
Elastic Resource Allocation for a Cloud-Based
Web Caching System

FARHANA KABIR, TRAVIS HALL, SCOTT A WALLACE, DAVID CHIU

Washington State University

Web and service applications are generally I/O bound and follow a highly skewed request distribution, ushering
in potential for significant latency reduction by caching and reusing results. However, such web caches require

manual resource allocation, and when deployed in the cloud, costs may further complicate the provisioning process.

We propose a fully autonomous, self-scaling, and cost-aware cloud cache with the objective of accelerating data-
intensive applications. Our system, which is distributed over multiple cloud nodes, intelligently provisions resources

at runtime based on user’s cost and performance expectations while abstracting away the various low-level decisions

regarding efficient cloud resource management and data placement within the cloud. Our prediction model lends
the system the capability to auto-configure the optimal resource requirement to automatically scale itself up (or

down) to accommodate demand peaks while staying within certain cost constraints and fulfilling the performance

expectations.

Keywords: cloud, data management

1. INTRODUCTION

One of the great technological challenges of the 21st century is inarguably how we respond to
a new era of computing, which is increasingly data-intensive and web-based. A recent foray
into meeting this challenge is the advancement of cloud computing. In particular, the cloud’s
Infrastructure-as-a-Service (IaaS) framework allows for elastic computing, i.e., instantaneous
pay-as-you-go access to virtually infinite storage and compute resources [Armbrust, et al. 2009].
Elasticity in this context refers to the ability to allocate capacity on-demand and to relinquish
that capacity when it is no longer required, or when allocation costs reach a certain threshold.

Elasticity has found many uses in capacity right-sizing for many cloud-based applications
[de Assuncao et al. 2009; Das et al. 2009; Lin et al. 2010; Marshall et al. 2010; Cardosa, et
al. 2011; Bicer et al. 2012]. Among these, web and service oriented applications are particular
beneficiaries, since opportunities abound for intermediate caching and reuse. For instance, con-
sider the ubiquitous three-tier web architecture: Users submit requests to an HTTP interface,
which takes the queries and executes a script to retrieve or compute potentially large amounts of
data from a database backend. The retrieved data may undergo further processing, aggregation,
and restructuring before it is returned back to the user. As today’s web and service-oriented appli-
cations become increasingly more data-intensive, caching likewise becomes more important since
precomputed web data can significantly reduce request latencies [Karger, et al. 1999; Fitzpatrick
2004; Chiu et al. 2010].

Web traffic can be very dynamic and observe unpredictable spikes and troughs. In such a
variable traffic environment, it would be desirable for an organization to have an in-cloud cache
that expands correspondingly to meet performance or Service-Level Agreements (SLA) require-
ments, while contracting resources to keep costs down. As a classic example, we can consider the
growth in April 2008 experienced by Animoto, a web service application that produces videos
from photos, video clips, and music. The application ramped from 25,000 users to 250,000 users
in just three short days, acquiring 20,000 new users per hour at its peak. Animoto went from
using 50 back-end servers (Amazon EC2 instances) to over 3,400 over this period to become a
cloud computing success story overnight [Eicken 2008]. Undoubtedly, the ability to rapidly scale
up on-demand is paramount for a storage provider. However, the economics of seemingly limitless

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

2 · Faharna Kabir et al.

capacity to scale up might not be acceptable for all situations.
Unfortunately, managing cloud resources while considering the cost/performance tradeoff is

nontrivial. For a cloud based cache to be both cost-effective and efficient, the underlying structure
of the virtual storage hierarchy, i.e., machine-memory, local/network disks, and persistent storage,
must be considered in terms of costs. For certain applications, taking a hit on performance to
keep the cost down might be perfectly reasonable. Our cost and performance models offer a
solution focused on resource usage costs to accelerate data-intensive computing.

Our goal is to develop an easily deployable cache on the cloud that autonomously adjusts
provisioned IaaS resources based on a user’s cost and performance constraints. In this paper,
we present a system that performs this function. We show how cost and performance models
can enable an elastic in-cloud cache to make autonomous decisions on scaling, i.e., expand-
ing/contracting resources in order to gracefully adapt to varying web loads while upholding user
preferences on cost and performance without requiring manual intervention.

Our research utilizes the Amazon Web Services (AWS) IaaS framework as a testbed. The prin-
cipal contribution of this research is a dynamic model of an elastic cache, that facilitates various
cost/performance tradeoff abstractions with the ultimate goal of accelerating web applications
while remaining within the constraints of a user’s budget. We have evaluated our cloud-based
web cache where we demonstrate a 5× acceleration for files of typical size magnitudes and even
larger acceleration for data files with size magnitudes in the tens of MBs.

The remainder of this paper is organized as follows. Section 2 presents an overview of our cloud-
based cache system. Section 3 describes our models and algorithms. The system evaluation is
presented in 4. We present related work in auto-scaling, web caching, and web replacement
policies in Section 5. Finally, we discuss future work and conclude in Section 6.

2. SYSTEM OVERVIEW

Our cache, situated in the cloud between the web application and users, provides an abstraction to
the various nuanced cost-benefit tradeoffs associated with cloud resources. We utilize the Amazon
Web Services cloud, which consists of two major services: Elastic Compute Cloud (EC2) and
Simple Storage Service (S3). EC2 offers users on demand allocation of virtual machine instances
at an hourly rate, determined by instance’s CPU, memory, and I/O capacity. S3, on the other
hand, is a highly reliable persistent store. It allows users to store data objects using an FTP-
style interface, and users are charged a rate per GB-month stored. In this section, we present
the architecture of our elastic web cache, which is depicted in Figure 1.

Users

S3 Store

C
web

service
app

EC2
Instances

requestfast hit

slow hit

miss

compute

R

store

return

Figure 1. Elastic Web Cache Overview

The cache is three-tiered: the Cache Coordinator (denoted C in the figure) receives users’
HTTP (SOAP/REST for service) requests and forwards them to the appropriate EC2 instance.
Each EC2 instance stores a portion of the cached data. As the cache fills over time, instance

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 3

data can be replaced, which involves an eviction down to the S3 level, or promotion from S3. To
reconcile costs, the number of allocated EC2 instances can grow or shrink to handle the current
workload. At the time of writing, EC2 pricing ranges anywhere from $0.08 to $1.80 per instance-
hour allocated, depending on the instance type’s capabilities. In this paper, we experimented
with an m1.large instance type, which is $0.32 per instance-hour for 7.5 GB memory and 4
virtual compute units.

Users have the option to input the following two parameters to communicate their preferences:
(1) a cost constraint C and (2) a cost-priority parameter, λ, 0 6 λ 6 1. The cost constraint C
serves as the upper-bound for the dollar amount that can be spent on the cache per unit time.
This constraint essentially restricts the cache from scaling up uncontrollably in response to a
sudden spike in demand and thereby violating a user’s budget. The cost-priority parameter, λ,
on the other hand, is a knob that allows users to tune the system according to their preference of
performance within the limits of their cost constraint. A high value of λ implies that the system
should strive to keep costs as far below constraint C as possible. For instance, λ = 1 should
signify our system to configure an S3-only data organization, to save costs, even if C is set to be
far greater than the costs associated with the S3-only store. A low value of λ allows the system
to aggressively allocate resources to increase performance, while staying just below the budget
constraint C.

The Cache Coordinator manages the allocation of cloud resources and reconciles the user
parameters at all times. For instance, upon any risk of the cache exceeding its current capacity
in the near-term, it allocates a new instance if within user constraints. Conversely, the coordinator
may also consolidate instances to reduce cost. To attain the unique features of our cache system
(i.e., auto-scaling and cost awareness) the coordinator employs a prediction model that yields a
cache configuration with optimal cost and performance for the user.

2.1 Global Data Organization

At the heart of the storage system lies EC2 nodes, which act as data servers, storing data
in instance memory and on disk. We also utilize the considerably more economical persistent
storage (S3) options if user’s cost preference prohibits hosting all of the data in the more expensive
EC2 nodes. Along with the basic search, insert, and retrieve functionalities, each of the data
nodes is also equipped with the capability to migrate and evict data out of the node if necessary.
Upon exceeding capacity, a node might need to migrate data to another instance or S3.

The cache coordinator needs to store a global view of all data objects. To this end, it needs a
cogent mechanism to index the data servers. Since we are considering our cache under an elastic
environment, nodes may scale on demand, and adding or removing cache storage nodes should
take minimal effort. This dynamism renders many hashing mechanisms useless as an incredibly
large number of key-value pairs would require a rehash to reflect their node membership changes.
To address this problem of hash disruption, we employ consistent hashing [Karger, et al. 1997;
1999] across the EC2 nodes. Consistent hashing lends itself gracefully to any system requiring
quick adaptation due to nodes frequently joining and leaving a cooperating system and is used
extensively in highly volatile Peer-to-Peer systems, among others.

In consistent hashing, a function h(k) hashes a given key k into a range [0, n). This key range
is organized in a clockwise fashion, such that 0 is the successor to n − 1. At any time, there
maybe m 6 n EC2 instances (known as buckets) attached to a corresponding hash value. A key
k is found in this system by first applying h(k), then identifying the EC2 instance as the first
bucket attached moving in a clockwise fashion from h(k). The EC2 instance is finally searched
locally for k. For instance, consider Figure 2 and suppose we have three EC2 instances storing
data, and they are attached to b0, b1, and b2 on the hash clock. After hashing a key k to the
range between b2 and b0, we move clockwise to h(k)’s successor b0 and then look for the data
object identified with k.

To understand how consistent hashing reduces hash disruption, let us assume that the key
range between bi and bj is too large, causing the EC2 node attached to bj to be overloaded

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

4 · Faharna Kabir et al.

0 b0

b1b2

h(k)

Figure 2. Consistent Hashing Example

with data objects and traffic. To reduce traffic, we could allocate a new EC2 node at bsplit
halfway between bi and bj . Then bj would only have to migrate the keys falling within the range
[bi+1, bsplit] to bsplit. With traditional hashing algorithms, such an action may require a complete
rehash of all keys in the system. In general, to insert a new EC2 node into this cache system,
the newly allocated node can be placed at bsplit,

bsplit =

{⌊ bi+bj
2

⌋
, if bi < bj(

bi +
⌊n−bi+bj

2

⌋)
mod n, otherwise

(1)

Conversely, when an EC2 node located at bi is deallocated from the system, then it only needs to
migrate all of its data objects to its clockwise successor, bj . It should be noted that this method
of locating bsplit is for illustration only. Realistically, we would want to transfer half the keys
from from bj to bsplit, which would be a function on the key distribution, not the key range.

Once a data node has been identified, it must be further searched for the cached data results.
The next subsection describes the data organization on each local node.

2.2 Local Data Organization

The data organization within each EC2 instance uses a B+-Tree [Bayer and McCreight 1970] to
provide fast searches over its private key space. Figure 3 shows a simple B+-Tree with cardinality
(or branching factor) p = 2. Each tree node then contains 2 values and p+ 1 = 3 pointers down
to the next level of the tree. A search for key k starts from the root node, finds the closest value
d to k. Then similar to a binary tree, if k > d, we traverse down the right edge, and the left
edge otherwise. This traversal continues recursively until we reach a leaf node. The leaf node
is searched for k, and if it exists, returns the data object pointed by k. It is worth noting that
the leaf nodes are linked together and are sorted by key, offering fast response to range queries.
Because EC2 can be costly and instance memory is limited, we begin replacing data objects after
a certain threshold is reached using the popular least recently used (LRU) policy [O’Neil et al.
1993] . An evicted data object is transferred down to the S3-level. While S3 is a much cheaper
storage option than the EC2-resident cache (roughly $0.125 per GB-month), its I/O latency is
much higher.

3. COST AND PERFORMANCE OPTIMIZATION

The crux of our cloud-based cache is the coordinator’s performance and cost model, which informs
a bi-objective optimization to in determining cloud resource allocation. The goal of our system
is to predict cache performance over time and adjust resource requirements in order to strike the
appropriate balance to achieve the user’s goals in terms of cost and performance expectations.

The two opposing objectives for our system are to minimize the cost to store data in the
cache and maximize performance by allocating enough nodes to facilitate a larger number of
hits. Because these two objectives conflict, there will be a cache configuration with the highest

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 5

5

3 8 9

1 3 5 7 8 9 10 11

d1

Figure 3. A B+-Tree Example

performance, another with the lowest cost, and a number of configurations that are compromises
between performance and cost. This set of trade-off designs is known as a pareto set, and we solve
a bi-optimization problem to extract the pareto-optimal solution for our system. To allow for
a uniform comparison between performance of various objectives, we normalize both objective
measurements to a range between 0 and 1.

Notation Description

tF , tS , tM Average latency for a fast hit, slow hit, and miss

HF , HS Fast hit rate, slow hit rate

EQT (t) Effective query time at t

Cusage(t) Cache usage cost per hour at t

Cmin(t) Min possible usage cost per hour at t

Cmax(t) Max possible usage cost per hour at t

Q̂(t) Predicted number of queries at t

L̂(t) = Q̂(t)×D Predicted load at future time t

PEC2 Price per EC2 instance-hour

PS3 Price of S3 usage per MB-hour

RF , RS , RM Data access rate (MBps) on a fast hit, slow hit, and miss, respectively.

T EC2 node capacity (MB)

D Average data size (MB)

N Optimal number of EC2 nodes at t

S Optimal number of S3 storage used at t

Table I. Notations for System Models

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

6 · Faharna Kabir et al.

3.1 Modeling the Performance Objective

From empirical observations, we make the following assumptions in our cache design: (1) data
stored in EC2 nodes (either in memory or disk) are retrieved faster than from S3, and (2) the
cost per storage-hour is much higher for data stored in EC2 than for S3.

We will first model the performance objective as the effective query request time (EQT). If the
requested data resides in any of the allocated EC2 instances’ memory or disk, it is considered a
fast hit (Figure 1) due to faster I/O and data organization. If the requested data is not found in
any of the cooperating EC2 instances, we search the persistent store S3, resulting in a slow hit.
Clearly, reducing the number of slow hits among the total hits will yield better performance. On
a cache miss, the web request or service application is invoked. Its resulting data is sent to the
user as well as to the cache. Next, we can define the query request latency as the time between
the arrival of a request and retrieval of the queried data.

Equipped with these metrics we formulate the performance objective as follows. For readability,
Table I provides a list of the notations used in defining the performance and cost objectives.
Because we will observe the number of requests in fixed time intervals (t = 0, 1, 2, . . .), we can
model our system discretely. Let

Q(t) = QF (t) +QS(t) +QM (t) (2)

denote the total number of incoming query requests at time t, where QF (t), QS(t), and QM (t)
refer to the number of queries that result in fast hits, slow hits, and misses, respectively. If we
further let tF , tS , and tM denote the average query latency for a fast hit, a slow hit, and a miss,
then we can define the effective query request time at time t as follows,

EQT (t) = HF × tF +HS × tS + (1−HF −HS)× tM (3)

where HF = QF (t)/Q(t) and HS = QS(t)/Q(t) represent the fast hit and slow hit rates respec-
tively. The normalized performance objective is given below,

fp =
EQT (t)− tF
tM − tF

(4)

To inform our algorithms on making resource allocation decisions, we must relate fp to system

parameters that can be adjusted (e.g., number of EC2 nodes that should be allocated). Let Q̂(t)
denote the predicted number of requests at time t and let D denote the average data size (MB),
then L̂(t) = Q̂(t) × D is the predicted system load in MB at time t. To predict future request
Q̂(t), our implementation uses a feedforward multi-layer artificial neural network (ANN) [Nissen
2003]. The ANN is trained on historic queries using backpropagation with a sigmoid activation
function. The multi-layer topology allows the neural network to capture non-linear relationships
in the time series data that may be both more subtle and more complex than the relationship
captured by, for example, a simple moving average.

We further let T , PEC2, and PS3 denote the system parameters from the cloud. Namely, T
is an EC2 node’s capacity (memory and disk) in MB, PEC2 is the price of an EC2 instance per
hour, and PS3 is the price of S3 usage per MB hour. The goal is to find the optimal number
of EC2 nodes, N , and the optimal amount of S3 storage (in MB), S, that should be used by
the system at time t. Now we can approximate the optimal values for the above parameters as
follows,

QF ≈ N × T/D (5)

QS ≈ S/D (6)

QM ≈ (L̂(t)− [N × T + S])/D (7)

where N × T and S denote the data amount residing in cooperating EC2 nodes, and the
data amount residing in S3, respectively. Assuming an LRU replacement policy [O’Neil et al.
1993], these approximations are justifiable because the total number of hits are proportional

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 7

to the number of objects whose values reside in the cache. The same reasoning allows us to
approximate the fast hits as the number of objects whose values reside in memory and disk, and
the slow hits as the number of objects whose values reside in the persistent storage. The effective
query time, EQT (t), for the system can be derived as follows,

EQT (t) =
1

Q̂(t)

(
N × T
RF

+
S

RS
+
L̂(t)− (N × T)− S

RM

)
(8)

where RF , RS , and RM represent the data access rate (MBps) on a fast hit, a slow hit, and
a cache miss, respectively. Also, the lowest and the highest bounds on query latency, i.e., the
average latency on a fast hit and the average latency on a cache miss can be determined as,

tF =
D

RF
, tM =

D

RM
(9)

After substitution, we derive our performance objective function,

fp =

1
Q̂(t)

(
N×T
RF

+ S
RS

+ L̂(t)−(N×T)−S
RM

)
− D

RF

D
RM
− D

RF

(10)

3.2 Modeling the Cost

Depending on a user’s cost-performance preferences, the cache coordinator decides where data
should be placed in cooperating EC2 instances or in S3. We define the cost objective fc to be
the normalized total usage cost over the various cloud storage options,

fc =
Cusage(t)− Cmin(t)

Cmax(t)− Cmin(t)
(11)

such that Cusage(t) ≥ Cmin(t)

where Cusage(t), Cmin(t), and Cmax(t) refer to the cache usage cost per hour at time t, the least
possible cost per hour (with S3-only configuration), and the maximum possible cost per hour
(with an EC2-only configuration), respectively. We note that Cmin is a lower-bound on Cusage ,
To minimize the cost objective, the goal is to use as few EC2 instances as possible to store the
data at time t.

Like before, we must again relate the above cost variables to controllable system parameters.

Cmin(t) = L̂(t)× PS3 (12)

Cmax(t) = L̂(t)/T × PEC2 (13)

Cusage(t) = N × PEC2 + S × PS3 (14)

where L̂(t)/T , N ×PEC2, and S×PS3 indicate the number of EC2 nodes required to store all of
data in instance memory and disk, the cost for the allocated nodes, and is cost for the persistent
storage used, respectively.

After substitution and normalization, the cost objective function can be fully expressed as
follows,

fc =
[(N × PEC2) + (S × PS3)]− (L̂(t)× PS3)(

L̂(t)
T × PEC2

)
− (L̂(t)× PS3)

(15)

3.3 Solving the Optimization Problem

Recall that there are two user inputs to exploit the cost-performance tradeoff: (1) C the cost
constraint per time unit, and (2) λ, 0 6 λ 6 1. A higher value of λ implies that the cache
coordinator should strive to keep costs as low as possible. Our problem fits classical weighted
sum approach, which assigns a weight wi to each normalized objective function fi(x) so that the

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

8 · Faharna Kabir et al.

problem is converted to an aggregated single-objective problem with a scalar objective function
as follows:

argmin
x

F (x) = w1f1(x) + w2f2(x) + . . .+ wmfm(x) (16)

where x denotes the system parameters, fi(x) is the normalized objective function for the ith

objective, and
∑
wi = 1 for a given weight vector w = w1, w2, . . . , wm. Known also as the apriori

approach because it requires the user to provide the weights before optimization can begin, this
method yields a single solution. Using the weighted sum method, we derive the following scalar
objective function for our elastic cache,

argmin
x

F (x) = (1− λ)fp(x) + λfc(x) (17)

subject to: ∀t : Cusage(t) 6 C

which satisfies the user specified cost constraint, C, the maximum allowable usage cost, at all
times. Through solving argminx F (x) for the tuple 〈N,S〉, we obtain the optimal number of
nodes and persistent storage to allocate for an application.

Check&Actual&System&Load&
and&

Predicted&Load&(ANN)&

Compute&Objec>ve&
Func>on&

Minimize&Objec>ve&
Func>on&

Output&Op>mal&
Number&of&Nodes,&N&

&Tuning&
Parameter,&λ

Cost&
Constraint,&C

Data&Transfer&
Rates&

Average&Data&
Size&

AWS&
pricing&

Figure 4. Steps to Compute Optimal Number of Nodes

To solve our multi-objective optimization problem, we perform a linear search over all possible
values of N (number of instances allocated) to find the minimum of the weighted objective
function. We argue that realistically this linear search does not increase the time complexity
of the algorithm by much since Amazon has constant limits on maximum instance allocation,
thereby keeping the value of N small enough to perform an efficient linear search. In the general
case, a binary search can be employed to narrow down a likely value for N assuming both
objectives are increasing functions.

The major steps in our algorithms towards determining the optimal resource allocation are
depicted in Figure 4. Our first step is to narrow the search space for the optimal number of
nodes N by only considering the range of nodes that yields Cusage(t) 6 C, satisfying the user’s
cost constraint.

Algorithm 1 inputs the user’s cost constraint C, the load L, and pricing data for EC2 and S3.
This algorithm returns the resource configuration with the highest cost that can be allocated
while meeting the user cost constraint C. On lines (1-6), we compute N , the minimum number
of EC2 nodes needed to handle a given load L. Lines (4-5) returns a possibly smaller number of
nodes required to accommodate the data space, giving us an upper bound on performance (and
cost). In lines (7-19), we compute the S3 storage allocation that is required to hold any data
objects exceeding the EC2 node storage.

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 9

Algorithm 1 maxResources (C, L, PEC2, PS3)

1: . Maximum nodes that can be allocated while staying within budget
2: N ← bC/PEC2c
3: . If budget too high, only allocate nodes required to accommodate load
4: if N > dL/T e then
5: N ← dL/T e
6: end if
7: S ← 0
8: . If load is greater than total node capacity then
9: . if budget allows, use S3 storage

10: if L > (N × T) then
11: if (C − (N × PEC2)) > 0 then
12: . Budget allows S MB of S3 storage,
13: S ← (C − (N × PEC2))/PS3

14: . but the required storage might be less
15: if (L− (N × T)) < S then
16: S ← L− (N × T)
17: end if
18: end if
19: end if
20: return 〈N,S〉

While Algorithm 1 optimizes the resource allocation for the given cost constraint, Algorithm 2
further restricts the resource configuration according to the user’s cost priority parameter, λ. On
line 2, we first retrieve the highest performing 〈N,S〉 pair under constraint C. Next, we compute
the aggregate objective function given in Equation 17 using 〈N,S〉 and λ. Then on lines (6-13),
we iterate over decreasing values of EC2 nodes ni to recompute the objective function and return
the ni value resulting in the minimum.

Algorithm 2 optimalNodes (C, λ)

1: . Get the most expensive resource configuration while staying within budget
2: 〈N,S〉 ← maxResources(C)
3: . Solve optimization (Eq. 17) for the given 〈N,S〉 pair
4: min f ← computeObjective(N,S, λ)
5: opt n← N
6: for ni = N − 1 downto 0 do
7: si ← (C − (ni × PEC2))/PS3

8: fi ← computeObjective(ni, si, λ)
9: if fi < min f then

10: min f ← fi
11: opt n← ni
12: end if
13: end for
14: return opt n

4. SYSTEM EVALUATION

We deployed out system entirely over the Amazon Elastic Compute Cloud (EC2) using the
experimental configuration shown in Figure 5. We placed the workload generator and all cache
nodes in a data center belonging to the same geographical region us-east-1 while the data

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

10 · Faharna Kabir et al.

Coordinator

Queries

Results

Workload

Generator

AWS: US-East-1

Data Repository

AWS: US-West-2

Cache Servers

S3

...

Figure 5. Experiment Layout

repository was located across the continent in us-west-1. This configuration was designed to
impose a heavy miss penalty.

4.1 Effects of S3 Integration

Each cache server (data node) is running on a 64-bit Ubuntu 10.10 EC2 image. The B+-Tree is
implemented using Ruby 1.9.2p180 (MRI). Each image is launched on an Extra Large instance
(m1.xlarge), which, by Amazon’s specifications contains 15GB of memory, 8 EC2 compute units
(each compute unit is equivalent to a 1.0-1.2GHz 2007 Xeon or 2007 Opteron processor) and has
“high” I/O performance.

One experimental data setting (the first row of Table II) is designed such that there are a large
number of queries over a fairly large number of keys. However, each data object is small enough
(5MB) that the cache can maintain a significant portion of them (roughly 2/3) in memory. In
this setting, the data node will start replacing after the threshold of 2,000 objects have been
reached. A total of 8000 requests will be made under this setting. Another setting uses a larger
data size (25MB), which limits the number of objects maintained in memory by the cache. We
have 500 objects under this setting, and a total of 1,000 requests are made.

Table II. Experimental Data Settings
Data Size Threshold Objects Requests

5MB 2000 3000 8000
25MB 200 500 1000

Further, we change the way our experiment is configured based on three parameters: Eviction
Storage, Eviction Strategy, and Query Distribution. Eviction Storage has two options: S3, mean-
ing that data is evicted from the cache and into S3; and None, meaning that data is removed
entirely. Replacement Policy varies between FIFO (First-In-First-Out) and LRU (Least-Recently
Used). Finally, Query Distribution varies between Random and Skewed. The Random query dis-
tribution means that the data objects requested are generated by pseudorandom generator. We
utilize Ruby’s Kernel::rand function for this purpose. Ruby 1.9.2 uses a modified Mersenne

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 11

Twister with a period of 219937 − 1 [Ruby Documents]. In contrast, the Skewed query distribu-
tion means that the requested keys are distributed such that 90% of the queries fall within 10%
of the key range.

1000 2000 3000 4000 5000 6000 7000
Queries

50000

100000

150000

200000

250000
Ti

m
e

Ta
ke

n
(s

ec
on

ds
)

NoS3-FIFO-Random
NoS3-FIFO-Skewed
S3-FIFO-Random
S3-FIFO-Skewed

(a) 5MB data files

200 400 600 800
Queries

10000

20000

30000

40000

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

NoS3-FIFO-Random
NoS3-FIFO-Skewed
S3-FIFO-Random
S3-FIFO-Skewed

(b) 25MB data files

Figure 6. Time taken using FIFO

In Figure 6, we show the results using the FIFO replacement scheme. As expected, the skewed
distributions execute in significantly less time regardless of their storage options. This is due, in
both cases, to the fact that 10% (the skewed portion upon which 90% of queries fall) of the key
range is well within the bounds of the threshold (300 and 50 keys accordingly). As an additional
result, we do not see S3 providing quite so large a benefit as with the random distribution—with
the small set of keys retained in-memory for the last half of queries, its benefit only plays out for
the first half—shaving off approximately 2,000 seconds (33 minutes) in both the case of the 5MB

(1.5%) and 25MB (10%). That said, the benefit for randomly distributed queries is significant.
With 5MB data files, we observe a difference of 55,000 seconds (15.3 hours), a 21% reduction in

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

12 · Faharna Kabir et al.

1000 2000 3000 4000 5000 6000 7000
Queries

50000

100000

150000

200000

250000

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

NoS3-LRU-Random
NoS3-LRU-Skewed
S3-LRU-Random
S3-LRU-Skewed

(a) 5MB data files

200 400 600 800
Queries

10000

20000

30000

40000

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

NoS3-LRU-Random
NoS3-LRU-Skewed
S3-LRU-Random
S3-LRU-Skewed

(b) 25MB data files

Figure 7. Time taken using LRU

time taken. For 25MB data files, we can save 13,200 seconds (3.7 hours), or approximately 28%
reduction.

In Figure 7, we make notice of the same patterns using the LRU eviction strategy. With the
5MB files, S3 saves approximately 60,000 seconds (16.5 hours or 22%) for the random distribution
and 4,000 seconds (1.1 hours or 3%) for the skewed distribution. Finally, with 25MB files, we
see a reduction of 12,600 seconds (3.5 hours or 28%) and 1,900 seconds (32 minutes or 8%)
for random and skewed distributions respectively. These results show that given FIFO or LRU

replacement schemes, evicting data objects to S3 does not offer significant speedup for skewed
queries. However, in applications where query distributions are random, S3 provides a substantial
speedup.

4.2 Elastic Caching Evaluation

The next set of experiments evaluates our models and optimization heuristic to obtain elastic
resource allocation. We used the Surge web traffic generator [Barford and Crovella 1998] to

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 13

produce 15, 000 file objects (amounting to 4GB). Figure 8(a) shows the cumulative distribution
function (CDF) over the file sizes that were generated for the experiments. Surge also generated
200, 000 HTTP GET requests on these file objects. Figure 8(b) shows the probability density
function (PDF) of the file sizes being requested.

1000 10000 100000 1x106 1x107

File Size (bytes)

0

0.2

0.4

0.6

0.8

1
C

D
F

of
 F

ile
 S

iz
e

(a) CDF of File Sizes on Server

1000 10000 100000 1x106 1x107

File Size (bytes)

0

0.2

0.4

0.6

0.8

1

PD
F

of
 R

eq
ue

st
ed

 F
ile

 S
iz

e

(b) PDF of Request Size

Figure 8. File and Request Distributions

Figure 9 juxtaposes the average query latencies ensuing from two separate experimental runs
of our system, one utilizing the cache and the other bypassing it altogether. The horizontal axis
of the graph shows the total number of HTTP requests processed as time advances. The vertical
axis exhibits the average request latency, which is averaged every for 1000 requests processed.

A significant speedup is evident after only a few thousand requests, due to the Zipf-based
workload distribution [Breslau et al. 1999], which web requests generally follow. It is apparent
from the trend of the graph in Figure 9 that the files with high request probability make their way
into the cache towards the beginning of the long experimental run, thereby, generating fast hits

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

14 · Faharna Kabir et al.

0 50000 100000 150000 200000

Requests

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
es

po
ns

e
Ti

m
e

(s
ec

)

no-cache

with-cache

Figure 9. Query Request Latency

for subsequent requests and commencing a fast converging trend for the average query latency.
At the end of this run, we observed a 5.52× average speedup per request. The request hit-rate
trend depicted in Figure 10 further corroborates these findings, as we approach a hit-rate of
100%. Again, we can observe that most hits occur early due to the skewed request distribution.

0 50000 100000 150000 200000

Requests

0

0.2

0.4

0.6

0.8

1

H
it

R
at

e

Hit Rate

Figure 10. Hit Rate

We further analyze the average latency trajectory displayed by our system in Figure 11. In
this graph, we focus only on the first 3,500 requests (where the most interesting behavior can be
seen). We have also disaggregated the latency within specific file size ranges As seen previously in
Figure 8(a), our entire data set of 15,000 files can be disaggregated into the following four file size
magnitudes: 10K, 100K, 1M, and 10M. For instance, the 100K data set consists of all files > 100KB
and < 1MB. Figure 11 shows the query latencies observed per disaggregated data set, both
with and without employing the cache. As expected, the latency drop is highest (close to 10×
speedup) for the files ranging in magnitude from 1MB to 10MB. The charts in Figure 11 confirm
that our cloud-based web cache can accelerate applications requiring large data movement for

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 15

0 500 1000 1500 2000 2500 3000 3500

Requests

0.05

0.1

0.15

0.2

0.25

0.3

0.35
R

eq
ue

st
 L

at
en

cy
 (s

ec
)

10KB-no-cache

10KB-with-cache

(a) 10KB data files

0 500 1000 1500 2000 2500 3000 3500

Requests

0.1

0.2

0.3

0.4

0.5

0.6

R
eq

ue
st

 L
at

en
cy

 (s
ec

)

100KB-no-cache

100KB-with-cache

(b) 100KB data files

0 500 1000 1500 2000 2500 3000 3500

Requests

0.2

0.4

0.6

0.8

1

R
eq

ue
st

 L
at

en
cy

 (s
ec

)

1MB-no-cache

1MB-with-cache

(c) 1MB data files

0 500 1000 1500 2000 2500

Requests

0.5

1

1.5

2

R
eq

ue
st

 L
at

en
cy

 (s
ec

)

10MB-no-cache

10MB-with-cache

(d) 10MB data files

Figure 11. Average Request Latency

data-intensive applications (note the scale on the y-axis has been selected to improve legibility).
Next, we evaluate the cost and performance models.

4.3 Cost-Performance Model Evaluation

The mathematical model presented in Section 3 calibrates the overall size of our cache based
on user input on cost constraint C, and the cost-performance tuning parameter λ. For the
performance evaluation presented in the previous subsection, we deliberately set λ = 0 to indicate
user preference for the highest performing system. We also did not place any limiting budget
constraint in the previous experiment as the primary focus of the experiment was to evaluate the
fitness of our system in terms of speed. Hence the optimal cache configuration, determined by
the model, accommodated the entire load in EC2 node(s). This section is a departure from the
performance-only ethos as we demonstrate the mathematical model’s behavior when faced with
limiting cost constraints and user preferences.

In this experiment, to garner observable results in a reasonable amount of time, we stipulate the
average data size to be 50MB. Furthermore, we restrict the capacity of a single node to 500GB
allowing our resource allocation algorithm to indicate a need for scaling up in a short period
time. Figure 12 illustrates the cost-performance model’s predilection towards scaling up amid
a constant request rate of 25 per second. The left vertical axis shows the EC2 nodes allocated,
while the right vertical axis shows the cost per hour incurred. The cost constraint C = $0.75/hr
is shown as a bold horizontal line. We show the results for λ = 0, 0.25, and 0.5, where λ close to
0 denotes a user’s desire for higher performance. Note that in all three cases, we are able to stay
under C, while a lower λ yields slightly more nodes (higher performance by caching more files).

Figure 13 highlights the results of a set of experiment with a constant query rate of 100 requests

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

16 · Faharna Kabir et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

3

4

5

0 100 200 300 400 500

B
ud

ge
t

 N
od

es
 A

llo
ca

te
d

Time (sec)

lambda=0.0

lambda=0.25

lambda=0.5

Budget=$0.75/hr

Figure 12. Optimal Node Allocation (Request Rate: 25 requests/sec)

per second. It is evident from the graph that the system is decidedly slow to scale up by allocating
a new EC2 node for larger λ values, i.e., placing more emphasis on savings than performance,
commissioning the overflow data to the slower persistent storage.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

3

4

5

0 50 100 150 200 250 300

B
ud

ge
t

 N
od

es
 A

llo
ca

te
d

Time (sec)

lambda=0.0

lambda=0.25

lambda=0.5

Budget=$0.75/hr

Figure 13. Optimal Node Allocation (Request Rate: 100 requests/sec)

Note that the user’s budget is set to $0.75/hour and allocating 5 nodes would exceed that
budget requiring a price tag of $0.8 per hour, our model never indicates the need for more than
4 nodes, even in the highest performing mode, as that would violate the cost constraint. The
optimal number of nodes is configured to 4 even though it forces a certain fraction of the data
to be placed in Amazon’s S3 or be evicted out of the cache as the load increases with time.
Furthermore, we observe that the model’s decision to allocate a new node is deferred until later
with a significant increase in the size of the load as λ value increases. For λ values 0.25 and 0.5,
the highest number of nodes the system will allocate is 3 to achieve the optimal balance between
cost and performance.

These results demonstrate that our elastic cache can successfully reconcile cost and performance
objectives. Furthermore, we show that our cache can be easily scaled to accelerate data-intensive
web applications.

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 17

5. RELATED WORKS

This section summarizes the related works in the area of cloud resource allocation in order to
achieve automated scaling.

Cloud computing has become a hot topic in both research and industry. According to Arm-
brust, et al., developers who have innovative new ideas are no longer bounded by the capital
required for large hardware infrastructures [Armbrust et al. 2010]. Additionally, organizations
can retrieve results just as fast as their programs scale, as costs are levied on a computational
basis. The sheer amount of research into the Cloud has been tremendous over the past several
years. Study includes such topics as: creating frameworks for elastic high performance appli-
cations [Pham et al. 2011], infrastructure engines such as OpenNEbula [Wang et al. 2008], job
scheduling systems for cloud service providers[Dutta et al. 2012], and distributing indices for
multidimensional data [Papadopoulos and Katsaros 2011] — each looking to leverage or support
the power that elasticity grants.

Vaquero et al. investigate the current state of cloud scaling and theorize three levels of au-
tomatic scaling that they consider imperative in an ideal elastic cloud [Vaquero et al. 2011].
In the context of server level scaling, they argue that mere server scalability is inadequate if
scaling logic is not extended to the load balancing tier. The authors also point out the lack of
network level auto scaling in current cloud implementations. They suggest exploiting available
technologies, such as Network Description Language (NDL)-based ontologies for expressing the
required network characteristics, statistical multiplexing to optimize bandwidth usage etc., to
dynamically allocate bandwidth on-demand. Gong, et al. describe PRESS, which can be used
by cloud service providers to predict future consumer demand to avoid significant SLA violations
and the associated penalties [Gong et al. 2011]. Their application-agnostic load prediction model
employs mathematical algorithms and signal processing techniques to discover a signature for
workloads with repeating patterns. For applications without repeating patterns, PRESS uses a
discrete-time Markov chain to build a short-term prediction. In contrast, our prediction model
uses an Artificial Neural Network to capture potentially complex request trends.

Ramaswamy, et al. outline the architecture of a cooperative cache cloud situated in edge
networks [Ramaswamy et al. 2005]. They focus on the mechanisms for efficient cooperation among
caches and introduce dynamic hashing-based protocols for document lookup and a utility-based
mechanism for placing data objects on different nodes within the cloud-based cache. Chiu, et
al. leverage elastic cloud caches for accelerating web service computations [Chiu and Agrawal
2010; Chiu et al. 2010; 2011]. In this system (which provides the foundation for our own system),
the cache operates in a cooperative manner and utilizes consistent hashing to assist in document
lookup. They also introduce the notion of cache eviction and contraction, merging nodes as query
traffic rate subsides. This system achieved 8× speedup by utilizing a cloud cache in support of
web service-based scientific workflow applications.

Memcached [Fitzpatrick 2004] is a widely adopted, open-source, key-value caching system.
Memcached is commonly used to cache small pieces of data (up to 1MB in size) in memory.
The system is intended for speeding up web applications by caching arbitrary data resulting
from database calls, API calls, or page rendering. In this way, Memcached reduces the back-end
database system load. Also related, Amazon ElastiCache [Amazon Web Services Inc. 2013] is
a pay-as-you-go service that leverages Memcached protocols. While users are able to manually
scale their cache up and down (or impose certain rules to do so) to fit their requirements, it does
not yet provide mechanisms for automating this process.

Although most cloud providers offer only a cloud management API and expect users to imple-
ment their own software stack to manage their compute resources, AWS AutoScaling automates
resource provisioning to some degree [Amazon EC2 2013]. Based on user defined policies on
infrastructure-level performance metrics, AutoScaling essentially allows users to specify thresh-
old values for certain metrics. Whenever the observed performance metric violates the given
threshold, a predefined number of compute nodes are either added or removed from the appli-

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

18 · Faharna Kabir et al.

cation’s resource pool. However, in cases where much more distributed coordination is required,
these mechanisms render themselves inadequate and elasticity does not directly translate to scal-
ability. In contrast, our system implements a specific scaling logic by automatically migrating
data objects to and from nodes as they scale. Additionally, our system takes into account a user’s
budget when making scaling decisions.

Mao, et al. presented a dynamic cloud scaling mechanism which can automatically scale up
or scale down the underlying cloud infrastructure based on job deadlines [Mao et al. 2010; Mao
and Humphrey 2011]. The authors posit that an infrastructure based metric is not reflective of
the quality of service (QoS) a cloud application is providing or user’s performance expectations.
In contrast, our primary focus is to never violate the budget constraint put in place by the user.
Shen, et al. describe CloudScale, a system to reduce prediction errors in a prediction-driven
elastic resource scaling for multi-tenant cloud computing infrastructures [Shen et al. 2011]. The
error correction method minimizes the impact of resource under-estimation errors to minimize
SLA violations with low resource waste.

Closer to our work, Zhu, et al. make a case for scaling down the caching tier of multi-tiered
cloud based web services for potentially huge cost savings while maintaining a viable performance
to meet the SLA [Zhu et al. 2012]. The authors posit that although scaling down the caching
tier increases cache misses, with an overall drop in the load, an application can afford to let more
requests into the data tier without SLA violation. To correctly size the caching tier they propose
working backwards, i.e., to determine the minimum cache hit-rate needed to ensure a response
time meeting the SLA, and then calculating the cache size that would provide that hit-rate.

Our system is fundamentally unique from all of these available data caching technologies. Our
cache can utilize both memory or disk storage and has the capability to auto configure the optimal
resource requirement based on user’s preference on cost and performance. It also has the capacity
to automatically scale itself up/down to gracefully accommodate demand surge/lulls.

Another related area is the problem of web cache replacement policies. Podlipning and
Böszörmenyi performed a survey and classification of a number of web cache replacement strate-
gies [Podlipnig and Böszörmenyi 2003]. There, they classify replacement strategies on a number
of factors: recency, frequency, size, cost of fetching the object, modification time, and a heuristic
expiration time. They then perform a survey of different proposals for each of the different evic-
tion strategies. Wong performs a survey over web cache replacement policies and categorize the
available replacement policies [Wong 2006]. They also analyze the design considerations behind
each of the categories, noting such things as hit ratio, and complexity. Additionally, they take a
more pragmatic approach to their analysis and provide recommended replacement policies based
on system characteristics and workload features. Reddy and Fletcher examine a more intelligent
web caching algorithm using document life histories [Reddy and Fletcher 1998]. There they sug-
gest that Least Recently Used (LRU) techniques are inadequate and they develop a mathematical
model to predict the future value of cached files. The mathematical model they build makes use
of damped exponential smoothing, utilizing file request frequency and the time since the last re-
quest. According to Psounis and Prabhakar, their randomized replacement scheme is used most
efficiently whenever a large population of objects is accessed “most” frequently. However, as our
cache is developed for service- and data-oriented web services, it is likely that data objects will
follow predictable distributions [Psounis and Prabhakar 2001; Bhattacharjee and Debnath 2005].

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed utilizing the IaaS cloud computing paradigm for the purposes of
caching web and service applications while staying within any cost constraints imposed by the
user. We modeled the cost-performance tradeoff for the resource allocation of such a cache as
a bi-objective optimization problem. Our system evaluation shows that our resource allocation
algorithm allows users to effectively tune performance requirements while staying within budget.

While researching load prediction mechanisms befitting our self-scaling cache, we observed that

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 19

predicting network traffic is of significant interest in the network management domain in order to
implement policies regarding congestion control, admission control, etc. Among the multitude of
approaches that exist for network load prediction, the algorithms that utilize time series, much
like our work, seem worth exploring. We identify a small body of work that looks promising in
the context of our cache. A prediction algorithm by Zhao et al. shows promise for predicting
short term bursty traffic [Zhao and Schulzrinne 2003]. The proposed algorithm takes advantage
of multiple time scales in time series to extract statistical properties of network traffic as opposed
to a single one.

Our system currently only considered the FIFO and LRU replacement schemes. In the future,
we would like to introduce a more cost-aware data placement and replacement scheme. In a
budget-constrained system, we propose assigning each data object a score based on factors that
are not limited to locality. For instance, some data objects may take a significant amount of time
(translating to cost) to produce. Data objects can also vary wildly in size. In certain cases, we
may want to demote a very large object down to S3 even if it is requested often. Prioritizing
cache placement/replacement based on cost/performance metrics at the data object level holds
significant potential for scalable cloud services.

REFERENCES

Amazon EC2. 2013. Amazon Auto Scaling. http://aws.amazon.com/autoscaling/.

Amazon Web Services Inc. 2013. Amazon ElastiCache. http://aws.amazon.com/elasticache.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I., and Zaharia, M. 2010. A view of cloud computing. Commun. ACM 53, 4 (Apr.),

50–58.

Armbrust, et al., M. 2009. Above the clouds: A berkeley view of cloud computing. Tech. Rep. UCB/EECS-

2009-28, EECS Department, University of California, Berkeley. Feb.

Barford, P. and Crovella, M. E. 1998. Generating representative Web workloads for network and server
performance evaluation. In Proceedings of Performance ’98/SIGMETRICS ’98. 151–160.

Bayer, R. and McCreight, E. 1970. Organization and maintenance of large ordered indices. In SIGFIDET

’70: Proceedings of the 1970 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and
Control. ACM, New York, NY, USA, 107–141.

Bhattacharjee, A. and Debnath, B. 2005. A new web cache replacement algorithm. In Communications,

Computers and signal Processing, 2005. PACRIM. 2005 IEEE Pacific Rim Conference on. 420 – 423.

Bicer, T., Chiu, D., and Agrawal, G. 2012. Time and cost sensitive data-intensive computing on hybrid clouds.

In Proceedings of the 2012 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’12).

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. 1999. Web Caching and Zipf-like Distributions:

Evidence and Implications. In Proceedings of Infocom.

Cardosa, et al., M. 2011. Exploring mapreduce efficiency with highly-distributed data. In MapReduce’11. ACM,
27–34.

Chiu, D. and Agrawal, G. 2010. Evaluating caching and storage options on the amazon web services cloud. In
Proceedings of the 2010 11th IEEE/ACM International Conference on Grid Computing, Brussels, Belgium.

Chiu, D., Shetty, A., and Agrawal, G. 2010. Elastic cloud caches for accelerating service-oriented computations.
In Proceedings of International Conference on High Performance Computing, Networking, Storage and Analysis

(SC’10), New Orleans, LA, USA. 1–11.

Chiu, D., Shetty, A., and Agrawal, G. 2011. Evaluating and optimizing indexing schemes for a cloud-based

elastic key-value store. In Proceedings of the 11th IEEE International Symposium on Cluster Computing and
the Grid (CCGRID). IEEE.

Das, S., Agrawal, D., and El Abbadi, A. 2009. Elastras: an elastic transactional data store in the cloud.
In Proceedings of the 2009 conference on Hot topics in cloud computing. HotCloud’09. USENIX Association,

Berkeley, CA, USA.

de Assuncao, M. D., di Costanzo, A., and Buyya, R. 2009. Evaluating the cost-benefit of using cloud computing

to extend the capacity of clusters. In Proceedings of HPDC’09. ACM, 141–150.

Dutta, K., Guin, R., Banerjee, S., Chakrabarti, S., and Biswas, U. 2012. A smart job scheduling system

for cloud computing service providers and users: Modeling and simulation. In Recent Advances in Information
Technology (RAIT), 2012 1st International Conference on. 346 –351.

Eicken, T. V. 2008. The Rightscale Blog. http://blog.rightscale.com/2008/04/23/

animoto-facebook-scale-up/.

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

20 · Faharna Kabir et al.

Fitzpatrick, B. 2004. Distributed caching with memcached. Linux J. 2004, 5–.

Gong, Z., Gu, X., and Wilkes, J. 2011. Press: Predictive elastic resource scaling for cloud systems. In Proceedings

of the 6th IEEE/IFIP International Conference on Network and Services Management, CNSM 2010, Niagara
Falls, Canada.

Karger, et al., D. 1997. Consistent hashing and random trees: Distributed caching protocols for relieving hot

spots on the world wide web. In ACM Symposium on Theory of Computing. 654–663.

Karger, et al., D. 1999. Web caching with consistent hashing. In WWW’99: Proceedings of the 8th International
Conference on the World Wide Web. 1203–1213.

Lin, H., Ma, X., Archuleta, J., Feng, W.-c., Gardner, M., and Zhang, Z. 2010. Moon: Mapreduce on

opportunistic environments. In Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing. HPDC ’10. ACM, New York, NY, USA, 95–106.

Mao, M. and Humphrey, M. 2011. Auto-scaling to minimize cost and meet application deadlines in cloud

workflows. In Proceedings of International Conference for High Performance Computing, Networking, Storage

and Analysis, SC11, Seattle, WA, USA.

Mao, M., Li, J., and Humphrey, M. 2010. Cloud auto-scaling with deadline and budget constraints. In Proceed-
ings of 11th ACM/IEEE International Conference on Grid Computing, GRID 2010, Brussels, Belgium.

Marshall, P., Keahey, K., and Freeman, T. 2010. Elastic site: Using clouds to elastically extend site resources.

In Proceedings of CCGrid’10. 43–52.

Nissen, S. 2003. Implementation of a fast artificial neural network library (fann). Tech. rep., Department of
Computer Science University of Copenhagen (DIKU). http://fann.sf.net.

O’Neil, E. J., O’Neil, P. E., and Weikum, G. 1993. The lru-k page replacement algorithm for database disk

buffering. In Proceedings of SIGMOD’93. ACM, New York, NY, USA, 297–306.

Papadopoulos, A. and Katsaros, D. 2011. A-tree: Distributed indexing of multidimensional data for cloud
computing environments. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third Inter-

national Conference on. 407 –414.

Pham, T. V., Truong, H.-L., and Dustdar, S. 2011. Elastic high performance applications – a composition

framework. In Services Computing Conference (APSCC), 2011 IEEE Asia-Pacific. 416 –423.

Podlipnig, S. and Böszörmenyi, L. 2003. A survey of web cache replacement strategies. ACM Comput.
Surv. 35, 4 (Dec.), 374–398.

Psounis, K. and Prabhakar, B. 2001. A randomized web-cache replacement scheme. In INFOCOM 2001.

Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE.
Vol. 3. 1407 –1415 vol.3.

Ramaswamy, L., Liu, L., and Iyengar, A. 2005. Cache clouds: Cooperative caching of dynamic documents in

edge networks. In Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International

Conference on. 229 –238.

Reddy, M. and Fletcher, G. P. 1998. Intelligent web caching using document life histories: A comparison with

existing cache management techniques. In In 3rd International WWW Caching Workshop. 35–50.

Ruby Documents. Module:kernel (ruby 1.9.2). In http://www.ruby-doc.org/core-1.9.2/Kernel.html#method-i-

rand.

Shen, Z., Subbiah, S., Gu, X., and Wilkes, J. 2011. Cloudscale: Elastic resource scaling for multi-tenant cloud
systems. In Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC’11, Cascais, Portugal.

Vaquero, L. M., Rodero-Merino, L., and Buyya, R. 2011. Dynamically scaling applications in the cloud.
Computer Communication Review 41, 1, 45–52.

Wang, L., Tao, J., Kunze, M., Castellanos, A., Kramer, D., and Karl, W. 2008. Scientific cloud computing:
Early definition and experience. In High Performance Computing and Communications, 2008. HPCC ’08. 10th

IEEE International Conference on. 825 –830.

Wong, K.-Y. 2006. Web cache replacement policies: a pragmatic approach. Network, IEEE 20, 1 (jan.-feb.), 28
–34.

Zhao, W. and Schulzrinne, H. 2003. Predicting the Upper Bound of Web Traffic Volume Using a Multiple

Time Scale Approach. In Proceedings of WWW’03. Budapest Hungary.

Zhu, T., Gandhi, A., Harchol-Balter, M., and Kozuch, M. 2012. Saving Cash by Using Less Cache. In

HotCloud ’12. Boston, MA.

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

Elastic Resource Allocation for a Cloud-Based Web Caching System · 21

Farhana Kabir is a Software Engineer at Hewlett-Packard’s Inkjet Print
Solutions (IPS) Group working on Instant Ink, a worldwide ink subscription
service. She received an M.S. in Computer Science from Washington State
University Vancouver, where her research area was cloud computing, under
the supervision of Dr. David Chiu. She also holds a B.S. in Computer
Science from Purdue University. Her prior industry experience is with Oracle
and Intel Corporations. Currently, she is serving as a Program Committee
member for Data Analytics 2014.

Travis Hall is a Software Engineer working in identity management, web
technology, and cloud computing for VMware. He graduated with a M.S.
in Computer Science from Washington State University, Vancouver where he
researched cloud computing under the supervision of Dr. David Chiu. In
the past he has also worked for ForgeRock, an open source identity manage-
ment stack and under Google’s Summer of Code program on a web service
designed to provide students with course- and assignment-based code respos-
itories. Web technology, cloud computing, and Computer Science education
are among some of his primary interests.

Scott Wallace received his Ph.D. in Computer Science from the University of
Michigan in 2003. He is currently an Associate Professor of Computer Science
at Washington State University Vancouver. His research interests include
Artificial Intelligence, Machine Learning and Computer Science Education.
He has recently received grants from Federal agencies (NSF) and State level
organizations (Washington Technology Center, Oregon Best) for pedagogical
and technical research.

David Chiu is an Assistant Professor and the CS Graduate Studies Chair in
the School of Engineering and Computer Science at Washington State Univer-
sity, Vancouver. He received a Ph.D. in Computer Science and Engineering
from The Ohio State University in 2010, where he worked with Prof. Gagan
Agrawal in the Data Intensive and High-Performance Computing Group. His
current research interests span data-intensive computing, cloud resource al-
location, and data management. He is a member of the ACM, IEEE, and
Upsilon Pi Epsilon.

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.

