database. The
relocation engine reallocates virtual machines to physical machines based on the observed data
of resource usage amounts. When all virtual machines are lightly loaded, the system consolidates
them onto few physical machines in the data center, keeping the rest of the servers in the ACPI
S3 standby mode, in which each node consume only 5-7 watts. When the system detects that a
virtual machine has became heavily loaded, it wakes up one of the standby physical machines and
migrates the virtual machine onto the physical machine to provide the virtual machine sufficient
resources.

With high-speed post-migration techniques[Hirofuchi et al. 2010], virtual machine migration
can be performed within a second. It takes 1-2 seconds to wake up the standby physical machine
in ACPI S3 mode. This means that we can reallocate resources to virtual machines in 2-3 seconds
in total.

3.2 Problem Formulation

Given many VMs are located in a number of PMs, the virtual machine packing problem (VMPP)
is to reallocate VMs to PMs such that minimizing total power consumption is achieved. Let P
be a set of PMs and V a set of VMs. For representing a reallocation, we denote by Vi a set
of VMs assigned to PM i. Each PM i(∈ P ) has capacities of CPU and memory, denoted by ci
and mi, respectively. Each VM k ∈ V has CPU and memory usage, denoted by vck and vmk,
respectively. To avoid performance degradation, a set of VMs assigned to PM i has to satisfy

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



166 · Satoshi Takahashi et al.

resource constraints:

∑
k∈Vi

vck 6 ci (1)

∑
k∈Vi

vmk 6 mi (2)

Moreover, each PM can send or receive at most one VM per one time in order to prevent perfor-
mance loss on PMs due to collisions. Thus, each Vi needs to satisfy

|V 0
i \ Vi|+ |Vi \ V 0

i | 6 1, (3)

where V 0
i stands for the set of VMs initially located in PM i.

Let cost i(z) be the electricity usage of the PM i(∈ P ) with respect to its CPU usage z, and
basei be the basic electricity usage. The total power consumption for reallocation {Vi}i∈P is
given by

∑
i∈P

{(cost i(
∑
k∈Vi

vck) + basei) | Vi ̸= ∅}, (4)

since the variation of electricity consumption of memory and network communication resource is
low with respect to total power consumption due to observations made in [Hirofuchi et al. 2011a].
Then, VMPP is formulated as follows:

(VMPP) minimize{(4) | (1)(2) and (3) ∀i ∈ P} (5)

We now formulate this VMPP as a 0-1 integer programming problem by using 0-1 decision
valuables,

xik =

{
1 (k ∈ Vi)
0 (otherwise),

(6)

and

yi =

{
1 (Vi ̸= ∅)
0 (otherwise).

(7)

For representing the initial location V 0
i , we introduce

x0
ik =

{
1 (k ∈ V 0

i )
0 (otherwise).

(8)

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 167

Then, VMPP can be rewritten as follows:

(VMPP-IP)

minimize
∑
i∈P

(cost i(
∑
k∈V

vckxik) + baseiyi) (9)

subject to
∑
k∈V

vckxik ≤ ci, ∀i ∈ P (10)∑
k∈V

vmkxik ≤ mi, ∀i ∈ P (11)∑
k∈V

|xik − x0
ik| ≤ 1, ∀i ∈ P (12)∑

i∈P

xik = 1, ∀k ∈ V (13)∑
k∈V

xik ≤ |V | · yi, ∀i ∈ P (14)

xik ∈ {0, 1}, ∀i ∈ P, ∀k ∈ V (15)

yi ∈ {0, 1}, ∀i ∈ P. (16)

Obviously, the objective function (9) of VMPP-IP coincides with the total power consumption (4).
Constraints (10) and (11) correspond to resource constraints (1) and (2), respectively. Constraint
(12) is due to the restriction of the number of migrations by (3). The equation (12) is represented
by the following equivalent linear equation using the property such that if the product of xik and
x0
ik is 1 then the VM k is reallocated to the PM i.∑

k∈V

(xik + x0
ik − 2xikx

0
ik) ≤ 1, ∀i ∈ P . (17)

We need two additional constraints. Constraint (13) represents the fact that each VM has to
be allocated to one of the available PMs. Constraint (14) implies that if each PM assigned
more than one VM then the PM has to operate. For an optimal solution x̂ of VMPP-IP, define
Vi(x̂) = {k ∈ V | x̂ik = 1} for any i ∈ P . Obviously, the reallocation {Vi(x̂)}i∈P is optimal for
VMPP.

4. ALGORITHMS FOR VMPP

This section proposes two efficient algorithms for VMPP. One is an exact algorithm based on
maximum weight matchings. The other is a greedy-type heuristic algorithm.

4.1 Matching-based Algorithm

We configure a matching-based algorithm for VMPP. Let (P,A) be a complete digraph, where
the vertex set P is given by the PM set and the arc set A = {(i, j) | i, j ∈ P, i ̸= j} consists of all
the pairs of both directed arcs. A subset M of arcs such that no two arcs in M are incident on
the same vertex is referred to as matching. Note that a matching is one to one correspondence to
a collection of a pair of PMs between which a migration of some VM occurs per one time without
considering resource constraints, since the number of migrations from or to each PM is at most
one per one time. For example, Fig. 2 shows the relationship between migrations of VMs and
matching on (P,A). This example has seven PMs, and has three VMs that migrate from PMs 5,
2, and 6 to PMs 4, 7, and 3, respectively.
Recall that V 0

i is the set of VMs initially located in i ∈ P . By c̃(i, j, k), the reduced power
consumption is denoted when VM k ∈ V 0

i is reallocated from i ∈ P to j ∈ P . Then, c̃(i, j, k) is
given by

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



168 · Satoshi Takahashi et al.

Example of translation.

cost i(
∑

k′∈V 0
i

vck′)− cost i(
∑

k′∈V 0
i \{k}

vck′) + basei ·max{0, 2− |V 0
i |}

+ costj(
∑

k′∈V 0
j

vck′)− costj(
∑

k′∈V 0
j ∪{k}

vck′) + basej ·min{0, |V 0
j | − 1}. (18)

The weight c(i, j) of each arc (i, j) ∈ A is defined by

max{c̃(i, j, k) | k ∈ V i→j}, (19)

where V i→j stands for a set of VMs each of which can be reallocated from i ∈ P to j ∈ P without
violating resource constraints (1) and (2), i.e.,

V i→j =

 k ∈ V 0
i

∣∣∣∣∣∣∣∣∣

∑
ℓ∈V 0

i \{k} vmℓ ≤ mi,∑
ℓ∈V 0

i \{k} vcℓ ≤ ci,∑
ℓ∈V 0

j ∪{k} vmℓ ≤ mj ,∑
ℓ∈V 0

j ∪{k} vcℓ ≤ cj

 . (20)

If a matching M corresponds to a set of migrations satisfying the resource constraints, the sum
of weight

∑
(i,j)∈M c(i, j) exhibits the reduced power consumption when the most efficient VMs

migrate between PMs indicated by M . Representing a maximizer of (19), we use a function
σ : A → V which returns a maximizer k (∈ V ) for each (i, j) ∈ A, i.e., c(i, j) = c̃(i, j, σ(i, j)).
In order to treat only matchings that correspond to a set of migrations satisfying the resource

constraints, we introduce an arc subset Ã = {(i, j) ∈ A | V i→j ̸= ∅}. In addition, because the
initial allocation might violate resource constraint (1) or (2) for some PMs, we define U = {i ∈
P |

∑
k∈V 0

i
vck > ci} ∪ {i ∈ P |

∑
k∈V 0

i
vmk > mi} as a set of such machines. Since, for each PM

i in U , some VM in V 0
i has to migrate to another PM, a reallocation that satisfies the resource

constraints can be represented by a matching in which each vertex in U is matched. Such a
matching is referred to as U -matching.

Theorem 4.1. Let M∗ be a maximum weight U -matching on (P, Ã) and

V ∗
i =

 V 0
i \ {σ(i, j)} ((i, j) ∈ M∗),

V 0
i ∪ {σ(j, i)} ((j, i) ∈ M∗),

V 0
i (otherwise),

(21)

for each i ∈ P . Then, {V ∗
i }i∈P is an optimal reallocation for VMPP.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 169

Proof. As in the above discussion, U -matchings on (P, Ã) are a one-to-one, correspondence
to sets of migrations satisfying all constraint (1), (2) and (3). Thus, {V ∗

i }i∈P is a feasible
reallocation for VMPP. From decision of the arc set Ã and U , it is clear that an obtained
reallocation satisfies the resource constraints. Also each PM’s number of migration is at most
one, since the reallocation obtains from the matching. We now consider an optimal reallocation
{V̂i}i∈P of VMPP. Let Ŷ (⊆ V ) be a set of VMs reallocated to another PM from the initial location
to the optimal reallocation, i.e., Ŷ =

∪
i∈P (V

0
i \ V̂i). For each VM k̃ ∈ Ŷ , the pair of PMs that k̃

migrates from and to are denoted by s(k̃) and r(k̃), respectively. Then, V̂s(k̃) = V 0
s(k̃)

\ {k̃} and

V̂r(k̃) = V 0
r(k̃)

∪ {k̃} hold, since the number of migrations from or to a PM is limited to at most

one. The reduced power consumption for the optimal reallocation {V̂i}i∈P is given by∑
i∈P

(cost i(
∑
k∈V 0

i

vck) + basei ·min{1, |V 0
i |})−

∑
i∈P

(cost i(
∑
k∈V̂i

vck) + basei ·min{1, |V̂i|}) (22)

Since the first term in (22) is constant, a reallocation minimizing (4) maximizes the reduced
power consumption (22). By using Ŷ , we can rewrite the reduced power consumption (22) as

∑
k̃∈Ŷ

costs(k̃)(
∑

k∈V 0
s(k̃)

vck)− costs(k̃)(
∑

k∈V̂s(k̃)

vck) + costr(k̃)(
∑

k∈V 0
r(k̃)

vck)− costr(k̃)(
∑

k∈V̂r(k̃)

vck)


+

∑
k̃∈Ŷ

(
bases(k̃)(min{1, |V 0

s(k̃)
|} −min{1, |V 0

s(k̃)
| − 1}) + baser(k̃)(min{1, |V 0

r(k̃)
|} −min{1, |V 0

r(k̃)
|+ 1})

)

=
∑
k̃∈Ŷ

costs(k̃)(
∑

k∈V 0
s(k̃)

vck)− costs(k̃)(
∑

k∈V 0
s(k̃)

\{k̃}

vck) + costr(k̃)(
∑

k∈V 0
r(k̃)

vck)− costr(k̃)(
∑

k∈V 0
r(k̃)

∪{k̃}

vck)


+

∑
k̃∈Ŷ

(
bases(k̃) ·max{0, 2− |V 0

s(k̃)
|}+ baser(k̃) ·min{0, |V 0

r(k̃)
| − 1}

)
=

∑
k̃∈Ŷ

c̃(s(k̃), r(k̃), k̃). (23)

Clearly, since VM k̃ belongs to V s(k̃)→r(k̃), c̃(s(k̃), r(k̃), k̃) 6 c(s(k̃), r(k̃)) holds. By defining
M̂ = {(o(k), i(k)) ∈ A | k ∈ Ŷ }, we have

∑
k̃∈Y c̃(s(k̃), r(k̃), k̃) 6

∑
(i,j)∈M̂ c(i, j). Note that

M̂ is U -matching on (P, Ã). Thus, for the maximum weight U -matching M∗,
∑

(i,j)∈M̂ c(i, j) 6∑
(i,j)∈M∗ c(i, j) holds. On the other hand, let Y ∗ =

∪
i∈P (V

0
i \ V ∗

i )(= {σ(i, j) | (i, j) ∈ M∗}).
By replacing Ŷ by Y ∗ in (23), we also show that

∑
(i,j)∈M∗ c(i, j) is equivalent to the reduced

power consumption by {V ∗
i }i∈P . Therefore, the reduced power consumption of the reallocation

V ∗
i (i ∈ P ) following from M∗ is not smaller than the one of the optimal reallocation V̂i (i ∈ P ).

Therefore, the reallocation V ∗
i (i ∈ P ) is also optimal for VMPP.

Thus, we can construct an algorithm for VMPP, which uses a maximum U -matching. We call
the algorithm described below a matching-based algorithm (MBA).
Matching Based Algorithm (MBA)

Step 1.. Construct a directed graph (P, Ã) and U = {i ∈ P |
∑

k∈V 0
i
vck > ci} ∪ {i ∈ P |∑

k∈V 0
i
vmk > mi}, and calculate a weight c(i, j) for each (i, j) ∈ Ã.

Step 2.. Find a maximum weighted U -matching M∗ on (P, Ã).

Step 3.. For each (i, j) ∈ M∗, reallocate σ(i, j) from i to j. That is to say, make the realloca-
tion {V ∗

i }i∈P by (21).

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



170 · Satoshi Takahashi et al.

In Step 2 of MBA, we can compute a maximum weighted U -matching in O(|P |3) time or in
O(|P ||Ã| + |P |2 log |P |) time by using a polynomial time algorithm due to Edmonds [Edmonds
1965] (see also [Korte and Vygen 2004] [Galil 1986].)

Theorem 4.2. Assume that cost i(z) can be computed in O(1) time for any i ∈ P and z.
Then, MBA find an optimal reallocation for VMPP in O(|P |3 + |V ||P |) time. Hence, VMPP
belongs to class P.

Proof. In MBA, Step 1 spends O(
∑

i∈V |V 0
i ||P |) = O(|V ||P |) time, because it needs to search

all elements in V 0
i to compute weight c(i, j) for each (i, j) ∈ Ã, which implies that it computes all

weights c(i, j) for each arc (i, j) leaving from vertex i in O(|V 0
i ||P |) time. Since |Ã| = O(|P |2),

Step 2 spends O(|P |3) time to compute a maximum weighted U -matching. Step 3 spends O(|P |)
time. Summing these complexities, we obtain the desired complexity.

4.2 Greedy Algorithm

Next we propose a greedy-type heuristic algorithm (GREEDY) for VMPP. To represent the
resource usage ratios of each PM i, define

util i =

∑
k∈V 0

i
vck

ci
+

∑
k∈V 0

i
vmk

mi
. (24)

GREEDY first tries to migrate one VM from a PM for which resource constraint (1) or (2) does
not hold at the initial allocation. For such PMs to need migration away, a priority is given by the
value of util i. The algorithm subsequently tries to perform migrations also by using a priority
of util i, in order to reduce the number of active PMs. We describe the details of GREEDY as
follows.
Greedy Algorithm (GREEDY)

Step 1.. Partition P into two sets Low = {i ∈ P | (1) and (2) hold} and High = P \ Low .
(Store PMs in Low and High, respectively, by descending order of util i.)

Step 2.. Migrate one VM from each PM in High by the following process, until High = ∅.
2-1.. Select PM h attaining max{util i | i ∈ High}. Delete h from High.

2-2.. Let V c
h = {k ∈ V 0

h | vck > och}, where och = max{0,
∑

k∈Vh
vck − ch}, and V m

h = {k ∈
V 0
h | vmk > omh}, where omh = max{0,

∑
k∈Vh

vmk −mh}. For each k ∈ V 0
h , calculate

diff k =
|vck − och|

ch
+

|vmk − omh|
mh

. (25)

(a). If V c
h ∩ V m

h ̸= ∅, then choose VM k′ attaining min{diff k | k ∈ V c
h ∩ V m

h }.
(b). Else, if V m

h ̸= ∅, then choose VM k′ attaining min{diff k | k ∈ V m
h }.

(c). Else, if V c
h ̸= ∅, then choose VM k′ attaining min{diff k | k ∈ V c

h }.
(d). Else, choose VM k′ attaining min{diff k | k ∈ V 0

h }.
2-3.. Find PM l attaining max{utili | i ∈ Low ,

∑
k∈V 0

i
vck+vck′ 6 ci,

∑
k∈V 0

i
vmk+vmk′ 6

mi}. If l exists, delete l from Low , and allocate Vh = V 0
h \ {k′} and Vl = V 0

l ∪ {k′}. If l does not
exist, keep Vh = V 0

h .

Step 3.. Migrate one VM from each PM in Low by the following process, until Low = ∅.
3-1.. Select PM h attaining min{util i | i ∈ Low}. Delete h from Low .

3-2.. For each i ∈ Low , let add i = {k′ ∈ V 0
h | vck + vck′ 6 ci,

∑
k∈V 0

i
vmk + vmk′ 6 mi}.

Find a pair of a PM l and a VM k′ attaining max{c̃(h, i, k) | i ∈ Low , k ∈ add i}. If l exists, delete
l from Low , and allocate Vh = V 0

h \ {k′} and Vl = V 0
l ∪ {k′}. If l does not exist, keep Vh = V 0

h .

Finally, we discuss the time complexity of GREEDY. Step 1 runs in O(|P | log |P |) time, since it
sorts P by util i. Thus, Steps 2-1 and 3-1 can be performed in O(1) time. Step 2-2 and Step 2-3
need O(|V 0

h |) time and O(|Low |) time, respectively, if cost i(z) can be computed in constant time

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 171

for any i ∈ P and z. Thus, the complexity of Step 2 is O(|High|(|V | + |Low |)). Since Step 3-2
searches for a pair of elements in Low×V 0

h , Step 3 needs O(
∑

h∈Low (|Low ||V 0
h |)) = O(|Low |·|V |).

Thus, the total time complexity of GREEDY is O(|P |2 + |P ||V |).

5. EVALUATION EXPERIMENTS

We investigate the performance and the feasibility of virtual machine packing algorithms. First,
we compare energy consumption, degradation of user experiences and calculation times required
for each packing decision under artificial simulation environment. Then, we investigate how much
electricity power can be reduced by using the packing algorithms under a realistic simulation
environment, based on trace data from the T2K-Tsukuba supercomputer system [?] and a
sophisticated energy consumption model.

5.1 Virtual machine packing algorithms and their implementations

The experiments evaluate the performance of MBA, GREEDY and IP. The proposed algorithms,
MBA and GREEDY, were coded in Python. In Step 2 of MBA, we use the O(|P |3) algorithm in
[Galil 1986], which is coded by J. van Rantwijk1, by modifying to return a U -matching. IP solves
VMPP-IP by commercial solver CPLEX (IBM ILOG CPLEX Optimization Studio_Academic
V12.3 64bit). In our implementation, we have been using CPLEX from Python library pulp 2. If
the solver does not return an optimal solution within 600 seconds, then we use the best solution
among the feasible solutions found by it.
While GREEDY reallocates virtual machines to minimize the total power consumption al-

though VMPP is infeasible, MBA and IP remains the initial allocation when the problem is
infeasible. We replace constraints (10) and (11) in VMPP-IP with∑

k∈Vi

vmkxik −mi ≤ mipi, ∀i ∈ P, (26)

∑
k∈Vi

vckxik − ci ≤ ciqi, ∀i ∈ P, (27)

by using two nonnegative decision variables pi, qi representing the excess amount of memory and
CPU usage, respectively, in order to reallocate even if a problem is infeasible. Also we substitute∑

i∈P

(cost i(
∑
k∈Vi

vckxik) + baseiyi) +
∑
i∈P

pi +
∑
i∈P

qi (28)

for the objective function (9) of VMPP-IP. It is clear that the modified integer programming
problem is relaxation of VMPP-IP. To solve this new integer programming problem is denoted
by IPr, which also use CPLEX with the same settings as IP.
Also MBA is modified to reallocate virtual machines in order to reduce the excess amount of

memory and CPU usage even if VMPP is infeasible. This modified MBA, denoted by MBA-mod,
treats the performance degradation of the user experience as the weight of each arc of the graph.
The degradation of the user experience of physical machine i is formulated by

deg(Vi) =
max{0,

∑
k∈Vi

vck − ci}
ci

+
max{0,

∑
k∈Vi

vmk −mi}
mi

, (29)

and the total performance degradation is given by
∑

i∈P deg(Vi). By ĉ(i, j, k), a reduced perfor-
mance degradation is denoted when virtual machine k is reallocated from i ∈ P to j ∈ P . Then
ĉ(i, j, k) is given by

deg(V 0
i )− deg(V 0

i \ {k}) + deg(V 0
j )− deg(V 0

j ∪ {k}). (30)

1http://jorisvr.nl/maximummatching.html, Jan. 6, 2013 access.
2http://code.google.com/p/pulp-or/, Jan. 6, 2013 access.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



172 · Satoshi Takahashi et al.

Table I: Condition of parameters

Parameter Condition

Algorithm MBA, GREEDY, IP(CPLEX)

# of physical machines and virtual machine 50, 100, 150
200, 250, 300

# of rounds 200
CPU capacity of the physical machine 1.0

Memory capacity of the physical machine 4096 [MB]
Avg. / max of CPU usage of virtual machine 0.5 / 1.0
Avg. / max of memory usage of virtual machine 2048 / 4096 [MB]

Fluctuation of virtual machine’s resource usage Sine wave
(Phase: uniform random,
Avg. amptitude: 1/12π,
uniform random)

basei / costi(z) 53.0 / 47.0z

A new weight c′(i, j) of each arc (i, j) ∈ A is defined by max{ĉ(i, j, k) | k ∈ V 0
i }. MBA-mod

computes a maximum weight matching on (P,A) with a new weight c′ to obtains a new allocation
{V i}i∈P , when VMPP is infeasible.

5.2 Basic performance of the packing algorithms

We evaluate the basic performance of each proposed algorithm under the following numerical
simulation experiment. A virtual machine packing system monitors virtual machine resource
utilization on physical machines, makes a virtual machine rearrangement plan by using a virtual
machine packing algorithm, and then migration of selected virtual machines, periodically. The
number of virtual machines is fixed during a simulation and each virtual machine’s memory
and CPU usage will vary every time step. Each experiment runs for two hundred time steps.
Table I shows conditions of the experiment. Suppose that the number of physical machines and
virtual machines are equal and the size is set to 50, 100, 150, 200, 250 and 300. The CPU
capacity (the number of cores × upper bound of the usage ratio) is set to 1.0 and the memory
capacity is set to 4096 [MB]. The average and maximum usage amounts of CPU and memory of
virtual machine is 0.5 / 1.0 and 2048 / 4096 [MB], respectively. We employ the Sine curve to
represent the fluctuation of each virtual machine’s resource usage. This fluctuation model is a
more strict condition compared with real operation, since resource usage generated by the Sine
curve fluctuates every time step. The parameters of the power consumption were decided to be
basei = 53.0, cost i(z) = 47.0z for each i ∈ P based on [Hirofuchi et al. 2011a]. Every physical
machine has initially one virtual machine individually at random. We conduct the simulations
on a MacOSX 10.7 64bit with an Intel Core i7 3.4GHz, 8 Cores and 16GB of RAM.

5.3 Feasibility of the packing algorithms

We compare the algorithms by using real trace data from the T2K-Tsukuba supercomputer in
order to show the feasibility. In these experiments, idle servers are switched off in all cases.
Our simulation assumes that the packing system operates the monitoring of the virtual ma-

chines, as well as the planning and reallocation on a routine schedule, as same as in subsection
5.2. Although the simulation in subsection 5.2 supposes that every virtual machine is operat-
ing until end-of rounds, this simulation supposes that each virtual machine’s operating time is
decided by the trace data from the T2K-Tsukuba, i.e. each virtual machine is not required to
operate continuously among considering rounds. The T2K-Tsukuba consists of 648 nodes with
total theoretical peak capability of 95Tflops. Each node consists of AMD quad-core Opteron
2.3GHz × 4 CPUs and 32GB memory. The T2K-Tsukuba has been utilized by a lot of users for
scientific computation since 2008. Because the power consumption model of the T2K-Tsukuba
is not open, we assume each node of the T2K-Tsukuba is configured using Intel quad-core Xeon
W5590 3.33GHz × 2 CPUs, 48GB of memory in the simulation. Table II shows extensive details

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 173
Table II: Details of our model’s physical machine.

CPU Intel(R) Xeon(R) W5590 3.33GHz
# CPU per node 2

# Cores per CPU 4
Memory per node 48GB
Operating System CentOS 5.5 x86 64
Storage (ioDrive) Fusion-io ioDrive Duo 320GB

Storage (SAS HDD) Fujitsu MBA3147RC 147GB/15000rpm
Network Interface Mellanox ConnextX-II 10G Adapter
Network Switch Cisco Nexus 5010

Power consumption of observed value, linear approximation and piecewise linear approximation.

of the physical machine used in the simulation model. Figure 3 shows the power consumption
measured by a physical machine of Table II. A nonlinear power consumption function is ob-
served, hence we assume a linear function model and a piecewise linear function model of the
power consumption function and evaluate our algorithms by using these models.
In this evaluation, the number of physical machines and the maximum number of virtual

machines in a round is 648. We set the experiment rounds are 10080 rounds in the linear
model and 1000 rounds in the piecewise linear model. For each physical machine i(∈ P ), we
set basei = 263 as a baseline power consumption and cost i(z) = 175z as a power consumption
function of the linear model. Also for each physical machine i(∈ P ), we set a power consumption
function of the piecewise linear model by

cost i(z) =


432z 0 < z ≤ 0.25,
115z + 108 0.25 < z ≤ 0.75,
134z + (108 + 86.25) 0.75 < z,
0 z ≤ 0.

The trace data of the T2K-Tsukuba consists of submit times of jobs, the number of cores,
elapsed times and maximum memory usage. We assume every job included parallel jobs as
virtual machines and assume every virtual machine can be migrated individually. First of all, we
use two weeks of job data in the trace data to make an allocation plan using a Gantt chart. The
elapsed time is considered as the life-span of each virtual machine based on the job set-up time
decided using the Gantt chart. We regard the second week job data induced by the Gantt chart
as an input of the experiment and apply the proposed algorithms to the input with respect to
each minute.
The fluctuation of each job’s memory usage amount is fixed by its maximum memory usage

amount. We vary only CPU usage amount. The fluctuation of the CPU usage amount is repre-
sented by the six patterns of the Sine curve and square wave showed in Figures 4 and 5. Each
pattern’s frequency is 25 or 50, i.e., each virtual machine’s cycle is either elapsed time / 25 or

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



174 · Satoshi Takahashi et al.

Table III: Parameters of fluctuation models.

Model Parameters Values

Offset 4, 5.6

Sine curve Frequency 25, 50
Amplitude 3.2, 4, 4.8

Minimum value 0,1.6
Square wave Frequency 25, 50

Duty cycle (off : on) 1:1, 1:2, 2:1

Sine wave variation model Square wave variation model

Table IV: Comparison of average power consumption and computation time per one round.

# of PM Avg. of power consumption (watt)
(= # of VM) FIX MBA IP GREEDY IPr MBA-mod

50 3814.716 1951.501 2817.311 3076.691 2854.433 2527.346
100 7623.835 3959.415 5925.185 6009.985 5601.287 5044.060
150 11469.435 5841.630 9395.015 8947.165 8229.118 7614.215
200 15259.594 7752.674 11755.764 11814.064 10842.380 10124.424
250 19055.052 9579.447 14552.893 14657.112 13023.482 12636.487
300 22840.991 11423.201 17479.776 17541.521 15976.583 15128.166

# of PM Ave. of comp. time (sec.)
(= # of VM) MBA IP GREEDY IPr MBA-mod

50 0.018 0.659 0.008 0.479 0.051
100 0.076 13.243 0.026 5.492 0.208
150 0.157 12.360 0.052 10.575 0.472
200 0.280 22.335 0.089 72.597 0.834
250 0.433 21.358 0.133 285.430 1.346
300 0.625 48.815 0.187 530.083 1.943

elapsed time / 50. We set the minimum cycle of the virtual machines as 10 minutes. Table III
shows some parameters of twenty four fluctuation models of CPU usage amount.

6. RESULTS OF THE EVALUATION EXPERIMENTS

6.1 Result of basic performance

We compare the average power consumption, computation time and performance degradation of
each problem using the proposed algorithms. Table IV shows the experimental results MBA, IP,
GREEDY, IPr and MBA-mod. FIX shows the resulting values when the packing system does
not reallocate any VM at each round. MBA and IP employ the previous allocation when the
problem of the current round is infeasible.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 175

Table V: Results of the average power consumption and computation time in large size problems.

# of PM Average power consumption (watt) Average computation time (sec.)

(= # of VM) FIX MBA GREEDY MBA GREEDY

400 30507.199 15273.144 23375.519 1.145 0.314
500 38130.399 19116.119 29155.379 1.890 0.480
600 45808.771 22914.891 34862.151 2.771 0.651

700 53408.342 26723.107 40640.907 3.892 0.870
800 60994.286 30621.311 46263.201 5.090 1.132
900 68603.518 34603.753 52057.448 6.719 1.431

1000 76260.032 38524.827 57715.597 8.499 1.718

Table VI: Average performance degradation of user experience.

# of PM Average performance degradation

(= # of VM) MBA IP GREEDY IPr MBA-mod

50 1.34 8.05 0.17 0.56 0.91
100 1.21 18.39 0.40 1.11 0.93
150 1.16 23.47 0.70 1.59 0.93

200 0.65 34.66 1.07 2.51 0.57
250 0.41 36.68 1.37 3.04 0.36
300 0.61 48.11 1.56 7.67 0.49

In Table IV, MBA establishes the lowest average power consumption in almost all instances.
For some instances, GREEDY obtains lower average power consumption than IP. The results
shows each algorithm reduces power consumption between 18% to 50%, compared with FIX.

While both of MBA and IP solve VMPP exactly, their average power consumptions are differ-
ent. One of the reasons is that MBA and IP obtain a different optimal solution at some rounds
in the simulation. The other reason is that IP employs a temporary solution if CPLEX does not
obtain the optimal solution of the problem within 600 seconds. Since IPr tries to reallocate VMs
to decrease total power consumption when an instance is infeasible, IPr obtains better power con-
sumption compared with IP. MBA-mod reduces the power consumption more than IPr, however,
MBA has larger decreasing ratio than MBA-mod. GREEDY, MBA and MBA-mod, which are
polynomial time algorithms, run in shorter computation time than IP dramatically. Especialy,
GREEDY has the shortest average computation time. The computational time of MBA-mod is
longer than MBA, since MBA-mod computes two distinct matchings in infeasible case.

Fig. 6 shows the comparison of power consumption fluctuation in each round at a problem size
of 250. The horizontal axis shows the round and the vertical axis shows the power consumption.
Each algorithm shows the same trends in changing the power consumption at almost all rounds.

Table V shows the results of average power consumption and computation times obtained
by MBA and GREEDY in large size problems. MBA’s average computation time is about 8.5
seconds at one round when the problem size is 1000. The results show MBA is strong enough to
use in practices although GREEDY has a shorter average computation time.

Finally we compere a performance degradation of the user experience. Although there are
many factors involved in the loss of user experience, we employ the ratio of overbalance of
CPU or memory usage, defined by

∑
i∈P deg(Vi). Table VI evaluates the average performance

degradation by summing each PM’s degradation per one round. The performance degradation
of each of IP, GREEDY, and IPr is proportional to the increase in the size of the problem. On
the other hand, MBA-mod shows the smallest average performance degradation at the problem
size 250. IPr shows smaller performance degradation than IP, which suggests the importance of
the reallocation for the infeasible instance.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



176 · Satoshi Takahashi et al.

The power consumption fluctuation of FIX, MBA, MBA-mod, GREEDY, IP and IPr in each round at a problem
size of 250.

6.2 Results of feasibility testing of the proposed algorithms

We compare the average power consumption, computation time and performance degeneration
of each problem using the proposed algorithms. Table VII shows the average value of power
consumption, computation time, and performance degradation of sine curve and square wave
model in the T2K-Tsukuba trace data experiment.
First of all, we show the results of linear power consumption model. In these results, MBA

and GREEDY reduce the power consumption compared with FIX. MBA does not establish
smaller power consumption than GREEDY, but the performance degradation does not occur
at every problem level, even if GREEDY shows greater performance degradation. Since MBA
sometimes utilizes new physical machines for a new input virtual machines, it is hard for MBA
to reduce total power consumption in the T2K-Tsukuba trace data, in which the number of
virtual machines changes dynamically, although the performance degradation does not occur.
Considering the differences of load models, with the square wave model it is difficult to reduce
total power consumption compared with the sin curve. There was no influence from difference
between the average value of load models, however, a large amplitude showed better performance
than a small one.
Next, we show results of the piecewise linear model. In the result of average reducing ratios

of power consumption (Figure 7), MBA and GREEDY reduce the power consumption compared
with FIX. MBA reduces more power consumption than GREEDY. Since a reduced cost c(i, j)
is positive when |V 0

i | = 1 in linear model, MBA does not reduce more power consumption than
GREEDY. In piecewise linear model, the reduced cost c(i, j) is almost positive, since a power
consumption function is piecewise linear. Hence the performance degradation is occurred by both
MBA and GREEDY (Figure 9). The result of computing times shows in Figure 8. In this result,
GREEDY is faster than MBA in both load models of VM resources.
We summarize our proposed algorithms in Table VIII. MBA reduces power consumption by

0%-62% in piecewise linear consumption model, and GREEDY reduces power consumption by
0%-35% in piecewise linear consumption model.
To minimize the system down time of each virtual machine, the proposed algorithms are applied

to the packing system as premises for a fast post-copy live migration technique, however, it is
also possible to apply these algorithms to a pre-copy live migration packing system. Pre-copy
live migration can operate at high-speeds transporting a memory image and reduction down time
using the proposed algorithms, since the transport time of the memory image is influenced by

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 177

Average reducing ratio of power consumption of piecewise linear model.

Average computing times of piecewise linear model.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



178 · Satoshi Takahashi et al.

Table VII: Average power consumption, computation time and performance degradation per one round.

Problem Avg. of power consumption (watt) Avg. of comp. Ave. of perf. deg.
times (sec.)

FIX MBA GREEDY MBA GREEDY MBA GREEDY

(sin, 400, 25, 320) 181679.055 170924.824 156143.078 3.431 0.031 0 54.67
(sin, 400, 25, 400) 181811.637 172489.179 153769.755 3.530 0.029 0 61.89
(sin, 400, 25, 480) 181832.904 172358.907 150575.507 3.539 0.024 0 64.94
(sin, 400, 50, 320) 181688.048 171644.548 154889.590 3.441 0.028 0 60.08
(sin, 400, 50, 400) 181822.945 171594.104 153043.758 3.487 0.026 0 67.11
(sin, 400, 50, 480) 181842.927 171606.529 150728.567 3.505 0.023 0 72.65
(sin, 560, 25, 320) 198388.229 190166.168 177904.317 3.262 0.045 0 52.26
(sin, 560, 25, 400) 196253.132 188687.078 172384.297 3.321 0.037 0 56.42
(sin, 560, 25, 480) 193972.238 185755.649 167734.479 3.373 0.032 0 60.09
(sin, 560, 50, 320) 198397.941 191952.787 177266.118 3.305 0.042 0 55.93
(sin, 560, 50, 400) 196254.524 188367.950 171915.746 3.311 0.035 0 61.96
(sin, 560, 50, 480) 193979.134 187563.264 167533.284 3.424 0.031 0 67.28

(sq, 0, 25, 0.17) 198491.906 193072.944 171236.815 3.515 0.011 0 71.25
(sq, 0, 25, 0.25) 181827.965 171453.007 147876.866 3.622 0.013 0 76.05
(sq, 0, 25, 0.33) 165182.704 151929.562 123296.289 3.819 0.015 0 72.69
(sq, 0, 50, 0.17) 198660.604 190419.429 171166.550 3.426 0.011 0 79.01
(sq, 0, 50, 0.25) 181825.812 171855.850 147909.956 3.738 0.013 0 82.20
(sq, 0, 50, 0.33) 165046.420 153977.773 123724.216 3.900 0.015 0 77.54

(sq, 160, 25, 0.17) 204063.156 197787.754 179979.072 3.178 0.024 0 70.23
(sq, 160, 25, 0.25) 190732.003 181948.732 157342.427 3.278 0.021 0 76.53
(sq, 160, 25, 0.33) 177415.795 166977.972 138447.890 3.237 0.019 0 71.52
(sq, 160, 50, 0.17) 204198.114 198608.988 180396.688 3.007 0.024 0 78.16
(sq, 160, 50, 0.25) 190730.281 182874.520 157954.966 3.083 0.021 0 87.33
(sq, 160, 50, 0.33) 177306.767 165398.584 138592.703 3.169 0.019 0 79.38

Table VIII: Summary of proposed algorithms.

MBA GREEDY

Linear Piecewise linear Linear Piecewise linear

Power Reduction 3%-7% 0%-62% 10%-15% 0%-35%

Comp. time O(|P |3 + |V ||P |) O(|P |2 + |V ||P |)
Perform. deg. None Small Large Middle

the down times of virtual machines.
Finally, we consider a situation where we have relaxed the restriction on the number of migra-

tions of each PM per each one time step. GREEDY can be revised for this situation flexibly. It
can be modified so as to delete PMs where reach the upper limit of the number of migrations
(from or to) from the set of candidates for reallocation. Unfortunately, MBA can not support this
situation, because Theorem 4.1 is based on the assumption that the number of migrations of each
PM is at most one. Indeed, if VMPP permits two or more migrations of each PM, we can show
this problem is NP-hard by reducing it to a 3-partition problem. Let S be a set with |S| = 3q,
where q is a positive integer. Each element e ∈ S has a size s(e) such that B/4 < s(e) < B/2
and

∑
e∈S s(e) = 3B for a given positive integer B. The 3-partition problem finds a partition of

S into m subsets S1, S2, . . . , Sm where
∑

e∈Si
s(e) = B for i = 1, . . . ,m. This problem is known

as NP-hard [Garey and Johnson 2000]. From an instance of the 3-partition problem, we con-
struct an instance of VMPP permitting at most two migrations, as follows. Each element e ∈ S
corresponds to a VM. Thus, a set of VM, V is given by S. Each VM e has vme = vce = s(e).
In addition, there are 3m PMs, where each PM i has mi = ci = B, basei = 1 and cost i(z) = 0
for any z. Initially, every VM is allocated to a distinct machine. We can see that the 3-partition

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 179

Average performance degradation of piecewise linear model.

problem has a solution S1, S2, . . . , Sm, where Si = {ei1 , ei2 , ei3}, if and only if VMs corresponding
to ei2 and ei−3 migrate into the machine assigned ei1 . In this solution, the objective function of
the VM packing problem is exactly m.

Theorem 6.1. The VM packing problem permitting more than one migration to each machine,
is NP-hard. It remains NP-hard, even if the number of migrations for each machine per one
round is bounded by at most two.

From Theorem 6.1, The VM packing problem permitting more than one migrations has no efficient
algorithm such as MBA, unless P = NP. Therefore, for this situation, we should use an integer
programming solver, or heuristic approaches like GREEDY.

7. CONCLUDING REMARKS

This paper proposed two VM packing algorithms, MBA and GREEDY. Evaluation experiments
show that these algorithms are valuable for VM packing systems. We consider the fast post-copy
migration system. However, our algorithm can apply to the pre-copy migration system.
We consider a situation where we have relaxed the restriction on the number of migrations of

each PM per each one time step. GREEDY can be revised for this situation flexibly. It can be
modified so as to delete PMs where reach the upper bound of the number of migrations from the
set of candidates for reallocation. Unfortunately, MBA can not support this situation. Indeed,
if VMPP permits two or more migrations of each PM, we can show this problem is NP-hard by
reducing it to a 3-partition problem.
In future work, we interest to extend the virtual machine packing problem to a multiperiod

model in order to investigate the efficiency of global power consumption. We also interest to
investigate the performance degradation of real applications together with CPU and memory
performance in order to verify the practicality of the proposed algorithms by applying them
to a real VM packing system. We did not treat an influence of recovering from the standby
mode in our experiments. Thus, to consider the performance degradation of recovering from
the standby mode might give more realistic evaluation. Moreover to evaluate relation between
network overhead and performance degradation, we improve our algorithm such as dealing with

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



180 · Satoshi Takahashi et al.

network topology and characteristic of applications.

ACKNOWLEDGMENT

We thank Prof. Taisuke Boku, Prof. Mitsuhisa Sato and Center for Computational Science of
University of Tsukuba for willingly and agreeably preparing the T2K Tsukuba trace data. We
thank Dr. Kiyo Ishii for valuable discussion.

REFERENCES

Beloglazov, A., Abawajy, J., and Buyya, R. 2012. Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Future Generation Computer System 28, 755–768.

Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A. F. D., and Buyya, R. 2011. Cloudsim: a toolkit for

modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Software: Practice Experiment 41, 23–50.

Chen, M., Zhang, H., Su, Y., Wang, X., Jiang, G., and Yoshihira, K. 2011. Effective vm sizing in virtualized
data centers. In Proceedings of IFIP/IEEE International Symposium on Integrated Network Management.
594–601.

Edmonds, J. 1965. Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467.

Fleszar, K. and Hindi, K. S. 2002. New heuristics for one-dimensional bin-packing. Computers & Operations
Research 29, 7, 821–839.

Galil, Z. 1986. Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys 18, 1,
23–38.

Garey, M. R. and Johnson, D. S. 2000. Computers and Intractability - A Guide to The Theory of NP-

Completeness, Books in the Mathematical Sciences, 22nd printing. W. H. Freeman and Company.

Hirofuchi, T., Nakada, H., Itoh, S., and Sekiguchi, S. 2010. Enabling instantaneous relocation of virtual ma-
chines with a lightweight vmm extension. In Proceedings of IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing. 73–83.

Hirofuchi, T., Nakada, H., Itoh, S., and Sekiguchi, S. 2011a. Making vm consolidation more energy-efficient
by postcopy live migration. In Proceedings of the 2nd International Conference on Cloud Computing, GRIDs,
and Virtualization. 195–204.

Hirofuchi, T., Nakada, H., Itoh, S., and Sekiguchi, S. 2011b. Reactive consolidation of virtual machines

enabled by postcopy live migration. In Proceedings of the 5th International Workshop on Virtualization Tech-
nologies in Distributed Computing. 11–18.

Korte, B. H. and Vygen, J. 2004. Combinatorial optimization: theory and algorithms. Springer-Verlag, Berlin
Heidelberg.

Li, B., Li, J., Huai, J., Wo, T., Li, Q., and Zhong, L. 2009. Enacloud: An energy-saving application live
placement approach for cloud computing environments. In Proceedings of IEEE International Conference on
Cloud Computing. 17–24.

Nakada, H., Hirofuchi, T., Ogawa, H., and Itoh, S. 2010. Toward virtual machine packing optimization based

on genetic algorithm. In LNCS. Vol. 5518. Springer, 651–654.

Sinha, R., Purohit, N., and Diwanji, H. 2011. Energy efficient dynamic integration of thresholds for migration
at cloud data centers. International Journal of Computer Applications Special Issue on CN , 44–49.

Takeda, S. and Takemura, T. 2010. A rank-based vm consolidation method for power saving in datacenters.
Information and Media Technologies 5, 3, 994–1002.

Vazirani, V. V. 2001. Approximation Algorithms. Springer-Verlag, Berlin Heidelberg.

Verma, A., Ahuja, P., and Neogi, A. 2008. pmapper: power and migration cost aware application placement
in virtualized systems. In Proceedings of the 9th Middleware. 243–264.

Wang, Y. and Wang, X. 2010. Power optimization with performance assurance for multi-tier applications in
virtualized data centers. In Proceedings of International Conference on Parallel Processing Workshops. 512–
519.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.



Power Efficient Virtual Machine Packing for Green Datacenter · 181

Satoshi Takahashi Dr. Satoshi Takahashi is an assistant professor of University of
Electro-Communications. He got Ph. D in Engineering from University of Tsukuba in
2012. He worked as research fellow of JSPS in 2011. Special area of research is electronic
commerce and mathematical optimization.

Atsuko Takefusa Dr. Atsuko Takefusa is a researcher of National Institute of Advanced
Industrial Science and Technology. She got Ph.D in Science from Ochanomizu University.
She worked as research fellow of JSPS in 2000 to 2002 and assistant professor of Ochan-
omizu University in 2002 to 2005. Special area of research is distributed computing, grid
and cloud computing, and scheduling.

Maiko Shigeno Dr. Maiko Shigeno is an associate professor of University of Tsukuba.
She got Ph.D in Science from Tokyo Institute of Technology in 1996. She worked as
assistant professor of Tokyo Institute of Technology in 1995 to 1997. Special area of
research is combinatorial optimization.

Hidemoto Nakada Dr. Hidemoto Nakada is a chief researcher of Grid Infraware Re-
search Group of National Institute of Advanced Industrial Science and Technology. He
got Ph.D in Engineering from University of Tokyo in 1995. He worded as visiting asso-
ciate professor of Tokyo Institute of Technology in 2001 to 2005. Special area of research
is Global computing and distributed computing.

Tomohiro Kudoh Dr. Tomohiro Kudoh is a deputy director of Information Technoloty
Research Institute of National Institute of Advanced Industrial Science and Technology.
He graduated Graduate School of Science and Engineering of Keio University in 1991.
He worked as assistant professor, Lecturer and associate professor of Tokyo University of
Technology until 1997. Special area of research is parallel processing and communication
architecture.

Akiko Yoshise Dr. Akiko Yoshise is a Professor of University of Tsukuba. He got doctor
of Engineering from Tokyo Institute of Technology in 1990. She worked as researcher of
University of Tsukuba in 1990. Special area of research is algorithms for continuous
optimization and mathematical modeling for service industry.

International Journal of Next-Generation Computing, Vol. 4, No. 2, July 2013.


