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The Cloud infrastructure services landscape advances steadily leaving users in the agony of choice. As a result,
Cloud service identification and discovery remains a hard problem due to different service descriptions, non-

standardised naming conventions and heterogeneous types and features of Cloud services. In this paper, analysis

the research challenges and present a Web Ontology Language (OWL) based ontology, the Cloud Computing
Ontology (CoCoOn). It defines functional and non-functional concepts, attributes and relations of infrastructure

services. We also present a system, CloudRecommender, that implements our domain ontology in a relational

model. The system uses regular expressions and Structured Query Language (SQL) for matching user requests
to service descriptions. We briefly describe the architecture of the CloudRecommender system, and demonstrate

its effectiveness and scalability through a service configuration selection experiment based on a set of prominent

Cloud providers’ descriptions including Amazon, Azure, and GoGrid.
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1. INTRODUCTION

1.1 Overview

The Cloud computing [Armbrust et al. 2010, Wang et al. 2010] paradigm is shifting computing
from in-house managed hardware and software resources to virtualized Cloud-hosted services.
Cloud computing assembles large networks of virtualized services: hardware resources (compute,
storage, and network) and software resources (e.g., web server, databases, message queuing sys-
tems and monitoring systems.). Hardware and software resources form the basis for delivering
Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). The top layer focuses on
application services (SaaS) by making use of services provided by the lower layers. In this paper,
we focus on IaaS that is the underpinning layer on which the PaaS/SaaS services are hosted.

Cloud computing embraces an elastic paradigm where applications establish on-demand inter-
actions with services to satisfy required Quality of Service (QoS) such as response time, through-
put, availability and reliability. QoS targets are encoded in Legal Service Level Agreement (SLA)
documents, which state the nature and scope of the QoS parameters. However, selecting and
composing the right services meeting application requirements is a challenging problem. From
a service discovery point of view, the selection process on the IaaS layer is based on a finite set
of functional (e.g. CPU type, memory size, location) and non-functional (costs, QoS, security)
configuration properties that can be satisfied by multiple providers. Similarly, there is a service
discovery problem associated with the SaaS and PaaS offerings. However, we are not considering
these issues in this paper. IaaS providers [Wang et al. 2010, Wang et al. 2011] include Amazon
Web Services (AWS)1, Microsoft Azure2, Rackspace3, GoGrid4 and others. They give users the
option to deploy their application over a pool of virtually infinite services with practically no

1http://aws.amazon.com/
2http://www.windowsazure.com/en-us/
3http://www.rackspace.com/
4http://www.gogrid.com/
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capital investment and with modest operating costs proportional to the actual use. Elasticity,
cost benefits and abundance of resources motivate many organizations to migrate their enterprise
applications (e.g. Content management system, Customer relationship management system and
Enterprise resource planning system) to the Cloud. Although Cloud offers the opportunity to
focus on revenue growth and innovation, decision makers (e.g., CIOs, scientists, developers, en-
gineers, etc.) are faced with the complexity of choosing among private, public, and hybrid Cloud
options and selecting the right service delivery and deployment model.

1.2 Motivation

With Cloud providers and service offerings having grown in numbers, the migration of applications
(e.g. multi-layered enterprise application, scientific experiments, video-on-demand streaming
application, etc.) to the Cloud demands selecting the best mix of services across multiple layers
(e.g. IaaS and PaaS) from an abundance of possibilities. Any such Cloud service selection decision
has to cater for a number of conflicting criteria, e.g. throughput and cost, while ensuring that QoS
requirements are met. The problem is further aggravated by the fact that different applications
have heterogeneous QoS requirements. For example, requirements for scientific [Wang et al. 2010]
experiments (e.g., deadline) differ from video-on-demand streaming application (e.g., streaming
latency, resolution, etc.).

Existing service selection methods have not kept pace with the rapid emergence of the multiple-
layer nature of Cloud Services. Notably, techniques for web service selection cannot be adopted
for Cloud Service Selection, because they do not cater for the diverse sets of criteria and their
dependencies across multiple layers of Cloud Services. Although popular search engines (e.g.,
Google, Bing, etc) can point users to these provider web sites (blogs, wikis, etc.) that describe
IaaS service [Wang et al. 2010] offerings, they are not designed to compare and reason about
the relations among the different types of cloud services and their configurations. Hence service
description models and discovery mechanisms for determining the similarity among Cloud in-
frastructure services are needed to aid the user in the discovery and selection of the most cost
effective infrastructure service meeting the user’s functional and non-functional requirements.

In order to address these aforementioned problems, we present a semi-automated, extensible,
and ontology-based approach to infrastructure service discovery and selection and its implemen-
tation in the CloudRecommender system. We identify and formalize the domain knowledge of
multiple configurations of infrastructure services. The core idea is to formally capture the domain
knowledge of services using semantic Web languages like the Resource Description Framework
(RDF) and the OWL. The contributions of this paper are as the following:

(1) Identification of the most important concepts and relations of functional and non-functional
configuration parameters of infrastructure services and their definition in an ontology;

(2) Modeling of service descriptions published by Cloud providers according to the developed
ontology. By doing so, we validate the expressiveness of ontology against the most commonly
available infrastructure services including Amazon, Microsoft Azure, GoGrid, etc.

(3) An implementation of a design support system, CloudRecommender, based on our ontological
model for the selection of infrastructure Cloud service configurations using transactional SQL
semantics, procedures and views. The benefits to users of CloudRecommender include, for
example, the ability to estimate costs, compute cost savings across multiple providers with
possible tradeoffs and aid in the selection of Cloud services.

The rest of this paper is organized as follows. In section 2 we explain the research problem in
more details. In section 3 we identify and formalize the domain ontology of multiple configurations
of infrastructure services. In section 4 we present the implementation of the CloudRecommender
system, and discuss the benefits of using a declarative logic-based language. In section 5 we
illustrate the usage of CloudRecommender with a few case studies. In section 6 we compare our
approach with some related works. In section 7 we conclude the paper and propose some future
directions.
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2. RESEARCH PROBLEMS

2.1 Automatic service identification and representation

Manually reading Cloud providers’ documentation to find out which services are suitable for
building their Cloud-based application is a cumbersome task for decision makers (e.g., a biologist
intending to host his genomics experiment in the Cloud). The multi-layered organization (e.g.,
SaaS, PaaS, and IaaS) of Cloud Services, along with their heterogeneous types (Compute, Storage,
Network, web server, databases, etc.) and features (Virtualization technology, billing model,
Cloud location, cost, etc.) makes the task of service identification a hard problem. The use of
non-standardized naming terminology makes this problem more challenging. For example, AWS
refers to Compute services as Elastic Compute Cloud (EC2) Unit while GoGrid refers to the
same as Cloud Servers. In addition, Cloud providers typically publish their service description,
pricing policies and SLA rules on their websites in various formats. The relevant information
may be updated without prior notice to the users. Furthermore, the structure of their web
pages can change significantly leading to confusion. This leads to the following challenges: How
to automatically fetch service description published by Cloud providers and present them to
decision makers in a human readable way? Can we develop a unified and generic Cloud ontology
to describe the services of any Cloud provider which exists now or may become available in the
future?

2.2 Optimized Cloud Service Selection and Comparison

Consider an example of a medium scale enterprise that would like to move its enterprise appli-
cations to cloud. There are multiple providers in the current cloud landscape that offer infras-
tructure services in multiple heterogeneous configurations. Examples include, Amazon, Microsoft
Azure, GoGrid, Rackspace, BitCloud, Ninefold, FelxiScale and TerreMark among many others.
With multiple and heterogeneous options for infrastructure services, enterprises are facing a com-
plex task when trying to select and compose a single service type or a combination of service
types. Here we are concerned with simplifying the selection and comparison of a set of infras-
tructure service offerings for hosting the enterprise applications and corresponding dataset, while
meeting multiple criteria, such as specific configuration and cost, emanating from the enterprise’s
QoS needs. This is a challenging problem for the enterprise and needs to be addressed.

Matching results to decision makers’ requirements involves bundling of multiple related Cloud
services, computing combined cost (under different billing models and discount offers), consider-
ing all possible (or only valuable) alternatives and multiple selection criteria (including specific
features, long-term management issues and versioning support). The diversity of offerings in
the Cloud landscape leads to practical research questions: how well does a service of a Cloud
provider perform compared to the other providers [Wang et al. 2011]? Which Cloud services
are compatible to be combined or bundled together [Wada et al. 2011]? How to optimize the
process of composite Cloud service selection and bundling? For example, how does a decision
maker compare the cost/performance features of Compute, storage, and network service offered
by various providers? Though branded calculators [Amazon Price Calculator 2013; Windows
Azure Calculator 2013] are available from individual Cloud providers for calculating service leas-
ing cost, it is not easy for decision makers to generalize their requirements to fit different service
offered by different providers (with various quota and limitations) let alone comparing costs.
Furthermore, a decision maker may choose one provider for storage intensive applications and
another for computation intensive applications.

Despite the popularity of Cloud Computing, existing Cloud Service manipulations (e.g. select,
start, stop, configure, delete, scale and de-scale) techniques require human familiarity with dif-
ferent Cloud service types and typically rely on procedural programming or scripting languages.
The interaction with services is performed through low-level application programming interfaces
(APIs) and command line interfaces. This is inadequate, given the proliferation of new providers
offering services at different layers (e.g. SaaS, PaaS, and IaaS). One of the consequences of this
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state is that accessibility to Cloud Computing is limited to decision makers with IT expertise.
This raises a set of research questions: How to develop interfaces that can transform low, system-
level programming to easy-to-use drag and drop operations? Will such interfaces improve and
simplify the process of Cloud Service Selection and Comparison (CSSC)?

3. THE DOMAIN ONTOLOGY

CoCoOn defines the domain model of the IaaS layer. This ontology facilitates the description
of Cloud infrastructure services; and through mappings from provider descriptions, facilitates
the discovery of infrastructure services based on their functionality and QoS parameters. The
ontology is defined in the OWL [OWL2 2009] and can be found at: http://w3c.org.au/cocoon.owl.
To describe specific aspects of Cloud computing, established domain classifications have been
used as a guiding reference [Youseff et al. 2008]. For the layering of the ontology on top of Web
service models, it builds upon standard semantic Web service ontologies i.e., OWL-S [Martin et
al. 2004] and WSMO [Bruijn et al. 2005]. Consequently, modelers can use the grounding model
and process model of OWL-S in combination with the presented Cloud computing ontology to
succinctly express common infrastructure Cloud services. We mapped the most prominent set of
infrastructure services (i.e. Amazon, Azure, GoGrid, Rackspace, etc.) to CoCoOn. All common
metadata fields in the ontology including Organization, Author, First Name etc. are referenced
through standard Web Ontologies (i.e. FOAF5 and Dublin Core6).

The Cloud computing ontology consists of two parts: functional Cloud service configurations
information parameters; and non-functional service configuration parameters. In the following
subsections, we detail on these two parts. We also present parts of the ontology in a visual form
produced by the Cmap Ontology Editor tool [Eskridge et al. 2006].

3.1 Functional Cloud service configuration parameters

The main concept to describe functional Cloud service configurations in CoCoOn is a CloudResource
that can be of one of the three types: Infrastructure-as-a-Service, Platform-as-a-Service or
Software-as-a-Service (see Figure 1). For the current implementation of the CloudRecommender
system, we have defined the Cloud IaaS layer, providing concepts and relations that are funda-
mental to the other higher-level layers. In future work, we will extend the ontology to cover both
PaaS and SaaS layers.

The Compute class (see Figure 2) has the following object properties, hasVirtualization,
hasCPU, hasMemoryAddressSize and hasNetworkStorage. The hasCPU property links a Com-
pute unit to one or many processors which can be of type CPU or ClusteredCPU. A Compute
object can be linked to a Storage object by using the top level object property hasStorage.

There are two different Storage types for a CloudResource: LocalStorage attached to a CPU
with the hasLocalStorage property and NetworkStorage attached to a Compute instance with
the hasNetworkStorage property. The hasNetworkStorage is an owl:inverseOf property of the
isAttached property which can be used to define that a Storage resource is attached to a Compute
resource. There is also an important distinction to be made between Storage resources that are
attached to a Compute resource and Storage resources that can be attached. The latter is modeled
with the isAttachable object property and its inverse property hasAttachable. These relations are
important for the discovery of infrastructure services based on a user requirement. For example,
in the case of Amazon, we can model that a BlockStorage with a StorageSizeMin of 1GB and a
StorageSizeMax of 1TB can be attached to any EC2 Compute resource instance i.e., Standard,
Micro, High-Memory, High-CPUCluster, ComputeCluster, GPUHigh-I/O. Consequently, if a user
searches for a specific Compute instance with, for example, 5GB persistent storage, the relevant
EC2 Compute resource and an Amazon BlockStorage will be returned (possibly among others).

5See http://xmlns.com/foaf/spec/
6See http://purl.org/dc/elements/
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Figure 1: Top Concepts in the IaaS layer

Figure 2: SubClasses and properties for the Compute, Storage and Network class

That is, because the isAttached relation in the user request can be matched with the definition
of the Amazon EC2 unit with a BlockStorage defined to be isAttachable.

3.2 Non-Functional Cloud service configuration parameters

For non-functional Cloud service configuration parameters we distinguish between non-functional
properties and QoS attributes. The first are properties of Cloud resources that are known at de-
sign time, for example, PriceStorage, Provider, DeploymentModel, whereas QoS attributes can
only be recorded after at least one execution cycle of a Cloud service, for example, avgDiskRead-
Operations, NetworkInLatency, NetworkOutLatency etc. For QoS attributes, we distinguish
MeasurableAttributes like the ones above and UnmeasurableAttributes like Durability or Perfor-
mance.

The QoS attributes define a taxonomy of Attributes and Metrics, i.e. two trees formed using
the rdfs:subClassOf relation where a ConfigurationParameter, for example, PriceStorage, Price-
Compute, PriceDataTransferIn (Out) etc. and a Metric, for example, ProbabilityOfFailureOn-
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Demand, TransactionalThroughput, are used in combination to define non-functional properties
(e.g. Performance, Cost, etc.). The resulting ontology is a (complex) directed graph where, for
example, the Property hasMetric (and its inverse isMetricOf) is the basic link between Configura-
tionParameters and Metric trees. For the QoS metrics, we used existing QoS ontologies [Dobson
et al. 2005] as a reference whereas for the ConfigurationParameters concepts the ontology defines
its independent taxonomy, but refer to external ontologies for existing definitions (e.g. QUDT7).
Each configuration parameter (compare Table I) has a Name and a Metric (qualitative or quan-
titative). The Metric itself has a UnitOfMeasurement and a Value. The type of configuration
determines the nature of a service by means of setting a minimum, maximum, or capacity limit,
or meeting a certain value. For example, the hasMemory configuration parameter of a Compute
service can be set to have a Value of 2 and a UnitOfMeasurement of GB.

Table I: Infrastructure service types and their configurations

Service Configurations Parameters Range/possible values

Compute

Core >= 1
CPUClockSpeed >0

hasMemory >0
hasCapacity >= 0
Location North America, South America, Africa, Europe, Asia, Australia

CostPerPeriod >= 0
PeriodLength >0
CostOverLimit >= 0

PlanType Pay As You Go, Prepaid

Storage

StorageSizeMin >= 0
StorageSizeMax >0
CostPerPeriod (e.g. Perior =

Month) (e.g. UnitOfMeasure-
ment = GB)

>= 0

Location North America, South America, Africa, Europe, Asia, Australia

RequestType put, copy, post, list, get, delete, search
CostPerRequest >= 0
PlanType Pay As You Go, Prepaid, Redude Redundancy

Network
CostDataTransferIn >= 0
CostDataTransferOut >0

4. A SYSTEM FOR CLOUD SERVICE SELECTION

We propose an approach and a system for Cloud service configuration selection called CloudRec-
ommender, shown in Figure 3. For our CloudRecommender service, we implemented the Cloud
Service Ontology as a relational model and the Cloud QoS ontology as configuration information
as structured data (entities) which we query using SQL. The choice of a relational model and
SQL as query language was made because of the convenience SQL procedures offers us in regards
to defining templates for a given widget type. We use stored procedures to create temporary
tables and to concatenate parameters to dynamically generate queries based on the user input.
As a future work, we will migrate the infrastructure services definitions to a Resource Description
Framework (RDF) database and use, for example, SPIN templates8 to encode our procedures in
SPARQL9.

We collected service configuration information from a number of public Cloud providers (e.g.,
Windows Azure, Amazon, GoGrid, RackSpace, Nirvanix, Ninefold, SoftLayer, AT and T Synap-
tic, Cloud Central, etc.) to demonstrate the generic nature of the domain model with respect to

7See http://www.qudt.org
8See http://www.w3.org/Submission/spin-overview/
9See http://en.wikipedia.org/wiki/SPARQL
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Figure 3: System architecture and deployment structure

capturing heterogeneous configuration (see Table II) information of infrastructure services. The
CloudRecommender system architecture consists of three layers: the configuration management
layer, the application logic layer and the User interface (widget) layer. Details of each layer will
be explained in the following sub-sections.

4.1 Infrastructure service configuration repository

The system includes a repository of available infrastructure services from different providers
including compute, storage and network services. These infrastructure services have very different
configurations and pricing models. Ambiguous terminologies are often used to describe similar
configurations, for instance different units of measurements are used for similar metrics. We
performed unit conversions during instantiation of concepts to simplify the discovery process.
For example, an Amazon EC2 Micro Instance has 613 MB of memory which is converted to
approximately 0.599 GB. Another example is the CPU clock speed. Amazon refers to it as
“ECUs”. From their documentation [AmazonEC2 2012]: “One EC2 Compute Unit provides the
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. This is also the
equivalent to an early-2006 1.7 GHz Xeon processor referenced in our original documentation”.

Another example of disparity between different Cloud providers is the price model of “on
Demand instances”. GoGrid’s plan, although having a similar concept to Amazon’s On Demand
and Reserved Instance, gives very little importance to what type or how many of compute services
a user is deploying. GoGrid charges users based on what they call RAM hours – 1 GB RAM
compute service deployed for 1 hour consumes 1 RAM Hour. A 2 GB RAM compute service
deployed for 1 hour consumes 2 RAM Hour. It is worthwhile mentioning that only Azure clearly
states that one month is considered to have 31 days. This is important as the key advantage of
the fine grained pay-as-you-go price model which, for example, should charge a user the same
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Table II: Depiction of configuration heterogeneities in compute and storage services across providers. (Red) Blank

cells in the table mean that a configuration parameter is not supported. Some providers offer their services under
a different pricing scheme than pay-as-you-go. In Table II we refer to these schemes as other plans (e.g. Amazon

Reduced redundancy, reserved price plans, GoGrid Pre-Paid plans). Table last updated October 2012.

Provider
Compute Pay As

You Go

Other

Plans*

Storage Pay As

You Go

Other

Plans*

Trial

Terminology Unit Terminology Unit Period or

Value

Windows

Azure

Virtual

Server

/hr 1 Azure Stor-

age

/GB

month

1 90 days

Amazon EC2 In-

stance

/hr 2 S3 /GB

month

2 1 year

Go Grid Cloud Ser-
vices

/RAM hr 1 Cloud Stor-
age

/GB
month

RackSpace Cloud Ser-
vices

/RAM hr Cloud Files /GB
month

Nirvanix CSN /GB

month

Ninefold Virtual

Server

/hr Cloud Stor-

age

/GB

month

1 50 AUD

SoftLayer Cloud Ser-

vices

/hr 1 Object Stor-

age

/GB

AT&T
Synaptic

Compute as
a Service

vCPU
per hr +

/RAM hr

Storage as
Service

/GB
month

Cloudcentral Cloud

Servers

/hr

* Monthly/Quarterly/Yearly Plan, Reserve and Bidding Price Option

when they use 2GB for half a month or 1 GB for a whole month. Other vendors merely give
a GB-month price without clarifying how short term usage is handled. It is neither reflected in
their usage calculator. We chose 31 days as default value in calculation.

Table III: Depiction of configuration heterogeneities in request types across storage services.

Provider Storage
Requests

Upload Download Other

Windows

Azure

Azure Stor-

age

Storage Transactions Storage Transactions

Amazon S3 PUT, COPY, POST, LIST Requests GET and all other requests Delete

GoGrid Cloud Stor-

age

Transfer protocols such as SCP, SAMBA/CIFS, and RSYNC

RackSpace Cloud Files PUT, POST, LIST Requests HEAD, GET, DELETE Requests

Nirvanix CNC Search Delete

Ninefold Cloud Stor-
age

GET, PUT, POST, COPY, LIST and all other transactions

SoftLayer Object
Storage

Not Specified/Unknown

AT&T
Synaptic

Storage as
a Service

Not Specified/Unknown

Regarding storage services, providers charge for every operation that an application program
or user undertakes. These operations are effected on storage services via RESTful APIs or
Simple Object Access Protocol (SOAP) API. Cloud providers refer to the same set of operations
with different names, for example Azure refers to storage service operations as transactions.
Nevertheless, the operations are categorized into upload and download categories as shown in
Table III. Red means an access fee is charged; green means the service is free; and yellow means
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access fees are not specified, and can usually be treated as green/free of charge. To facilitate
our calculation of similar and equivalent requests across multiple providers, we analyzed and
pre-processed the price data, recorded it in our domain model and used a homogenized value in
the repository (configuration management layer). For example, Windows Azure Storage charges
a flat price per transaction. It is considered as transaction whenever there is a “touch” operation,
i.e. Create, Read, Update, Delete (CRUD) operation over the RESTful service interface, on any
component (Blobs, Tables or Queues) of Windows Azure Storage.

For providers that offer different regional prices, we store the location information in the price
table. If multiple regions have the same price, we choose to combine them. In our current
implementation, any changes to existing configurations (such as updating memory size, storage
provision etc.) of services can be done by executing customized update SQL queries. We also use
customized crawlers to update provider information’s periodically. However, as a future work,
we will provide a RESTful interface that can be used for automatic configuration updates.

4.2 Widget Layer

Figure 4: Screen shot of the widget

This layer features rich set of user-interfaces (see Figure 4 and Figure 5) that further simplify
the selection of configuration parameters related to cloud services. This layer encapsulates the
user interface components in the form of four principle widgets including: Compute, Storage,
Network, and Recommendation. The selection of basic configuration parameters related to com-
pute services including their RAM capacity, cores, and location can be facilitated through the
Compute widget. It also allows users to search compute services by using regular expressions,
sort by a specific column etc. Using the Compute widget, users can choose which columns to
display and rearrange their order as well. The Storage widget allows users to define configura-
tion parameters such as storage size and request types (e.g., get, put, post, copy, etc.). Service
configuration parameters, such as the size of incoming data transfer and outgoing data transfer
can be issued via the Network widget. Users have the option to select single service types as well
as bundled (combined search) services driven by use cases. The selection results are displayed
and can be browsed via the Recommendation widget (not shown in Figure 4).
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Figure 5:Screen shots of Compute, Storage, Network and the combined service selection widgets

5. CASE STUDIES

Gaia is a global space astrometry mission with a goal of making the largest, most precise three-
dimensional map of our Galaxy by surveying more than one billion starts. For the amount of
images produced by the satellite (1 billion stars x 80 observations x 10 readouts), if it took one
millisecond to process one image, it would take 30 years of data processing time on a single
processor. Luckily the data does not need to be processed continuously, every 6 months they
need to process all the observations in as short a time as possible (typically two weeks) [AWS
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Case Study 2012]. Hypothetically speaking say they choose to use 120 high CPU and memory
VMs. The example search via CloudRecommender is shown in Figure 6. With each VM running
12 threads, there were 1440 processes working in parallel. This will reduce the processing time
to less than 200 hours (about a week).

Figure 6: Example input parameter values

In this case since data can be moved into/out of the cloud in bulk periodically, FedEx hard
drive may be preferred over transferring data over the internet.

Promotional offers may not matter much in this case compare to the huge time and capital
investment savings. But it makes a big difference for small business (or start ups) running a
website.

Another example usage is sites with large continuous data input and processing need like Yelp.
Everyday Yelp generates and stores around 100GB of logs and photos; runs approximately 200
MapReduce jobs and processing 3TB of data [Yelp 2012]. Yelp.com has more than 71 million
monthly unique visitors [YelpInc 2012]. The average page size of a typical website is about 784
kB [Pingdom 2011]. So the estimated data download traffic is about 51TB per month if every
unique user only views one page once a month. Figure 7 shows a sample search for the above
mentioned scenario.

Figure 7: Example parameters for REST API
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6. RELATED WORK

In relation to research problem 1 (see section 2.1), there are 3 common approaches for web services
identification/publication: 1) manually maintain directories by categorizing manually-submitted
or collected information about Cloud services and providers, an example of such kind is Universal
Description, Discovery and Integration (UDDI), which has failed to gain wide adoption; 2) use web
crawling, and automatically create listings; and 3) combine both, e.g. using manually-submitted
URIs as seeds to generate indexes. The first approach is the only feasible solution at the moment.
But extensive research and standardization efforts have been put into developing web information
representation models, namely, RDF, the semantic web, and ontologies [Ozsoyoglu et al. 2003].
Some of the recent research such as [Ruiz-Alvarez et al. 2011] has focused on Cloud storage service
(IaaS level) representation using XML. But the proposed schema does not comply with or take
into account any of the above mentioned standards. We believe that semantic web technologies
should be adopted to standardize the Cloud services representations.

For research problem 2 (see section 2.2), a number of research [Li et al. 2010] and commercial
projects (mostly in their early stages) provide simple cost calculation or benchmarking and status
monitoring, but none is capable to consolidate all aspects and provide a comprehensive ranking
of infrastructure services. For instance, CloudHarmony provides up-to-date benchmark results
without considering cost, Cloudorado calculates the price of IaaS-level compute services based on
static features (e.g., processor type, processor speed, I/O capacity, etc.) while ignoring dynamic
QoS features (e.g., latency, throughput, load, utilization, etc.). Yuruware10 Compare beta version
offers elementary search on Compute IaaS Cloud services. Although they aim to provide an
integrated tool with monitoring and deploying capabilities, it is still under development and
the finish date is unknown. The current version does not allow selection of storage service
by itself and QoS features have not been compared. Prior to CloudRecommender, there have
been a variety of systems that use declarative logic-based techniques for managing resources in
distributed computing systems. The focus of the authors in work [Liu et al. 2011] is to provide a
distributed platform that enables Cloud providers to automate the process of service orchestration
via the use of declarative policy languages. The authors in [Brodsky et al. 2009] present an
SQL-based decision query language for providing a high-level abstraction for expressing decision
guidance problems in an intuitive manner so that database programmers can use mathematical
programming technique without prior experience. We draw a lot of inspiration from the work
in [Mao et al. 2011] which proposes a data-centric (declarative) framework to improve SLA
fulfillment ability of Cloud service providers by dynamically relocating infrastructure services.
COOLDAID [Chen et al. 2010] presents a declarative approach to manage configuration of
network devices and adopts a relational data model and Datalog-style query language. NetDB
[Caldwell et al. 2004] uses a relational database to manage the configurations of network devices.
However, NetDB is a data warehouse, not designed for Cloud service selection or comparison.
In contrast to the aforementioned approaches, CloudRecommender is designed for solving the
new challenge of handling heterogeneous service configuration and naming conventions in Cloud
computing. It is designed with a different application domain – one that aims to apply declarative
and widget programming technique for solving the Cloud service selection problem.

7. CONCLUSION AND FUTURE WORK

We have proposed ontology for classifying and representing the configuration information related
to Cloud-based IaaS services including compute, storage, and network. The proposed ontology is
comprehensive as it can not only capture static confiugration but also dynamic QoS configuration
on the IaaS layer. We also presented the implementation of the ontology in the CloudRecom-
mender system. The paper will help readers in clearly understanding the core IaaS-level Cloud
computing concepts and inter-relationship between different service types. This in turn may lead

10http://www.yuruware.com/
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to a harmonization of research efforts and more inter-operable Cloud technologies and services
at the IaaS layer.

In future work, we intend to extend the ontology with the capability to store PaaS and SaaS
configurations. Moreover, we would also like to extend our ontology to capture the dependency
of services across the layers. For example, investigating concepts and relationships for identify-
ing the dependencies between compute service (IaaS) configurations and the type of appliances
(PaaS) that can be deployed over it. Before mapping a MySQL database appliance (PaaS) to
a Amazon EC2 compute service (IaaS), one needs to consider whether they are compatible in
terms of virtualization format. Another avenue that we would like to explore is how to aggregate
QoS configurations across the IaaS, PaaS, and SaaS layers for different application deployment
scenarios (e.g., multimedia, eResearch, and enterprise applications). Notably, QoS aware service
selection problem [Jaeger et al. 2005] is a multi-criteria optimization problem, in order to solve
it, two distinct techniques will be explored: i) evolutionary optimization techniques, the process
of simultaneously optimizing two or more conflicting objectives expressed in the form of linear or
non-linear functions of criteria; ii) Multi-criteria decision-making techniques, including Analytic
Hierarchy Process (AHP) and others can handle mixed qualitative and quantitative criteria.
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