
ESBMT: A Multi-tenant Aware Enterprise
Service Bus

STEVE STRAUCH, VASILIOS ANDRIKOPOULOS, SANTIAGO GÓMEZ SÁEZ, and FRANK LEY-

MANN

IAAS, University of Stuttgart

Multi-tenancy, the sharing of the whole technological stack by different consumers at the same time, allows service

providers to maximize resource utilization and reduce servicing costs per customer. Essential components of the

contemporary enterprise environment like the Enterprise Service Bus (ESB) are therefore required to raise to the
challenge of supporting and enabling multi-tenancy, becoming multi-tenant aware. Towards this goal, in this work

we discuss the requirements for multi-tenant ESB solutions as fundamental building blocks in the Platform as

a Service (PaaS) Cloud delivery model. Addressing these requirements, we propose a solution for dealing with
multiple tenant contexts on the level of middleware, based on which we develop ESBMT, an implementation-

agnostic multi-tenant aware ESB architecture that we instantiate based on the Apache ServiceMix ESB open

source solution. Evaluating the performance of our proposal required the extension of an ESB benchmark, the
results of which for different deployment options we also present in this work.

Keywords: Enterprise Service Bus, Multi-tenancy, Cloud-enabled middleware

1. INTRODUCTION

Multi-tenancy and virtualization allow Cloud computing solutions to serve multiple customers
from a single system instance sharing computational resources between them. Using these tech-
niques, Cloud service providers maximize the utilization of their infrastructure, and therefore
increase their return on infrastructure investment, while reducing the costs of servicing each cus-
tomer. On the other hand, Cloud service consumers should be able to experience multi-tenancy in
a transparent manner, without a loss in the performance of their applications due to the sharing
of resources. While many industrial solutions exist for virtualization1, multi-tenancy is an issue
still under research and as such, it is the focus of this work.

Multi-tenancy has been defined in different ways in the literature, see for example [Guo et al.
2007], [Mietzner et al. 2009], [Krebs et al. 2012]. Such definitions however do not address the
whole technological stack behind the different Cloud delivery models [Mell and Grance 2011]
(IaaS — Infrastructure as a Service, PaaS — Platform as a Service, SaaS — Software as a
Service). For this purpose, in [Strauch et al. 2012] we defined multi-tenancy as the sharing of
the whole technological stack (hardware, operating system, middleware and application instances)
at the same time by different tenants and their corresponding users. The differentiation between
tenants (organizational domains) and users (individual entities inside these groups) allows for
different levels of granularity in the sharing of resources.

Realizing multi-tenancy requires that both the infrastructure and the applications depending
on it become multi-tenant aware. Multi-tenancy awareness entails being able to differentiate
between tenants, provide an appropriate level of data and performance isolation for each tenant,

1See for example: http://www.xen.org, http://www.vmware.com/products/, and http://www.flexiant.com/

The research leading to these results has received funding from projects 4CaaSt (grant agreement no. 258862) and
Allow Ensembles (grant agreement no. 600792) part of the European Union’s Seventh Framework Programme
(FP7/2007-2013). The authors would like to thank Dominik Muhler for his valuable contribution to the

development of ESBMT.

Authors’ address: IAAS, Universitätsstr. 38, D-70569 Stuttgart, Germany

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 231

© Steve Strauch 1

Motivating Scenario – Before 

TAXI

Customer GUI Taxi Drivers’ GUI

Taxi Service Provider Process

Google Maps
Web Services

Adapter

(1) Send taxi
request

(2) Get available taxis
and contact information
of drivers

(3) Get distance
of taxi drivers

(4) Contact
nearby taxis

(5) Get transport
confirmation

(6) Send
transport
notification

Application Server

4CaaSt CMF
Adapter

(a) Communication of Web applications of Taxi Sce-

nario without ESB

© Steve Strauch 2

Motivating Scenario – After 

Application Server

Application Server

Taxi Companies Taxi Service Provider

Multi‐Tenant Enterprise Service Bus

Application Server

(b) Communication of Web applications of Taxi Sce-

nario after introducing multi-tenant ESB

Figure 1: Overview of the Taxi Scenario

and allow tenants to be served by individually configured and managed services on demand. In
this sense, multi-tenancy awareness of the application components and underlying infrastructure
is the mechanism enabling multi-tenancy on the level of application. As such, it is the main focus
of this work.

This definition of multi-tenancy awareness affects the different Cloud service models in differ-
ent ways. In this work in particular we scope the discussion to the PaaS delivery model and
investigate how multi-tenancy can be enabled for platforms offered as a service. In particular,
we show how a critical middleware component of the PaaS model like the Enterprise Service Bus
(ESB) [Chappell 2004] can be made multi-tenant aware, irrespective of the particular implemen-
tation technology used (i.e. which ESB solution is used). The concept of an ESB as the messaging
hub between applications addresses the fundamental need for application integration and in the
last years it has become ubiquitous in enterprise computing environments. ESBs control the
message handling during service invocations and are at the core of each Service-Oriented Archi-
tecture (SOA) [Chappell 2004], [Josuttis 2007]. In order therefore to leverage the transition of
enterprise environments to the Cloud paradigm, it is essential to make ESBs multi-tenant aware.

The contributions of this work can be summarized as follows:

(1) An identification of the requirements of enabling multi-tenancy for ESB solutions.

(2) A proposal for an implementation-agnostic ESB architecture called ESBMT that fulfills these
requirements.

(3) A prototype implementation of ESBMT.

(4) A performance evaluation of the prototype.

The rest of this paper is organized as follows: Section 2 motivates this work by means of an
informative scenario. Drawing from this scenario, Section 3 proceeds to identify and discuss the
requirements for enabling multi-tenancy in ESB solutions as a part of the PaaS model. Section 4
investigates the impact of tenant awareness on the message processing within the ESB. The
requirements identified in the previous two sections are addressed in Section 5, which presents
ESBMT, a generic, implementation independent ESB architecture. Section 6 discusses the realiza-
tion of this architecture as a proof-of-concept implementation of our proposal. Section 7 presents
the performance evaluation of our approach based on an existing ESB benchmark we extended for
multi-tenancy support. Section 8 compares our proposal with existing works. Finally, Section 9
summarizes our findings and briefly presents future work.

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



232 · STRAUCH et al.

2. MOTIVATING SCENARIO

The European Union research project 4CaaSt2 aims to create a Cloud platform to design services
and compositions based on Cloud-aware building blocks provided by the platform, offer them in
a marketplace, and operate them at Internet-scale. The goal of the 4CaaSt platform is to lower
the entry barrier for small and medium enterprises by offering an advanced environment, which
reduces the effort to create innovative applications leveraging the benefits of Cloud computing.
In the scope of 4CaaSt, the Taxi Scenario use case has been defined, where a service provider
offers a taxi management software as a service to different taxi companies, i.e., tenants. Taxi
company customers, who are the users of the tenant, submit their taxi transportation requests
to the company that they are registered with. The taxi company uses the taxi management
software to contact nearby taxi drivers. Once one of the contacted taxi drivers has confirmed the
transportation request, the taxi management software sends a transport notification containing
the estimated arrival time to the customer.

Figure 1a provides an overview of the realization of the taxi scenario without using an ESB.
The taxi management software is implemented as a BPEL process [Alves et al. 2007]. The BPEL
process leverages the 4CaaSt platform internal Context Management Framework (4CaaSt CMF),
which provides context information about taxi cab locations and taxi driver contact details.
Moreover, Google Maps Web Services3 provide distance calculations between the location of a
taxi cab and the pick up location. All components of the taxi booking service are Web applications
deployed in Java Open Application Server (JOnAS)4. Additionally, the BPEL engine Orchestra5

is deployed as a Web application, executing the taxi service provider process. As the service
endpoints of the 4CaaSt CMF and the Google Maps Web Services are incompatible with the
BPEL process, two adapter applications mediate between the BPEL process and these internal
and external services. All applications communicate via point-to-point messaging connections.

Introducing an ESB as the messaging middleware (Figure 1b) enables loose coupling and
provides a more flexible integration solution by avoiding hard-coded point-to-point connections.
This makes the monitoring, management, and maintenance of the taxi application easier and more
effective. Furthermore, enabling multi-tenancy at the ESB level allows multiple taxi companies
to use the same taxi application offered as a service by a single provider (using customized GUIs
for their customers and drivers if required) as shown in Figure 1b. Apart therefore from allowing
taxi companies to outsource the development, deployment, operation, and management of such
an application to a service provider, this solution also maximizes the benefits on the provider
side.

3. REQUIREMENTS FOR MULTI-TENANT ESB

In the following, we discuss the requirements for multi-tenancy of ESB solutions as a key com-
ponent of the PaaS model. For this purpose we first discuss how multi-tenancy affects the PaaS
model in general, before refining the discussion further for ESBs.

3.1 Multi-tenancy in the PaaS Delivery Model

Discussing multi-tenancy requires that the views of all involved parties are considered, namely
both the providers and the consumers of multi-tenant aware services and applications. From
the providers’ point of view, multi-tenancy allows the maximization of resource utilization and
therefore enables maximization of profit. For service consumers, multi-tenancy has to be largely
transparent, apart from providing access credentials when using the service or application. More
importantly, consumers must have the impression that they are the only ones using the multi-
tenant service or application, without suffering from side effects caused by other consumers

2The 4CaaSt project: http://www.4caast.eu
3Google Maps Web Services: http://code.google.com/apis/maps/documentation/webservices/
4Java Open Application Server (JOnAS): http://jonas.ow2.org
5Orchestra – Open Source BPEL / BPM Solution: http://orchestra.ow2.org

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 233

regarding, e.g., quality of services. Finally, consumers need to be provided with customization
capabilities, such as taxi company-specific Web interfaces in the Taxi Scenario.

The three Cloud service models (I-,P- and SaaS) differ significantly in the granularity of the
functionality provided to the consumer, and the required capability of the consumer to manage
and control the underlying Cloud infrastructure [Mell and Grance 2011]. The responsibility
of the provider and the effort of the consumer to enable multi-tenancy is therefore different,
depending on the chosen Cloud service model. PaaS in particular, is the Cloud service model
where the responsibility and effort of provider and consumer are nearly the same with respect
to our definition of multi-tenancy. The exact effort of the consumer depends on the scenario
and the application to be realized. The consumer is responsible to enable multi-tenancy of the
application and the corresponding artifacts deployed on the platform; for example, the database
schema used has to support multi-tenancy natively [Chong et al. 2006]. The provider has to
enable multi-tenancy for the hardware resources and infrastructure, as well as the platform on
which the various applications are deployed. Furthermore, for the sake of backward compatibility
the deployment of non multi-tenant applications has also to be possible, otherwise the target
community of the PaaS offering will be limited. Therefore, the service offered via PaaS by the
provider has to support the deployment of both multi-tenant and non multi-tenant services and
applications.

3.2 ESB Multi-tenancy Requirements

Following the discussion about multi-tenancy of PaaS components, in the context of project
4CaaSt we identified and categorized a set of functional and non-functional requirements for
multi-tenant ESBs. Toward this goal we also refined the multi-tenancy characteristics (e.g. tenant
awareness) identified in the literature, e.g. [Azeez et al. 2010], [Guo et al. 2007], [Mietzner et al.
2009], [Krebs et al. 2012].

Functional requirements. The following functionalities must be offered by any multi-tenant
ESB:

FR1 Tenant awareness: An ESB must be able to manage and identify multiple tenants, i.e.,
tenant-based identification and hierarchical access control for tenants and their users must
be supported.

FR2 Tenant-based deployment and configuration: The deployment and configuration of the ESB
and the services available for a certain tenant should be managed in a transparent manner
by the ESB.

FR3 Tenant-specific interfaces: A set of customizable interfaces must be provided, enabling
administration and management of tenants and users, including both GUIs and Web services
interfaces.

FR4 Shared registries: As the ESB solution will be embedded in a PaaS platform with other
applications demanding similar information, the approach must come with a shared for other
PaaS components registry of tenants/users and a shared registry of services.

FR5 Backward compatibility : The ESB solution should be able to used seamlessly and transpar-
ently by services and applications that are not multi-tenant aware.

Non-functional requirements. In addition to the required functionalities, multi-tenant ESBs
should also respect the following properties:

NFR1 Tenant Isolation: Tenants must be isolated to prevent them from gaining access to other
tenant’s data (i.e., data isolation) and computing resources (i.e., performance isolation). Data
isolation can be further decomposed into communication isolation, referring to keeping the
message exchanges for each tenant separate, and application isolation, referring to preventing
applications and services of one tenant from accessing data of another tenant’s applications
or services.

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



234 · STRAUCH et al.

NFR2 Security : The necessary authorization, authentication, integrity, and confidentiality mech-
anisms must consider and enforce tenant- and user-wide security policies when required.

NFR3 Reusability & extensibility : The multi-tenancy enabling mechanisms and underlying con-
cepts should not be solution-specific and depend on specific technologies to be implemented.
ESB components should therefore be extensible when required and reusable by other com-
ponents in the PaaS model (as for example in the case of the shared registries functional
requirement).

Both functional and non-functional requirements are taken into consideration for the design of
the architecture we present in Section 5.

4. ESB TENANT AWARENESS

In this section we investigate what is the impact of the requirements identified in the previous
section to the core functionality of ESBs. As part of this discussion, we introduce the novel
concept of Tenant Context to enable multi-tenant aware messaging and investigate its impact on
the message processing inside the ESB.

4.1 Tenant Context

With respect to multi-tenancy, two different granularities of consumers have to be considered:
tenants and users. Tenants are used to separate the consumers using multi-tenant aware mes-
saging into disjoint groups. In the case of the 4CaaSt Taxi Scenario for example (Section 2),
the different taxi companies using the multi-tenant aware ESB hosted on the 4CaaST platform
are different tenants. Users enable the identification and differentiation between consumers po-
tentially belonging to more than one tenant, and therefore introduce a finer level of granularity.
In our example, the customers registered with and using the service of one or more taxi com-
panies are the users of the corresponding tenants. In the following we present the requirements
for multi-tenant aware communication that we have identified in collaboration with the industry
partners in 4CaaSt.

Firstly, all required data to be provided within the tenant context for tenants, and their
corresponding users, have to be represented in a structured format. Hence, the relation between
the tenant and the user is included in the representation of our Tenant Context. Furthermore,
the concept of tenant context must be supported by various communication protocols. Their
message metadata must therefore be extended accordingly. Finally, as our goal is to provide a
general concept to enable multi-tenant aware messaging, which is not limited to realization in
one specific ESB solution and is applicable across the application stack, we also have to consider
reusability (NFR3). Nowadays for example, business processes are one established approach to
implement business logic. Thus, multi-tenant aware messaging is also required when moving
workflow engines executing these business processes to the Cloud. In order to enable reuse of the
Tenant Context, the content has therefore to be extensible.

Figure 2 presents the schema of our Tenant Context. More specifically, a Tenant Context
consists of a mandatory and an optional part. The mandatory part contains a tenantID and a
userID. The Tenant Context is uniquely identified by the combination of tenantID and userID.
In order to ensure the uniqueness of tenantID and userID we use Universally Unique Identifiers
(UUIDs) [Network Working Group 2005] for their representation, see Figure 2. In addition to
the mandatory part, the optional part may contain additional information such as the name of
the tenant. For this purpose optional entries can be defined as key-value pairs, which makes the
Tenant Context schema of Figure 2 extensible. Figure 3 provides an example for an instance of
the Tenant Context schema including an optional entry.

As our proposal is independent from the technology or protocol used, it is required to sup-
port both messaging protocols that allow integration of structured information into the message
metadata such as SOAP [World Wide Web Consortium (W3C) 2007], as well as ones that do
not support these metadata by default, such as SMTP [The Internet Engineering Task Force

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 235

© IAAS 2012 2

Tenant Context – Schema ADAPTED

value
type anyType

userId
ref UUIDType

UUIDType
pattern [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

tenantContext

optionalEntry
minOccurs 0
maxOccurs unbounded

tenantId
ref UUIDType

key
type string

Figure 2: Schema of Tenant Context

© IAAS 2012 4

Tenant Context – Example based on Taxi Scenario ADAPTED

tenantContext

optionalEntry

key
value tenantName

value
value TaxiCompany

userId
value dc0b71dd-

4c99-4efb-
964b-bc30e
fd552cc

tenantId
value 16c20253-

8605-4b67-
9001-935c5
0c8b707

Figure 3: Example of Tenant Context Representation

(IETF) 2008] or the Java Message Service (JMS) [Oracle 2002] (FR5). Thus, if the communica-
tion protocol does not support structured metadata we put the tenant context in XML format
as string in the message metadata, in order to avoid negative impact on the performance, e.g.,
by looking up and retrieving the tenant information from a registry, when a message containing
tenant information encoded as a key to be used for the lookup is received by the ESB.

4.2 Message Lifecycle

In this section, we focus on how we use the Tenant Context concept we defined above in order to
support multi-tenant aware communication for ESB solutions (NFR1). The proposed approach
relies solely on the message processing cycle, which is common across many ESB solutions. It is
therefore applicable to many different ESB implementations.

By its nature, an ESB solution has to support various communication protocols, e.g., with
respect to message transformation and message routing. Any extensions of the ESB in order
to enable multi-tenant aware message processing have therefore to be independent from the
communication protocol. Moreover, apart from the integration of the Tenant Context into the
messages exchanged with the ESB, the multi-tenant communication awareness mechanisms have
to be transparent to the tenants and their users. In other words, the user must have the impression
that he is the only one using and communicating with one concrete (multi-tenant aware) ESB
instance. Furthermore, the ESB extended for multi-tenant aware communication has to be able
to process also messages that do not contain a Tenant Context (FR5).

Figure 4 shows a conceptual view of the message processing cycle of ESBs. While in the
Receive Message phase, the ESB can receive a message in a specific communication protocol. As
the message processing cycle differs only slightly depending on the communication protocol used,

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



236 · STRAUCH et al.

© IAAS 2012 6

Multi‐Tenant Aware Communication ESB Life Cycle ADAPTED

Receive 
Message

De‐
Marshalling

Process 
MessageMarshalling

Send Message

Figure 4: Message Processing Cycle of an ESB

we do not limit this discussion to a specific protocol but, we will emphasize the differences where
necessary. In order to fulfill the requirement of transparent multi-tenancy from the point of view
of the tenants and their users, we propose to include the Tenant Context introduced above in
the metadata of the message. Thus, the payload of the message (independent of the protocol)
is still exclusively used for carrying application data and therefore it is not necessary to modify
existing application implementations using the ESB.

In the De-Marshalling phase, the communication protocol-specific format of the received mes-
sage is mapped and transformed into an internal Normalized Message Format (NMF), which
is independent from the communication protocol. The NMF eases the ESB internal message
processing. As we integrated the Tenant Context into the metadata of the communication
protocol-dependent message, the NMF therefore has also to include the information provided
by the Tenant Context after the mapping. As a result, the mapping and transformation to and
from the NMF has to be extended accordingly. Therefore, it has to be considered whether the
communication protocol used supports structured message metadata. In case structured meta-
data is supported the business logic can directly access the information in the Tenant Context for
the mapping to the NMF. If the Tenant Context information are contained as one XML string
in the message metadata when structured metadata is not supported, the tenantID, userID, and
optional information have to be extracted before mapping and transforming it into the NMF.

After the message has been de-marshalled and all required information for multi-tenant aware
processing of the message, e.g., routing, is available, the message is processed by the internal
business logic of the ESB in the Process Message phase. For this purpose, the ESB business logic
accesses the required information from the message available in the NMF format and includes
the processing results in the message, if required. When the processing is finished, the message
in NMF containing the results has to be mapped and transformed to the concrete format of the
communication protocol defined for the specified recipient of the message (Marshalling). This
protocol may or may not be the same as the one that the original message was sent to the ESB
in. As in the case of de-marshalling, the marshalling function has also to be extended to consider
the Tenant Context information. Finally, the resulting message is sent to its target in the Send
Message phase.

For the purposes of this discussion we assume that both the sender and the receiver of the mes-
sage are multi-tenant aware and know how to produce and process Tenant Context information
as required. Furthermore, before each party interacts with the ESB in a multi-tenant way, it is
assigned globally unique identifiers, e.g., during a registration phase. Finally, supporting back-
ward compatibility is realized by deploying in parallel the default mechanisms for marshalling and
de-marshalling of non-multi-tenant aware messages. In this case, the tenant-specific processing
of messages is simply circumvented.

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 237Architecture Updated

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

Messaging Adapter / Message 
Processor Manager

Messaging Adapter / Message 
Processor Configuration 

Manager

Service Registry
Database Cluster

Configuration
Registry Database

ESB
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Message Broker

Figure 5: Overall ESBMT Architecture

5. A MULTI-TENANT AWARE ESB ARCHITECTURE

Figure 5 provides an overview of our proposal for a generic multi-tenant aware ESB architecture
(ESBMT), which fulfills the requirements identified in the previous sections. More specifically,
the three layer ESBMT architecture consists of a Presentation layer, a Business Logic layer, and
a Resources layer. In the following we present in a bottom-up fashion the components required
for each layer of the architecture.

5.1 Resources layer

The Resources layer consists of an ESB Instance Cluster and a set of registries. The ESB Instance
Cluster bundles together multiple ESB Instances. Each one of these instances perform the tasks
usually associated with traditional ESB solutions, that is, message routing and transformation.
In the simplest case, the ESB Instance Cluster may consist of only one (running) ESB Instance
handling all tenants and users using an ESBMT implementation. Since this however may create
performance issues, in the ESBMT architecture a clustering mechanism similar to the one provided
for example by Apache ServiceMix6 is recommended.

Each ESB Instance consists of three main components: a Normalized Message Router, Messag-
ing Adapters, and Message Processors (Figure 6, zooming in on the bottom right part of Figure 5).
Messaging Adapters are responsible for handling the communication with external services and
applications (External Service Providers and Consumers in Figure 6) and converting to and
from a normalized internal format for all incoming and outgoing messages, respectively. Message
Processors provide additional ESB internal business logic related to message processing such as
routing. The Normalized Message Router takes care of the internal routing between Messaging
Adapters and/or Message Processors. These components appear under different names in many
existing ESB solutions.

In order to enable multi-tenancy in any ESB solution, these components, and all other com-
ponents in the ESB architecture, must be multi-tenant aware, i.e. able to operate with multiple
tenants and users using the same instance of the ESB. For an ESB Instance in particular, this
means that Adapters and Processors are able to handle messages containing tenant and user in-
formation, and process such messages accordingly in a multi-tenant manner (FR1). For example,
a message may be routed to different endpoints based on the tenant information contained in the

6Apache ServiceMix: http://servicemix.apache.org

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



238 · STRAUCH et al.

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

Messaging Adapter / Message 
Processor Manager

Messaging Adapter / Message 
Processor Configuration 

Manager

Service Registry
Database Cluster

Configuration
Registry Database

ESB
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Message Broker

Runtime Environment

Apache ServiceMix Adaptation Updated

Standardized Interfaces for Message Processors

Standardized Interfaces for Messaging Adapters

Normalized Message Router

Message
Processor

Messaging
Adapter

Messaging
Adapter

Messaging
Adapter

Messaging
Adapter

Message
Processor

Message
Processor

Message
Processor

External
Service 
Providers

External
Service 

Consumers

Figure 6: Architecture of an ESB Instance

message. Additionally, message flows of tenants and users when communicating with an ESB
Instance, as well as message flows inside the ESB Instance, must be isolated from the message
flows of other tenants and users (NFR1). Furthermore, the Messaging Adapters and Message Pro-
cessors have to be able to support tenant- and user-specific configurations when required (FR2).
This enables for example, that for each tenant a new endpoint for communication with the proto-
col specific adapter is created during configuration (NFR1). The deployment/undeployment and
configuration of Messaging Adapters and Message Processors in an ESB Instance is performed
by means of a set of standardized interfaces. While these interfaces, and all other components
of the ESB Instance, are multi-tenant aware, special care has to be taken to ensure backward
compatibility (FR5). This means that installation and configuration of non multi-tenant aware
Adapters and Processors must still be possible. Processing and routing of non multi-tenant aware
messages has to be performed normally, by still supporting the deployment of custom consumer
and provider endpoints in a non multi-tenant manner.

Going back to Figure 5, within the Resource layer we also introduce three different types of
registries. The Service Registry stores the services registered with the various ESB Instances, as
well as the configuration of the Messaging Adapters and Message Processors installed in each ESB
Instance in the ESB Instance Cluster (Figure 6) in a tenant-isolated manner [Chong et al. 2006]
(FR2). Currently we are focusing on the approach that each ESB instance of the ESB Instance
Cluster has the same messaging adapters and message processors installed. As the messaging
adapters and message processors are common, and in order to offer the possibility of horizontal
scalability support [Pritchett 2008], a load balancer (not shown in Figure 5) must retrieve the
required configurations from the Service Registry and deploy them when starting an additional
ESB instance, e.g., to cover increased load. As we propose to share the Service Registry with other
PaaS components, e.g., composition engines (FR4), and for the sake of reusability (NFR3), we
recommend to realize the Service Registry as a database cluster to avoid performance bottlenecks.

The Tenant Registry stores a set of users for each tenant and the corresponding unique identi-
fiers (FR1). Additionally, each tenant and user may have associated properties such as tenant or
user name represented as key-value pairs (NFR3). The Configuration Registry stores all configu-
ration data created by a tenant and the corresponding users, except from the service registrations
and configurations stored in the Service Registry. The Configuration Registry stores for example

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 239

the configuration of ESB Instances (FR2), the mapping of ESB Instances to tenants (FR1), and
the mapping of permissions to roles according to the role-based access control mechanisms offered
by the Access Layer component in the next layer (NFR1). When a tenant or user interacts with
the management component of the multi-tenant ESB system, the data in more than one registry
might have to be changed. Consequently, all operations and modifications on the underlying
resources have to be handled as distributed transactions based on a two-phase commit proto-
col [Coulouris et al. 2005] so that a consistent state of all resources is ensured (NFR1). As many
JBI components from several JBI Container Instances in the cluster might participate in the dis-
tributed transaction and this might lead to performance bottlenecks, we recommend to decouple
them from the distributed transactions using messaging with guaranteed delivery [Gregor Hohpe
and Bobby Woolf 2003], e.g., a Message Broker (see Figure 5).

5.2 Business Logic layer

The Business Logic layer contains an Access Layer component, encapsulating the functionality
that ensures tenant awareness and security (FR1 and NFR2, respectively). The Access Layer acts
as a multi-tenancy enablement layer [Guo et al. 2007] based on role-based access control [Sandhu
et al. 1996]. The tenants and their corresponding users have to be identified and authenticated
once when the interaction with the ESB is initiated. Afterwards, the authorized access is managed
by the Access Layer transparently. Prior to authentication and identification of tenants and users,
the Access Layer component handles authorization by registering tenants and users and granting
them access to ESB Instances (NFR2). Therefore, in case of a multi-tenant aware interaction
with the system, each tenant and user has to identify themselves by providing a unique tenantID
and userID (FR1).

In addition to the Access Layer component, the Business Logic layer also contains a set of
Managers (Figure 5) encapsulating the functionality to manage and interact with the underlying
components in the Resources layer. The Tenant Registry, Configuration Registry, and Service
Registry Managers implement the business logic required to retrieve and store data in the corre-
sponding registries in the Resources layer. The Messaging Adapter/Message Processor Managers
deploy and undeploy Messaging Adapters and Message Processors in each ESB Instance in the
Cluster, while the Configuration Managers take care of configuring them appropriately. Both
managers are using the standardized interfaces provided by each ESB Instance for this purpose
(Figure 6), as discussed in the Resources layer.

5.3 Presentation layer

The Presentation layer contains two components allowing the customization, administration,
management, and interaction with an ESBMT implementation: the Web UI and the Web service
API. The Web UI offers a customizable interface for human and application interaction with the
system, allowing for the administration and management of tenants and users (FR3). The Web
service API offers the same functionality as the Web UI, but also enables the integration and
communication of external components and applications (NFR3). For both interface mechanisms,
security aspects such as integrity and confidentiality of incoming messages must be ensured
(NFR2) by, for example, using Web Services Security (WS-Security) for the Web Service API
and Secure HTTP connections for the Web UI. A discussion on the particular mechanisms to be
used for this purpose is outside of the scope of this work.

6. REALIZATION

In this section we provide a summary of the implementation of the architecture introduced in
the previous section. A detailed discussion on the implementation can be found in [Strauch et al.
2012; Strauch et al. 2013]. A proof-of-concept realization of the ESBMT architecture is provided
as a deployment diagram in Figure 7. The realization is based on the open source ESB Apache
ServiceMix version 4.3.0 (hereafter referred to simply as ServiceMix) and components and libraries
being reused are marked in gray. ServiceMix is based on the OSGi Framework [OSGi Alliance

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



240 · STRAUCH et al.

Apache Service Mix Instance II

Apache Service Mix Instance I

<< OSGi service>>

JMSManagement Service

<< OSGi service>>

AdminCommandsService

Web Application

<< JSF component>>

WebGUI

<< JAX-WS component>>

WebService

<< EJB component>>

ServiceRegistry

<< EJB component>>

TenantRegistry

<< EJB component>>

ConfigurationRegistry

<< PostgreSQL>>

TenantRegistry

<< PostgreSQL>>

ConfigurationRegistry

<< PostgreSQL>>

ServiceRegistry

<< JMS topic>>

ManagementMessages

<< JBI component>>

servicemix-http-mt

<< JBI component>>

servicemix-camel-mt

<< EJB component>>

AccessLayer

<< EJB component>>

JBIContainerManager

<< library>>

JBIManagementXMLBinding

<< library>>

JBIPackagingBinding

<< library>>

TenantContextXMLBinding

<< OSGi service invocation>>

Seite 1 von 1

04.04.2012file:///C:/Users/straucse/Desktop/figures/Verteilungsdiagramm.svg

Figure 7: Deployment Diagram of Prototype Realization of ESBMT

2011]. OSGi bundles realize the ESB functionality complying to the JBI specification [Java
Community Process 2005].

ServiceMix is provided with several JBI components. Binding Components (BCs) are Messag-
ing Adapters (in the sense of Figure 6) supporting various protocols such as SOAP over HTTP,
FTP, or JMS. Service Engines (SEs) are JBI components providing additional business logic
within the ESB. For example, the SE for Apache Camel [Apache Software Foundation 2011]
enables usage of Enterprise Integration Patterns [Gregor Hohpe and Bobby Woolf 2003]. In this
sense they serve as the Message Processors in our architecture.

The original ServiceMix BC for HTTP version 2011.01 and the original Apache Camel SE
version 2011.01 were extended in our prototype in order to support multi-tenancy (see the
servicemix-http-mt and servicemix-caml-mt components in Figure 7), as were the original BC
for JMS version 2011.01 and the original BC for e-mail version 2011.01 (not shown in Figure 7).
In addition, ServiceMix was extended by an OSGi-based management service (JMSManagement
Service component), which listens to a JMS topic for incoming management messages sent by the
Web Application (Figure 7). As the Web Application might modify more then one resources, all
operations are handled within distributed transactions. The Web Application itself implements
the Presentation and Business Logic layers of ESBMT (Figure 5) and is running in the Java EE 5
application server JOnAS version 5.2.2, which can manage distributed transactions. As the man-
agement components of the underlying resources are implemented as EJB components, we use
container-managed transaction demarcation, which allows the definition of transaction attributes
for whole business methods, including all resource changes [Java Community Process 2006a].

As many JBI containers deployed on several ServiceMix instances can be involved in the dis-
tributed transactions, and the distributed transaction can contain many JBI containers, this
might lead to a performance bottleneck. Hence, the Web application subdivides the transac-

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 241
JBI Containers

JBI Containers

Overview

Name Installed JBI Components Cluster Actions

jbi1 servicemix-camel, servicemix-jms A

jbi2 servicemix-jms, servcemix-http, ApacheODE B

Add JBI Container

add

Name:

Installed JBI Components

JBI Component Cluster Installed by Date Actions

servicemix-camel A admin2 June 1, 2011

servicemix-jms A admin2 June 1, 2011

servicemix-jms B admin1 June 2, 2011

servicemix-http B admin1 June 3, 2011

ApacheODE B admin1 August 11, 2011

Install JBI Component

install

browse...

Cluster:

System Administrator User: admin1 View tenant Log outhttp://www.companyWXYZ.de

Configurations

> Tenant Registry

> JBI Containers

Tenant Resource Assignment

> JBI Container Assignment

> Service Unit Quotas

> Service Registration Quotas

System Administrator User: admin1 http://www.companyWXYZ.de View tenant Log out

ACluster:

ZIP File:

Figure 8: WebGUI: Content Panel to add JBI Containers and to Install JBI Components

tion to the JBI containers using messaging with guaranteed delivery [Gregor Hohpe and Bobby
Woolf 2003]. If the message is persistently stored in the message topic, the distributed transac-
tion will commit. Afterwards, each JBI container acts as selective, transactional, and durable
subscriber. A transaction between each corresponding JBI container and the topic ensures that
the message is successfully processed before being deleted from the topic. For JMS messaging
we use Apache ActiveMQ version 5.3.17. The ServiceRegistry, TenantRegistry, and Configura-
tionRegistry components are realized based on PostgreSQL version 9.1.18. The AccessLayer of
the Web Application applies the Session Façade pattern [Marinescu 2002], which is a design pat-
tern for EJB projects encapsulating business logic in order to minimize the number of calls to
the EJB container. The Web Service API of the Web Application is based on the Java API for
XML-Based Web Services version 2.0 [Java Community Process 2006c]. The WebGUI has been
specified and designed based on JavaServer Faces version 1.2 [Java Community Process 2006b],
but the implementation is still ongoing. A screenshot of the WebGUI is shown in Figure 8. This
content panel is used by the system administrator to add JBI Containers to the JBI Container
Instance Cluster and to install JBI Components to concrete JBI Containers.

The evaluation of the realization of the architecture within the context of 4CaaSt is based on
the Taxi Scenario introduced in Section 2. For this purpose, we implemented the motivating
scenario discussed in Section 2 for two taxi companies (tenants). Both companies are using the
same taxi management application hosted by the 4CaaSt platform. The application provides an
interface for their registered customers and drivers (users) that is customizable by the companies
on demand. Using this interface, the customer can request a taxi by providing the necessary
information through, e.g., a smartphone device.

The customer request is then forwarded to the two nearest drivers and pops up in their GUIs
(as shown in Figure 9). The first driver that confirms the request is assigned to the customer.
The driver further has the option to get routing information to the designated pick up location
through an integration with Google Maps Web Services. Based on the distance between the

7Apache ActiveMQ: http://activemq.apache.org
8PostgreSQL: http://postgresql.org

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



242 · STRAUCH et al.

Figure 9: Screenshot of the GUI Used by the Taxi Drivers of one Company

driver and the pick up location, the customer receives a notification containing the estimated
pick up time. All messaging between services in the scenario, as shown in Figure 1b, is handled
by our realization of the ESBMT architecture discussed above. A video introducing the archi-
tecture of the taxi application and demonstrating the taxi application in action is available at
http://tiny.cc/taxidemo.

7. EVALUATION

As discussed in the opening of this paper, multi-tenancy of Cloud solutions can be decomposed
into two perspectives: performance, as experienced by the ESB users, and resource utilization, of
primary concern to the ESB provider. These two perspectives are the focus of our evaluation of
the ESBMT implementation. In order to provide a baseline against which we evaluate our proposal
we use the original, non multi-tenant aware ServiceMix version that we based our implementation
on. The following sections discuss the method, workload, experimental setup, and results towards
this goal.

7.1 Method

Our investigation showed that there is no commonly agreed benchmark for ESBs, see for exam-
ple [Walraven et al. 2011]. For this reason we chose to use the industrial ESB benchmark by
AdroitLogic [AdroitLogic Private Ltd. 2013] as a basis. This benchmark has been in development
since 2007, and a number of open source ESB solutions have been evaluated in six rounds, with
the latest round results coming out in August 2012. All information about the benchmark, as
well as the results of each evaluation round are publicly available at [AdroitLogic Private Ltd.
2013].

We had to deal with two major obstacles in adopting this benchmark. Firstly, ServiceMix
version 4.3.0 failed to pass smoke testing by AdroitLogic for one of the benchmarking scenarios
and as a result ServiceMix has not been included in their evaluation. By using one of other
benchmarking scenarios, however, we were able to execute the benchmark normally. Secondly,
the benchmark did not support multi-tenant aware messaging and concurrent load generation

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 243

between more than one endpoint. Thus, we had to adapt the AdroitLogic Benchmark Driver
accordingly, as described in the following sections.

7.2 Workload

For purposes of evaluation we derived three test scenarios from the Direct Proxy Service scenario
in AdroitLogic’s benchmark [AdroitLogic Private Ltd. 2013]. The Direct Proxy Service scenario
demonstrates the ability of an ESB to act as a virtualization layer for back-end Web services,
operating as a proxy between a client (the AdroitLogic Benchmark Driver) and a simple Echo
Web service on the provider side. Starting from this point, we defined the following scenarios:

(1) a non multi-tenant ESB deployment on one Virtual Machine (VM) image, acting as the
baseline for comparisons;

(2) the same non multi-tenant ESB deployed across 2 VMs, in order to simulate the effect
of horizontal scaling [Vaquero et al. 2011], i.e. adding another application VM when more
computational resources are required; and,

(3) our ESBMT implementation deployed on 1 VM.

Following the test parameters set by the benchmark we configured in each ESB deployment with
1, 2, 4, and 10 endpoints per scenario. The message size used by the Benchmark Driver is fixed to
1KB, composed out of random characters. The original Benchmark Driver steadily increases the
number of concurrent users of the ESB (2000, 4000, 8000, 16000, 64000, and 128.000) and sends a
fixed number of requests per user for each round of the benchmark. Since in our case we have
multiple endpoints and tenants, we distribute these requests between the different endpoints (or
tenants in the third scenario) and we send them concurrently across each endpoint. In the first
round of the benchmark for example, and for 4 endpoints/tenants, we send 2000/4 = 500 requests
per endpoint or tenant for a total of 2000 requests; in the next round we send 4000/4 = 1000
requests, and so on. Each endpoint or tenant receives in any case 10K messages as a warm-up
before any measurements.

7.3 Experimental Setup

Figure 10 provides an overview of the experimental setup realizing our adaptation of the Direct
Proxy Service Scenario including message flow and measurement points. The test cases were run
on Flexiscale9 and three Virtual Machines: VM0 (6GB RAM, 3 CPUs), VM1 (4GB RAM, 2
CPUs), and VM2 (4GB RAM, 2 CPUs). All three VMs run Ubuntu 10.04 Linux OS and every
CPU is an AMD Opteron Processor with 2GHz and 512KB cache.

In VM0, an Apache Tomcat 7.0.23 instance was deployed with the Echo Web service, the
adapted AdroitLogic Benchmark Driver, and Wireshark 1.2.7 for monitoring HTTP requests and
responses. In VM1 and VM2, the ESBMT implementation is deployed, which required also the
deployment of PostgreSQL 9.1.1 database (for the registries), and Jonas 5.2.2 server for the Web
application implementing the Business Logic layer. The endpoints deployed in ServiceMix are
using HTTP-SOAP communication protocol, see Figure 10.

The total time in receiving the receipt acknowledgment by the Echo Web service for each
message was measured at the AdroitLogic Benchmark Driver, in order to calculate the response
time and the throughput. The CPU utilization for the ServiceMix process and the Java Virtual
Machine (JVM) heap memory use was measured directly in VM1 and VM2. The maximum JVM
heap memory size was set to 512MB before the warm-up phase for both VM1 and VM2.

7.4 Experimental Results

In this section we provide the measurement results for performance and utilization.

9Flexiant Flexiscale: http://www.flexiscale.com/

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



244 · STRAUCH et al.Updated Experimental Setup

VM0Apache
Tomcat
Echo Web 
Service

Wireshark
AdroitLogic
Benchmark 
Driver +

s

VM1

HTTP SOAP
Provider
Endpoint

HTTP SOAP
Consumer
Endpoint

(2) (3)

s

VM2

HTTP SOAP
Provider
Endpoint

HTTP SOAP
Consumer
Endpoint

Legend

Message Flow
Control Point
Received Messages
Measurement Point
Response Time
Measurement Points
CPU Utilization and
Heap Memory Use

(1) (4)

Figure 10: Overview of the Experimental Setup

0

2

4

6

8

10

12

14

0K 16K 32K 48K 64K 80K 96K 112K 128K

A
ve

ra
g

e 
re

sp
on

se
 t

im
e 

(m
se

c)

Total # Requests

1VM-NonMT-
1 Endpoint

1VM-MT-
1 Tenant

(a) 1 Endpoint vs. 1 Tenant

0

2

4

6

8

10

12

14

16

0K 16K 32K 48K 64K 80K 96K 112K 128K

A
ve

ra
g

e 
re

sp
on

se
 t

im
e 

(m
se

c)

Total # Requests

1VM-NonMT-
2 Endpoints

2VMs-
NonMT-
2 Endpoints

1VM-MT-
2 Tenants

(b) 2 Endpoints vs. 2 Tenants

0

5

10

15

20

25

0K 16K 32K 48K 64K 80K 96K 112K 128K

A
ve

ra
g

e 
re

sp
on

se
 t

im
e 

(m
se

c)

Total # Requests

1VM-
NonMT-
4 Endpoints

2VMs-
NonMT-
4 Endpoints

1VM-MT-
4 Tenants

(c) 4 Endpoints vs. 4 Tenants

0

5

10

15

20

25

30

35

40

45

0K 16K 32K 48K 64K 80K 96K 112K 128K

A
ve

ra
g

e 
re

sp
o

n
se

 t
im

e 
(m

se
c)

Total # Requests

1VM-
NonMT-
10
Endpoints

2VMs-
NonMT-
10
Endpoints

1VM-MT-
10 Tenants

(d) 10 Endpoints vs. 10 Tenants

Figure 11: Average response time (latency) for 1KB size messages

7.4.1 Performance. Figure 11 summarizes and presents the latency recorded for all scenarios
and work loads. The baseline for the presentation is the non multi-tenant aware implementation
of the ESB on one VM (1VM-NonMT-* Endpoints in Fig. 11). As shown in the figure, our
proposed multi-tenant aware implementation of the ESB exhibits a performance decline of around

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 245

1,38

2,68

1,63
3,21

9,03

2,07 3,14

11,38

3,72
4,09

21,39

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1V
M

-N
on

M
T-

1 
En

dp
oi

nt

1V
M

-M
T-

1 
Te

na
nt

1V
M

-N
on

M
T-

2 
En

dp
oi

nt
s

2V
M

s-
N

on
M

T-
2 

En
dp

oi
nt

s

1V
M

-M
T-

2 
Te

na
nt

s

1V
M

-N
on

M
T-

4 
En

dp
oi

nt
s

2V
M

s-
N

on
M

T-
4 

En
dp

oi
nt

s

1V
M

-M
T-

4 
Te

na
nt

s

1V
M

-N
on

M
T-

10
 E

nd
po

in
ts

2V
M

s-
N

on
M

T-
10

 E
nd

po
in

ts

1V
M

-M
T-

10
 T

en
an

ts

C
P

U
 u

ti
liz

at
io

n

σ

max

average

median

Figure 12: CPU Utilization

30% across the different cases when comparing the same number of endpoints and tenants in the
other scenarios. The same load across 2 tenants instead of 2 endpoints, for example, results in
23, 57% more latency on average (Fig. 11b), 24, 68% more for 4 tenants/endpoints (Fig. 11c) and
39, 44% increase for 10 tenants/endpoints (Fig. 11d).

When comparing 1 tenant against 1 endpoint (Fig. 11a) an 100% reduction of response time is
observed, showing that the performance decrease is actually ameliorated when more tenants/end-
points are added. Also of particular interest is the fact that adding a VM and distributing the
requests between those VMs — essentially reducing the number of active endpoints by half —
improves response time by 50% only for 2 endpoints (53, 07%), degrading from there with the
number of endpoints (48, 10% for 4, and 42% for 10).

7.4.2 Utilization. The measurements for CPU and memory utilization for the same loads are
summarized by Figures 12 and 13. The reported CPU utilization is normalized over the number of
CPUs of the VMs containing the ESB implementation (Fig. 10). Memory utilization is presented
as a percentage of the maximum heap size for the JVM containing the ESB (approximately
455MB). In both cases, the figures for the 2VMs scenario are calculated as the average of the
utilization of each VM.

As shown in Figure 12, the overall utilization of system resources increases with the introduc-
tion of multi-tenancy. The additional computation required for processing the tenant and user
information, and routing the messages accordingly, translates into more than 300% increase in
CPU utilization compared to the baseline, non multi-tenant aware implementation. With respect
to the same scenario, standard deviation σ is increasing with the number of tenants introduced.
However, given the proximity of the average and median values to the maximum CPU utilization
in all cases, this can be interpreted as a distribution heavily concentrated towards the maxi-
mum utilization. With respect to memory utilization, Figure 13 shows also an overall increase of
around 100% across the three cases of ESBMT (2, 4 and 10 tenants). The low standard deviation,
and the small differences between average and median values show that memory consumption is
relatively steady over all work loads. Similar behavior is observed also for the other two (non
multi-tenant) scenarios.

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



246 · STRAUCH et al.

0,03

0,13

0,05

0,03

0,13

0,05

0,02

0,14

0,04
0,02

0,15

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1V
M

-N
on

M
T-

1 
En

dp
oi

nt

1V
M

-M
T-

1 
Te

na
nt

1V
M

-N
on

M
T-

2 
En

dp
oi

nt
s

2V
M

s-
N

on
M

T-
2 

En
dp

oi
nt

s

1V
M

-M
T-

2 
Te

na
nt

s

1V
M

-N
on

M
T-

4 
En

dp
oi

nt
s

2V
M

s-
N

on
M

T-
4 

En
dp

oi
nt

s

1V
M

-M
T-

4 
Te

na
nt

s

1V
M

-N
on

M
T-

10
 E

nd
po

in
ts

2V
M

s-
N

on
M

T-
10

En
dp

oi
nt

s

1V
M

-M
T-

10
 T

en
an

ts

M
em

or
y 

u
ti

liz
at

io
n

σ

max

average

median

Figure 13: Memory Utilization

8. RELATED WORK

Existing approaches on enabling multi-tenancy for middleware typically focus on different types
of isolation in multi-tenant applications for the SaaS delivery model, see for example [Guo et al.
2007]. As discussed also in [Walraven et al. 2011] however, only few PaaS solutions offer multi-
tenancy awareness allowing for the development of multi-tenant applications on top of them.
The work of Walraven et al. [Walraven et al. 2011] follows a similar approach to ours; our work
however proposes a more generic approach built around any ESB technology that complies with
the JBI specification, and does not require the implementation of a dedicated support layer for
these purposes.

Focusing on ESB solutions, in [4CaaSt Consortium 2011] we surveyed a number of existing
ESB solutions and evaluated their multi-tenancy readiness. Our investigation showed that the
surveyed solutions in general lack in support of multi-tenancy. Even in the case of products like
IBM WebSphere ESB10 and WSO2 ESB11 where multi-tenancy is part of their offerings, multi-
tenancy support is implemented either based on proprietary technologies like the Tivoli Access
Manager (in the former case), or by mitigating the tenant communication and administration on
the level of the message container (Apache Axis2 12 in the latter case). In either case, the used
method can not be applied to other ESB solutions and as a result no direct comparison of the
applied multi-tenancy enabling mechanisms can be performed. The presented approach differs
from existing approaches by integrating multi-tenancy independently from the implementation
specifics of the ESB.

The different benchmarks and metrics developed in the domain of Cloud computing in the re-
cent years focus on a particular type of Cloud services such as databases [Cooper et al. 2010], on
Cloud-related features such as elasticity [Brebner 2012] and performance isolation [Krebs et al.
2012], or on virtualization technology [Makhija et al. 2006]. To the extent of our knowledge,
there is no commonly agreed approach and benchmark for the evaluation of the performance of
multi-tenant PaaS middleware components such as an ESB. AdroitLogic completed in August
2012 [AdroitLogic Private Ltd. 2013] the 6th round of public ESB performance benchmark-

10IBM WebSphere ESB: http://tiny.cc/IBMWebSphereESB
11WSO2 ESB: http://wso2.com/products/enterprise-service-bus/
12Apache Axis2: http://axis.apache.org/axis2/java/core/

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 247

ing since June 2007. This round included eight free and open source ESBs including Apache
ServiceMix version 4.3.0 — for which however they were not able to execute for all defined sce-
narios. Our ESB performance evaluation approach reuses, but adapts and extends, the Adroit-
Logic Benchmark Driver and our test scenarios are derived from the Direct Proxy scenario, but
extended in order to consider multi-tenancy.

9. OUTLOOK AND FUTURE WORK

Multi-tenancy allows Cloud providers to serve multiple consumers from a single system instance,
reducing costs and increasing their return of investment by maximizing system utilization. Real-
izing multi-tenancy requires making both the application and the underlying middleware compo-
nents multi-tenant aware. Making therefore ESB solutions, a critical piece of middleware for the
service-oriented enterprise environment, multi-tenant aware is essential. Multi-tenancy awareness
manifests as the ability to manage and identify multiple tenants (organizational domains) and
their users, and allow their applications to interact seamlessly with the ESB. Allowing multiple
tenants however to use the same ESB instance requires to ensure that they are isolated from
each other. There is therefore a trade-off between the benefits for the ESB provider in terms of
utilization and their impact on the performance of applications using the ESB that needs to be
investigated.

Toward this goal, in the previous sections we present the realization of our proposal for a
generic ESB architecture that enables multi-tenancy awareness based on the JBI specification.
We first provide the necessary background and explain our proposed architecture across three
layers based on previous work. We then discuss in detail the realization of this architecture by
extending the open source Apache ServiceMix ESB solution. In the next step we adapt the ESB
benchmark developed by AdroitLogic to accommodate multi-tenancy and we use it to measure
the performance and resource utilization of our ESB solution.

Our analysis shows that our current, not optimized in any manner implementation of a multi-
tenant aware ESB solution succeeds in increasing the CPU utilization while having a relatively
small impact on the memory footprint. In this sense it succeeds as far as the ESB provider
is concerned. On the other hand, there is a significant reduction in performance experienced
by the ESB consumers which needs to be ameliorated by re-engineering and fine-tuning our
implementation accordingly. Techniques for performance isolation have also to be brought into
play [Krebs et al. 2012]. In the scope of this work, this is a direction that we want to investigate
in the future. We also plan to take advantage of using the JBI specification as the basis of our
architectural framework and apply the same techniques and architectural solutions to other ESB
solutions, as well as non-ESB solutions, like for example application servers, that comply with
this specification.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from projects 4CaaSt (grant agreement
no. 258862) and Allow Ensembles (grant agreement no. 600792) part of the European Union’s
Seventh Framework Programme (FP7/2007-2013). The authors would like to thank Dominik
Muhler for his valuable contribution to the development of ESBMT.

REFERENCES

4CaaSt Consortium. 2011. Immigrant PaaS Technologies: Scientific and Technical Report D7.1.1. De-

liverable. http://www.4caast.eu/wp-content/uploads/2011/09/4CaaSt_D7.1.1_Scientific_and_Technical_

Report.pdf.

AdroitLogic Private Ltd. 2013. Performance Framework and ESB Performance Benchmarking. http://www.

esbperformance.org.

Alves, A. et al. 2007. Web Services Business Process Execution Language Version 2.0. Committee Specification.

Apache Software Foundation. 2011. Apache Camel User Guide 2.7.0.

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



248 · STRAUCH et al.

Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D., Weerawarana, S., and

Fremantle, P. 2010. Multi-tenant SOA Middleware for Cloud Computing. In Proceedings of IEEE CLOUD’10.
458–465.

Brebner, P. 2012. Is your Cloud Elastic Enough?: Performance Modelling the Elasticity of Infrastructure as a

Service (IaaS) Cloud Applications. In Proceedings of ICPE’12. 263–266.

Chappell, D. A. 2004. Enterprise Service Bus. O’Reilly Media, Inc.

Chong, F., Carraro, G., and Wolter, R. 2006. Multi-tenant data architecture. MSDN. http://msdn.

microsoft.com/en-us/library/aa479086.aspx.

Cooper, B. F. et al. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of ACM SoCC’10.

ACM, 143–154.

Coulouris, G., Dollimore, J., and Kindberg, T. 2005. Distributed Systems: Concepts and Design. Addison
Wesley.

Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley Professional.

Guo, C., Sun, W., Huang, Y., Wang, Z., and Gao, B. 2007. A Framework for Native Multi-Tenancy Application

Development and Management. In Proceedings of CEC/EEE’07. IEEE, 551–558.

Java Community Process. 2005. Java Business Integration (JBI) 1.0, Final Release. JSR-208.

Java Community Process. 2006a. Enterprise JavaBeans (EJB) 3.0, Final Release. JSR-220.

Java Community Process. 2006b. JavaServer Faces Specification (JSF) 1.2, Final Release. JSR-252.

Java Community Process. 2006c. The Java API for XML-Based Web Services (JAX-WS) 2.0, Final Release.

JSR-224.

Josuttis, N. 2007. SOA in Practice. O’Reilly Media, Inc.

Krebs, R., Momm, C., and Konev, S. 2012. Architectural Concerns in Multi-Tenant SaaS Applications. In
Proceedings of CLOSER’12. SciTePress, 426–431.

Krebs, R., Momm, C., and Kounev, S. 2012. Metrics and Techniques for Quantifying Performance Isolation in

Cloud Environments. In Proceedings of ACM QoSA’12. ACM, 91–100.

Makhija, V. et al. 2006. VMmark: A Scalable Benchmark for Virtualized Systems. Tech. Rep. VMware-TR-
2006-002, VMware, Inc.

Marinescu, F. 2002. EJB Design Patterns: Advanced Patterns, Processes, and Idioms. John Wiley & Sons, Inc.

Mell, P. and Grance, T. 2011. The NIST Definition of Cloud Computing. http://www.nist.gov/customcf/

get_pdf.cfm?pub_id=909616.

Mietzner, R., Unger, T., Titze, R., and Leymann, F. 2009. Combining Different Multi-Tenancy Patterns in
Service-Oriented Applications. In Proceedings of EDOC’09. IEEE, 131–140.

Network Working Group. 2005. A Universally Unique IDentifier (UUID) URN Namespace.

Oracle. 2002. Java Message Service (JMS) Version 1.1, Specification.

OSGi Alliance. 2011. OSGi Service Platform: Core Specification Version 4.3.

Pritchett, D. 2008. BASE: An ACID Alternative. Queue 6, 3, 48–55.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. 1996. Role-based Access Control Models.
Computer 29, 38–47.

Strauch, S., Andrikopoulos, V., Gómez Sáez, S., and Leymann, F. 2013. Implementation and Evaluation of

a Multi-tenant Open-Source ESB. In Proceedings of ESOCC 2013. Lecture Notes in Computer Science, vol.

8135. Springer, 79–93.

Strauch, S., Andrikopoulos, V., Gómez Sáez, S., Leymann, F., and Muhler, D. 2012. Enabling Tenant-

Aware Administration and Management for JBI Environments. In Proceedings of SOCA’12. IEEE Computer

Society Conference Publishing Services, 206–213.

Strauch, S., Andrikopoulos, V., Leymann, F., and Muhler, D. 2012. ESBMT: Enabling Multi-Tenancy in
Enterprise Service Buses. In Proceedings of CloudCom’12. IEEE, 456–463.

The Internet Engineering Task Force (IETF). 2008. RFC 5321 - Simple Mail Transfer Protocol.

Vaquero, L., Rodero-Merino, L., and Buyya, R. 2011. Dynamically Scaling Applications in the Cloud. ACM

SIGCOMM Computer Communication Review 41, 1, 45–52.

Walraven, S., Truyen, E., and Joosen, W. 2011. A Middleware Layer for Flexible and Cost-Efficient Multi-
Tenant Applications. In Proceedings of Middleware’11. Springer, 370–389.

World Wide Web Consortium (W3C). 2007. SOAP Version 1.2. W3C Recommendation (Second Edition).

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.



ESBMT: A Multi-tenant Aware Enterprise Service Bus · 249

Steve Strauch works as a research associate and PhD student at the Institute of Archi-
tecture of Application Systems (IAAS) at the University of Stuttgart since April 2008. His
research interests are data migration, data hosting, as well as data security and privacy
in the area of Cloud computing, with an emphasis on their architectural aspects. Steve
has contributed to the European projects COMPAS (http://www.compas-ict.eu), 4CaaSt
(http://www.4caast.eu), and ALLOW Ensembles (http://www.allow-ensembles.eu).

Dr. Vasilios Andrikopoulos is a senior researcher at IAAS, University of Stuttgart.
His research is in the areas of services science, cloud computing and infrastructures, and
software engineering with an emphasis on evolution and adaptation. He received his
PhD cum laude in 2010 from Tilburg University, the Netherlands, where he was also a
member of the European Research Institute in Service Science (ERISS). He has experience
in research and teaching Database Systems and Management, Software Modeling and
Programming, Business Process Management and Integration, and Service Engineering.
He has participated in a number of EU projects, including NoE S-Cube and 4CaaSt.

Santiago received his Dipl.-Inf. degree from the University of Stuttgart in 2013. Cur-
rently, he is a PhD student and research associate in the Institute of Architecture of
Application Systems at the University of Stuttgart. His experience and research inter-
ests include Service Oriented Architecture and EAI frameworks, focusing on distributed
data and workload analysis and management. Santiago has contributed to the ESB-MT
project (http://www.iaas.uni-stuttgart.de/esbmt/) and currently contributes to the Eu-
ropean project ALLOW Ensembles (http://www.allow-ensembles.eu).

Frank Leymann is a full professor of computer science and director of the Institute
of Architecture of Application Systems (IAAS) at the University of Stuttgart, Germany.
His research interests include service-oriented architectures and associated middleware,
workflow- and business process management, cloud computing and associated systems
management aspects, and patterns. The projects he is working on are funded by the
European Union, the German Government, or directly by industry partners. Frank is
co-author of about 300 peer-reviewed papers, more than 40 patents, and several industry
standards (e.g. BPEL, BPMN, TOSCA). He is invited expert to consult the European
Commission in the area of Cloud Computing. Before accepting the professor position
at University of Stuttgart he worked for two decades as an IBM Distinguished Engineer
where he was member of a small team that was in charge of the architecture of IBMs
complete middleware stack.

International Journal of Next-Generation Computing, Vol. 4, No. 3, November 2013.


