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This paper presents a graph-based formalism for an Ontology Based Access Control (OBAC) system applied

to Digital Library (DL) ontology. It uses graph transformations, a graphical specification technique based on a

generalization of classical string grammars to nonlinear structures. The proposed formalism provides an executable
specification that exploits existing tools of graph grammar to verify the properties of a graph-based access control

mechanism applicable to a digital library ontology description. It also provides a uniform specification for con

trolling access not only at the concept level but also at the level of the documents covered by the concepts including
node obfuscation, if required. Authors have shown the need of using both positive and negative authorizations

for effective access control to the DL ontology. However, it gives rise to a decidability problem. A view creation
mechanism and associated algorithm has been presented as a solution to the decidability problem.
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1. INTRODUCTION

A Digital Library supports documents on different subject areas. Here, a set of related documents
is usually referred by a common index. This common index may be formed by a set of common
key words or a common author name or a common subject name etc. A subject area can again
be the subset of another subject area forming a hierarchy of subjects. For example, documents
on ”Balanced Tree” will be the subset of documents on ”Tree” which in turn will be the subset of
documents on ”Data Structure”. Thus a classification structure may be formed for bibliographic
indexing. Dewey Decimal [Dew 2010] Classification(DDC) is the most popular way to implement
bibliographic index. Currently it is used by many countries and available in different languages.
After being developed in 1876 by Mevill Dewey, this hierarchical classification schema has been
revised many times. Here each concept/class/subject area is identified by a number that signifies
the position of the concerned concept in the classification hierarchy. With the advent of semantic
web, a new version of DDC has been published for Digital Library [Dew 2010] and made avail-
able online. Some research effort has also been made to build the taxonomy of Digital Library
using DDC [Saeed and Chaudhry 2002]. Another popular classification scheme is the Library
of Congress Classification(LCC) [LCC 1990]. It goes to a hierarchy of about 7 levels and offers
alphabetic indexing facility. However, both of these classification schemes consider only super-
class/sub-class link among concepts and no other semantic relationship. Moreover, underlying
hierarchical arrangement considers tree structure only (i.e. a concept can have only one parent
concept). For example a book entitled Data Mining for Degradation Modeling will usually be
classified as 006.3 according to DDC classification scheme (i.e. under the subject area computer
science). However, data mining can also be placed under Statistics, i.e. the class number is 31
in DDC. So, it is apparent that an environment is necessary where a subject area may be placed
under more than one parent subject area for proper document classification.

A Digital Library environment also has a dynamic user population mostly accessing from
remote locations. Other than individual identities, these users are also characterized by other

Author’s address: Indian Statistical Institute , 203 B.T. Road , Kolkata, West Bengal, India Pin 700108
This work has been done under the project Controlled Access to Document Over a Digital Library
Ontology Under Multiple inheritance(2012 - 2014), funded by Indian Statistical Institute.

International Journal of Next-Generation Computing, Vol. 5, No. 1, March 2014.



Controlling Access to a Digital Library Ontology - A Graph Transformation Approach · 23

properties that in turn control access to the library. For example, to get access to certain group
of documents, one may have to be a member of a particular user group or must be over certain
age or must have a minimum level of academic qualification. Controlled access to digital library
concepts is a challenging area of research. Any user or group of users, usually designated as
subject must have appropriate authorization to exercise any type of access (Read, Write etc.).
A typical authorization model for a DL must also support varying granularity of authorization
ranging from sets of library objects to specific portions of objects. A good amount of work has
already been done on the secured access of individual objects, particularly for text documents
in XML environment [Carminati et al. 2005][Damiani et al. 2002][Damiani et al. 2000][Gabillon
2005][Bertino and Ferrari 2002][Farkas et al. 2006]. However, being in XML environment, all
these research efforts consider the underlying structure as a tree, i.e. one node in the hierarchy
can have only one parent.

A recent study on the formal model of digital library (DL) has suggested that a DL can be
represented as an ontological structure [Gonçalves et al. 2008], where documents may be classified
and stored against appropriate concepts present in the ontology. Each link/edge between two
concepts offer the semantic relationship between the concepts. However once again, even this
ontological structure needs to support the situation where a concept can have more than one
parent concept and then should also offer controlled access on such a structure. In an earlier
work, the present authors have shown that in a DL ontology if a concept is allowed to have multiple
parents, it gives rise to a flexible access control system hitherto unexplored [Dasgupta and Bagchi
2011]. This multiple parents consideration changes the underlying structure of the ontology
from a tree to a Directed Acyclic Graph (DAG). Consideration of multiple parents has two
distinct advantages over the earlier tree structure. First, new subjects are getting developed as
interdisciplinary areas, a tree structure cannot make proper semantic representation of knowledge
unless a DAG structure is allowed. Once again, Data Mining should be represented as a child
of both Statistics and Computer Science. Secondly, it will be revealed in later chapters that
presence of multiple parents provides the opportunity of categorizing the documents into different
document classes relevant for each parent subject area. As a result, a user accessing the concerned
child concept through a particular parent class would get faster access to the relevant documents,
since less number of documents will be searched. No doubt, such facility and structure are not
available in any existing Digital Library. However, the authors are confident that the present
research effort would offer a semantically enriched Digital Library Ontology.

In order to offer an ontology based access control system applicable to digital library, the
authors have adopted a graphical specification technique based on a generalization of classical
string grammars to nonlinear structures [Corradini et al. 1997]. A preliminary work of this
approach has already been reported earlier [Dasgupta and Bagchi 2012]. This formalism is useful
for following reasons:

(1) To elaborate the properties of a proposed Access Control specification for Digital Library
Ontology

(2) To provide an executable specification that exploits existing tools to verify the properties of
a graph-based access control mechanism applicable to a digital library ontology description.

(3) To provide a uniform specification for controlling access not only at the concept level but also
at the level of the documents divided into document classes placed under different concepts.
It also includes node obfuscation.

Similar graph-based formalism for modeling access control system has already been proposed.
However, the earlier effort considered modeling from subject point of view where subject grouping
(user-groups) and their hierarchies (role hierarchy) have been considered [Koch et al. 2005]. This
research attempt, on the other hand, considers hierarchy of objects in the form of concepts in
DL ontology. So graph transformation against the authorization set of a user would give rise to a
section of the ontology where the concerned user would have access. The present paper discusses
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an environment with single administrator where access of a single user is modeled using the
formalism of graph transformation. However, this model can also be used for user-groups where
the same authorization set will be applicable to all the members of a user-group. Inheritance
of authorization as applicable to user hierarchy like role based system has not been considered
here. On the other hand, object based inheritance as available in an ontological structure has
been discussed. So an access right given to a concept definitely percolates down to the concepts
below the concerned concept following the ontological hierarchy of the Digital Library.

After introducing the research effort in Section 1, Section 2 discusses the relevance of having
multiple parents in a DL ontology alongside other technological preliminaries. Section 3 covers
the access policy specification for the DL ontology. Section 4 deals with the graph transformation
methodology and then provides the detail of the access control model for DL ontology. Section
5 draws the conclusion and also indicates about future work.

2. RELEVANCE OF MULTIPLE PARENT CONCEPTS IN DL ONTOLOGY

As explained earlier, in a DL ontology, a concept in the ontological hierarchy may need to have
multiple parents. In other words, a concept may belong to more than one subject areas. In
order to explain the requirement and to derive a flexible access control system for retrieving
documents from a digital library a running example has been considered. Throughout the paper
the same example will be used. So for example, in a DL ontology a concept named Database
may be reached from Computer Science & Engineering (CS), Geographic Information System
(GIS) or Biology/Bio-informatics (BIO). This consideration changes the underlying structure of
the ontology from a tree to a Directed Acyclic Graph (DAG) as shown in Figure.1. Now, the
three parent concepts of Database may have distinct or even overlapping user communities. As a
result, any document under Database may be of interest to more than one of the above three user
communities. Research work, done so far, for controlling access to a digital library ensures that
a user must possess appropriate authorization to get access to a concept. However, if access to
a concept is granted, all documents under it are available to the concerned user. Some work has
already been done to control access even at the document level. In other words, a user getting
access to a concept may not get access to all the documents covered by that concept, particularly
in a situation when a concept has multiple parent concepts [Dasgupta and Bagchi 2011].

Now, if a concept has multiple parent concepts, members of different user communities corre-
sponding to different parent concepts may like to have access to different sets of documents even
when they are covered by the same child concept. Consequently, the documents covered by a
concept can be categorized into number of document classes. Now the users having authorization
to access some of the parent concepts but not all, will get access to some of the document classes
under the child concept. In other words, a user can access a document only if he/she has ap-
propriate authorization to access the document class in which the document is placed. Figure.1
shows an environment where documents covered under the concept Database may be contributed
by or of interest to any users of the parent concepts. So a document under the child concept
Database can be a member of one or more than one of the parent concepts. Consequently, docu-
ments under a child concept having n parents, can be classified into (2n − 1) categories. So, the
Database concept in Figure.1 can be classified into (23 − 1) or 7 categories. Figure.2 shows the
Venn diagram corresponding to the concept Database having three parent concepts Computer
Science (CS), Geographic Information System (GIS) and Bio-Informatics (BIO) as mentioned
earlier.

Situation depicted in Figure.1 and Figure.2 is very common in case of a digital library and a
document under the concept Database may be of interest to the users of CS/GIS/BIO or any
combinations of them. However, the existing implementations avoid such document classification
possibility and keep the child concept under only one parent concept. Such parent concept
is usually the one that contributes maximum number of documents. Accordingly, the concept
Database in a DL ontology will possibly be kept in the CS path with all documents under it.
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Figure 1. An ontological structure with the concept Database having three parent

Figure 2. Possible document categories under the common concept ”DATABASE”

Any user of GIS or BIO community will directly access the Database concept and would be able
to get all the documents under it if he/she has authorization to access Database concept directly.
The proposed system, on the other hand, provides (23 − 1) = 7 document classes as shown in
Figure.3. Depending on the parent concept where a user is authorized, corresponding document
classes under Database concept and hence the documents covered by them can be accessed.

2.1 Advantages of Document Classification

While a usual ontological structure can control access at the concept level only, availability
of document classification helps in implementing access control even at the document class level
going beyond the concept level. This facility can also provide more flexible access control policies.
Different access control policies may be offered to different user communities. Figure.3 shows the
7 possible document classes under the concept Database. Table I shows the subject areas (parent
concepts of Database) that are associated with each such document class. While class 1, 2 and 3
are storing documents exclusively for CS, GIS and BIO respectively, other classes hold documents
meant for more than one parent node. Now for example, if there are two user-groups UG1 and
UG2, two different access control policies may be adopted. If members of both the groups are
authorized to access the nodes in the CS path only but not of GIS or BIO, at the concept
Database, however, members of two groups may get two different types of access. Members of
UG1 may get access to all documents under document classes 1,4,5 and 7. While documents
under class 1 are exclusively for CS group, documents under the other three document classes
4,5 and 7 belong to more than one subject area. Now adopting a different access control policy,
members of UG2 may get access to documents under document class 1 only. For documents
under class 4.5 and 7, they may get only the abstracts. This is an additional facility that can be
extended in the access control system discussed in this paper. Different access control policies
can be taken for different user-groups depending on their credentials.
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Figure 3. hasContributedTo Relationship for all the Classification

Table I. Document Class
Document Class Access

1 CS

2 GIS

3 BIO

4 CS , GIS

5 CS , BIO

6 BIO, GIS

7 CS, BIO, GIS

2.2 Technological Preliminaries

Different research efforts on ontology based systems and secured access to ontological structure
have already been reported [Kashyap and Sheth 1996][Qin and Atluri 2010][Ouksel and Ahmed
1999]. This section describes the related technologies.

(1) Ontology: The fundamental objective of Ontology is to form a semantic network based
system to organize concepts in a directed graph structure and to provide a mechanism to
search a concept from such a structure through which a given schema element is referred. It
also finds other related elements/concepts in the ontology. So an ontology can be defined by a
directed graph, where each node is a concept. If O is an ontology represented as O = (C,L)
then C is a concept, and L is the link between two concepts representing their semantic
relationship.

(2) Properties: Each ontology has a set of properties, classified into either object property or
data property. Data property describes about the data and Object property deals with the
concepts. All domain property of a concept c can be represented as P (c) = DP (c)

⋃
OP (c)

[Qin and Atluri 2010], where DP (c) is the data property and OP (c) is the concept property.
The proposed DL ontology has two types of links to represent semantic relationships among
nodes: isSubClassOf and hasContributedTo. These are object properties. In Figure.1,
Biology (isSubClassOf) Science, so the OP is (CBiology.(isSubClassOf)) ∈ {Science}.

(3) Concept: Each ontology has a set of semantically related concepts, C(o) = {c1, c2, ...., cn}.
Fig. 1 is showing a Digital Library(DL) ontology, hence
C(DL) = {cdatabase, cbiology, ccomputerSCandEngg, ....., cDigitalLibrary}.

(4) Concept Hierarchy: Ontology structure, as described in this research effort, is a DAG,
where a concept may have more than one parent concepts. Concepts in an ontology o
can be represented as a partially ordered set. Given two concept (Science,Biology) ∈
(DigitalLibrary) where isSubClassOf(Biology) = Science , i.e. Biology is more specialized
than Science. It can also be denoted as CBiology ≺ CScience.

(5) Document Class: Documents in a concept are classified into several classes depending
upon the number of first degree parents. If a concept has n number of parents then the
concept should have (2n − 1) number of document classes. In Figure.1 database has three
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parent concepts. So the documents covered by the concept database has 7 possible document
classes.

(6) Document Annotation: Gonçalves et. al. has published some work on ontological repre-
sentation of digital library [Gonçalves et al. 2008]. Concept of an ontology can be identified
by it’s URI. In the present system, a document is identified by its concept URI with a unique
document class and document-id suffixed.

3. POLICY SPECIFICATION AND AUTHORIZATION INHERITANCE

Authorization specification in the proposed model has the following entities:

(1) Subject : A Subject may refer to an individual user or a user-group. S = {si}, i > 1

(2) Object : An Object can be a document or a document class or a concept or the entire
ontology. O = {oj}, j > 1

(3) Access rights : In this paper, the proposed access control model has considered read and
browse access rights only. A ∈ {read, browse}. A valid user can browse through all the
nodes by default but would need explicit positive authorization to read any document under
a concept. A = {ak}, k > 1. Importance of browse by default has been explained later.
Addition of new documents and modification of existing documents will be considered in the
future extension of the model.

(4) Sign : Sign are of two types, ve+ or ve−, positive for access permission and negative for
explicit denial. V = {+,−} and V = {vt}, t > 1.

So an authorization in the system is defined by a four tuple (s, o, a, v) signifying that subject s
is authorized to access object o with access right a and sign v.

As mentioned earlier, the DL ontology proposed in this paper supports two semantic relation-
ships: isSubClassOf and hasContributedTo.

(1) isSubclassOf : isSubClassOf relationship represents a partially ordered set. In the graph
model, isSubClassOf represents the parent-child relationship. In Figure.1, Biology (isSub-
ClassOf) Science i.e. in the ontology Biology will be a child concept of Science. isSubClassOf
is a non-commutative property. However, this property is transitive. So, if B is isSubClassOf
A and C is isSubClassOf B, then C is isSubClassOf A as well.

(2) hasContributedTo : In the proposed DL ontology a new set of nodes have been added.
These nodes are the document class nodes. hasContributedTo represents the semantic rela-
tionship between a document class and its supporting concept. As discussed earlier, in case
of n multiple parent concepts, a child concept will have (2n − 1) document classes under it.
So, Database concept having three parent concepts Biology , GIS and Computer Sc and Engg
will have 7 document classes under it, as shown in Figure.3. However, Figure.3 shows the
links in such a way as if the 7 document classes are connected directly to the parent classes
with hasContributedTo links. As a matter of fact, the document classes are actually linked to
the child class Database only. Figure.3 showed it differently in order to explain which parent
classes are involved with which document classes. The idea is clearly shown in the associated
Table I. This relationship is also non-commutative.

Generically, the inter-concept relationships applicable to the DL ontology described so far are:

(1) Inclusion(�) : (Ci � Cj) signifies that concept Ci is included in concept Cj . Inclusion
relationship is non-commutative i.e. Ci � Cj 6= Cj � Ci. However, Inclusion relationship
is transitive i.e. if Ci � Cj and Cj � Ck, then Ci � Ck.

(2) Inferable :(=⇒) : If a concept Ci infers the existence of another concept Cj then Cj is in-
ferable from Ci, i.e Ci =⇒ Cj . Inferable relationship is non-commutative , .i.e Ci =⇒ Cj 6=
Cj =⇒ Ci, and transitive i.e. if Ci =⇒ Cj and Cj =⇒ Ck, then Ci =⇒ Ck.
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Since the present paper considers only two types of semantic relationships,isSubClassOf re-
lation between concepts and hasContributedTo relation between concepts and document
classes, Inclusion and Inferable would virtually be similar.
This Inclusion/Inferable relationship provides the facility of authorization inheritance in the
DL ontology. A positive authorization to a concept in the ontology not only gives access to
all the documents under that concept, but also the documents of all the child concepts under
the concerned concept in the ontology. So, an authorization to a concept in inherited by all
the concepts in the subgraph below the concept node originally authorized.

(3) Partially Inferable: (⇀) : If Ci and Cj are two concepts, then Ci ⇀ Cj signifies that the
concept Ci can partially infer the concept Cj . This relationship is also non-commutative
and transitive. This relationship will be particularly important for concepts with multiple
parents. As shown earlier, concept Database is partially inferable from the three parent
concepts. So if a user is authorized to access only the parent GIS, for the child concept
Database the user will inherit the authorization only partially, i.e. it can access documents
under the document classes 2, 4, 6 and 7 only, as depicted in Figure.3 and associated Table
I.

(4) Non Inferable (;) : If a concept Ci cannot infer the existence of another concept Cj , the re-
lationship is non-inferable. So considering the ontological structure non-inferable relationship
signifies that there is no path from concept node Ci to concept node Cj .

The present research effort has assumed that a user can make only read and browse accesses to a
concept node. A read authorization allows access to documents under a concept. A browse access
has been considered by default. A browse access is available only if no explicit authorization is
assigned to a concept node. A negative authorization, however, makes a concept node and the
subgraph below it, unavailable to a user. A default browse authorization is necessary for traversal
through the ontology by any concept search algorithm and for node-obfuscation, discussed later
in this paper.

Discussion made so far indicates that a user accessing the DL ontology will have explicit
authorization at some concept nodes and he/she will also get access rights in some other nodes
by inheritance. If P offers the set of explicit authorizations for a user in the form of four tuples
(s, o, a, v) described earlier, Pc be the complete set of authorizations available to the same user
considering inheritance rules. Without going into the detail of the Policy Algebra as presented by
the authors in another paper [Dasgupta and Bagchi 2012], the inheritance rules may be described
as:

(1) Reflexivity Rule: All tuples in P are inherited by Pc.

(2) Inheritance Rule: If concept Ci infers concept Cj , i.e Ci =⇒ Cj , then any authorization
explicitly specified for Ci will be inherited by Cj .

(3) Override Rule: While concept Ci infers concept Cj , i.e Ci =⇒ Cj , if Ci has positive autho-
rization for certain access right (only read in this case) but Cj has negative authorization
for the same access right (only read in this case) over the same object/concept, then Cj will
retain the negative authorization. Inheritance of positive authorization on Cj from Ci will
not be available to the user. Not only for Cj alone, same negative authorization will be
applicable to all the concept nodes inferable from Cj . In case the negative authorization on
Cj is withdrawn later, the same user will inherit the positive authorization to Cj from Ci

and hence will also have positive authorization on all other nodes inferable from Cj .

(4) Implicit Authorization Rule: As soon as a user logs on to the Digital Library system, the
entire DL ontology with all its concepts will be made accessible to the concerned user. In
other words, the Digital Library, in general, is an open system for access. However, before
making any access, the credentials of the user will be checked to find his/her zone of access
on the ontology. A credential verification sub-system is associated with the Ontology Based
Access Control (OBAC) mechanism. Importance of credential verification has been discussed
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by Qin and Atluri [Qin and Atluri 2010]. For example in Figure.1, a user from Computer
Science & Engineering (CS) may be allowed to access all nodes/concepts inferable from
CS node only. However, initially, at the time of logging on to the system, all nodes were
accessible to the users. So, nodes not relevant to CS will have to be blocked. Hence, other
nodes and paths (in this case, GIS and BIO) will get implicit negative authorization, so
that the document classes not relevant to CS are not accessible to the concerned user. This
requirement, particularly for selective access on a DAG structure justifies the introduction of
negative authorization.

This implicit authorization that causes the introduction of negative authorization, creates a
decidability problem for inferring authorization by inheritance. Referring to the earlier example,
concept Database has multiple parents and the user under consideration is receiving both positive
and negative authorizations for reading documents under Database concept. This situation will
not be a problem for accessing Database concept itself, since it will select the relevant document
classes which will be available to the concerned user. However, for any node/concept inferable
from Database, i.e. for any child node of Database, authorization inherited from above will be
undecidable. Any child node of Database is receiving both positive and negative authorization
for reading. This problem is resolved by creating ontology views. Creation of such views will be
discussed later in this paper.

4. GRAPH TRANSFORMATION AND ACCESS CONTROL MODEL

This section discusses the formal method of graph transformation, i.e. transformation steps and
rules. A formal introduction to Graph based formalism can be found at [Corradini et al. 1997]
and a RBAC implementation of the model has been developed by Koch et. al.[Koch et al. 2005].

4.1 Type Graph and State Graph

Here, the ontological structure of a Digital Library and the access control policies imposed on
it are represented by a type graph. In a type graph the edges are directed, i.e. each edge runs
from a source node to a target node. Each node represents a node type and each edge also has
an edge type. Figure 4, represents the type graph of the proposed access control model for DL
ontology. The type graph provides the node types au, u, p, c and dc. Node type au represents
the administrative user. A node type administrative user may or may not be an actual user of
a digital library but will administer or control all other node types. The model presented in
this paper considers a single administrator, i.e. a centralized ontological structure accessed by
all users of the Digital Library. A distributed environment with multiple administrators will be
considered as a future research effort. Nodes of type u represent users. Node types c and dc are
the concepts and document classes respectively. Node type p represents permissions that cover
all the access rights available along with any other administrative permission needed. Edges from
node type au to node types u, p and c represent the administrative control of administrative user
on other node types. Edge from c to dc represents the document classes under a concept. A
combination of edges that connect u to p and c to p represents the type of authorization given to
a user for accessing a concept. These are all explicit authorizations, inherited access rights will
be discussed later. A self loop on node type c represents the concept hierarchy. A type graph is
a pattern for a class of graphs. A graph G will be a member of this class if each node and edge in
G has a corresponding node and edge type in the type graph. Each such member graph having
more than one instances of the different node types described above represents a system state
and thus called a state graph. Figure 5 represents one such state graph. Figure 5 shows different
instants of the permitted set of nodes present in the system state described. For example, u1 and
u2 are two users. Since the proposed system developed so far is considering only read permission,
the state graph has only one p type node. While user u1 is yet to get any authorization to access
any concept (perhaps a newly registered member of the library), user u2 has got the permission
(read in this case) to access the concept c3. Edges running from one concept to another represent
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au U P C dc

Figure 4. The Type Graph of Concept Hierarchy

Figure 5. The State Graph of Concept Hierarchy

isSubclassOf relationship. So, c2 isSubclassOf c1, c3 isSubclassOf c2 etc. Concept c8 has two
parent concepts c3 and c7. So it has (22 − 1), i.e. 3 document classes dc1, dc2 and dc3 under it.
An edge running from a c type node to a dc type node represents hasContributedTo relationship
as explained earlier.

4.2 Graph Transformation

This section briefly introduces graph transformation rule. Formal introduction can be found in
[Corradini et al. 1997]. Application of such graph transformation in a role-based access control
environment has been discussed in [Koch et al. 2005]. As mentioned earlier, a graph represents a
state of the system. Application of an access control policy, specified by a graph transformation
rule, causes a change in system state given by a graph morphism {r : L → R}, where both L
and R are graphs, called left-hand side and right-hand side respectively. So, rule applied to a
graph G causes a transformation {r : L → R} defined by a injective partial mapping of sets of
nodes and edges of L and R. Mapping rule from L to R always maintains the types and labels
of corresponding nodes. Nodes and edges of L for which no partial mappings are defined are
deleted by the rule during transformation and will not be present in R. Nodes and edges of L for
which partial mappings are defined, are preserved and have corresponding images in R. Nodes
and edges of R not present in L are newly created by the rule applied.

4.3 Administrative Operations on a Concept Hierarchy using Graph Transformations

Authors of this paper have already done some work on access control model for an ontology based
digital library [Dasgupta and Bagchi 2011], [Dasgupta and Bagchi 2012]. This section will show,
how graph transformation rules can represent the basic administrative operations relevant to such
access control model. Since, this paper considers a centralized digital library ontology under a
single administrative domain, a single administrative user type node au has been shown in all the
graphs. Future work will involve multiple sites and ontology views which would demand multiple
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Figure 6. Add user

Figure 7. Remove User

Figure 8. Assign Permission

administrative domains. Administrative operations considered here are add user, remove user,
assign permission, revoke permission, add concept and alter concept. Algorithm 1 provides the
necessary functions for these administrative operations.

(1) Add User : The graph transformation rule for add user has an empty left − hand side,
while on the right− hand side, the administrator adds a new user. Figure 6 represents the
scenario. A new user is created with no permission attached (i.e. with an empty permission
set associated).

(2) Remove User : Remove user is also another trivial rule. Figure. 7 shows the remove user
operation. this operation removes a user by deleting a user type node. That’s why, the
left− hand side of the Figure shows a user type node while the right− hand side is empty.
Permission set attached to the removed user would automatically be removed as well.

(3) Assign Permission : This operation grants a permission (only read in this case) to a user.
Figure. 8, shows the assign permission operation. Left−hand side proposes an authoriza-
tion to attach permission type node p to the user type node u. Hence, the administrative
node au proposes a link from node p to node u, shown by a dotted line. If this permission
assignment is allowable, then after the graph transformation, edge connecting p and u will
be permanent, as shown on the right− hand side.

(4) Revoke Permission : This operation revokes a permission from an user. So an edge from a p
type node to an u type node as shown on the left − hand side of Figure. 9, is removed by
the graph transformation rule, leaving only the user u on the right− hand side.

(5) Add Concept : Addition of a new concept to the ontological hierarchy is done by add concept
rule. Any new concept added to the concept hierarchy, will be connected to its immediate
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Figure 9. Revoke Permission

Figure 10. Add Concept

parent(s) node(s) and immediate child(children) node(s) by isSubClassOf links. So the rule
should also introduce the required edges during {L→ R} transformation. In addition, each
new concept added to the ontology will have at least one document class (dc type node)
created and connected to the new concept by hasContributedTo relationship. However, if a
new concept is added as a parent of a child concept Ci already having one or more parent
concept(s), more than one new document classes will be created depending on the number
of parent concepts of Ci. Figure.10 shows the addition of a new concept C8 as the parent of
child concept C5 that already has three parent concepts. Left side of the state graph shows
that the administrator node au is proposing addition of a new concept C8, which will be
the child concept of C1 and the parent concept of C5. So, from ontological perspective C5

isSubclassOf C8 and C8 isSubClassOf C1. The proposed concept and the required edges
have been shown by dotted line on the left-hand side. After transformation, right-hand side
shows the corresponding permanent edges.

Before addition of the new concept C8, concept C5 had three parent concepts, C3, C4 and
C7. So there were (23− 1) = 7 document classes under C5, shown by the nodes dc1 to dc7 on
the left-hand side of the Figure.10. Now, after addition of concept C8 as the fourth parent
concept of C5, there will be (24 − 1) = 15 document classes under C5, creating additional
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Figure 11. Alter Concept

document classes dc8 to dc15 as shown on the right-hand side of Figure.10.

(6) Alter Concept : Since this research effort is dealing with library application, deletion of
concept (usually representing a subject area) has not been considered. However, the concept
hierarchy or the ontology structure may change. Alteration of Concept actually means the
restructuring of the concept hierarchy. It is always possible that a concept/subject area in a
Digital Library, as a result of its development, encroaches into the area of another subject. For
example, a particular style of storage and retrieval of geographical entities using computers
ultimately gives rise to Geographical Information System (GIS). So, GIS becomes a branch
of both Geography and Information Technology. Hence in the DL ontology, alternation
needs to be made to show GIS concept as a child of both Geography as well as Information
Technology. In other words, an existing concept may change its position, thereby changing
its parent(s) and child(children) concepts and also causing changes in the document classes
under it. Figure.11 represents a state graph on the application of alter concept rule. As
shown on the left-hand side, concept C9 which was originally a child of the concept C8 with
no child concept of its own, has now been placed as child of C1 and parent of C5 disconnecting
it from C8. Proposal made on the left-hand side, has been made permanent on the right-hand
side by graph transformation. In addition, the concept C9, being added as the fourth parent
of the concept C5, gives rise to additional document classes dc8 to dc15 under C5 because
of the same reason as explained in the add concept section. However, concept C9 retains its
own document class dc20 even after transformation.

4.4 Decidability Issues and Relevance of View Creation

Problem of decidability for inferring authorization has been an area of interest for many re-
searchers. As a result, ample study has been made to establish the theoretical foundation of the
decidability problem. Earlier under implicit authorization rule, the authors have admitted that
for the presence of both positive and negative authorization to a child concept node Ci having
multiple parents, inherited authorization to all nodes under the concept Ci will be undecidable.
In order to avoid this problem, the authors have proposed the creation of user-specific ontology
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Algorithm 1 Administrative Operations
1: function AddUser(user)
2: if user /∈ USER then
3: USER← USER

⋃
user

4: Permission = Permission ∪ {User → ∅}
5: end if
6: end function
7: function RemoveUser(user)
8: if user ∈ USER then
9: USER← USER\user

10: Permission = Permission\{User → Permission(user)}
11: end if
12: end function
13:
14: function AddConcept(Concept, ListOfParents, ListOfChildren)
15: if Concpet /∈ O then . Where O is the Ontology
16: Create(Concpet);
17: end if
18: for each Parent from ListOfParents do
19: Add(Concept, isSubClassOf, Parent)
20: end for
21: Classify(Concept, ListOfParents) . hasContributed links will be created
22: for each Child from ListOfChildren do
23: Add(Child, isSubClassOf,Concept)
24: getListOfParent(Child) . Finds the complete list of parents including new Concept
25: Classify(Child, ParentList);
26: end for
27: end function
28:
29: function AlterConcept(Concept, ListOfParentConceptAdd, ListOfParentConceptRemove, ListChildConceptAdd,

ListChildConceptRemove)
30: for each parent from ListOfParentConceptRemove do
31: remove(concept, isSubClassOf, parent );
32: end for
33: for each child from ListChildConceptRemove do
34: remove(child, isSubClassOf, concept );
35: ListOfParentOfChildNode← getListOfParent(child) . Find the complete list of parent including new

Concept
36: Classify(Child, ListOfParentOfChildNode);
37: end for
38: AddConcept(Concept, ListOfParentConceptAdd, ListChildConceptAdd)
39: end function
40:
41: function Classify(Concept, parentConcept )
42: n = ParentConcept.size();
43: classes← (2n − 1);
44: for each class from classes do
45: class←(Hash Appropriate Parent Class) . Appropriate Class will be selected from the Combination of

immediate Parent Classes
46: Add(ParentConcept, hasContributed, class)
47: end for
48: end function
49: function AssignPermission(user, Permission )
50: if Permission /∈ PERMISSION(user) then
51: PERMISSION(user) = PERMISSION(user) ∪ {Permission)
52: end if
53: end function
54:
55: function RemovePermission(user, Permission )
56: if Permission ∈ PERMISSION(user) then
57: PERMISSION(user) = PERMISSION(user)\{Permission)
58: end if
59: end function

views. Some researchers have already worked on the creation of ontological views and processing
queries on them [Noy and Musen 2004] [Seidenberg and Rector 2006]. A user specific view will
keep only those concept nodes where the concerned user has positive authorization (no negative
authorization) either explicitly specified or obtained by inheritance. After his/her first log-in,
the ontology management system after verifying the credentials of the concerned user will create
the relevant view and will transfer it to the client system of the user. Since the policy set for the
concerned user and hence his/her set of permitted concepts will remain unchanged till there is
any change in the user’s credential, the concerned user will access only his/her view in his/her
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own system without accessing the original ontology. This approach will avoid the undecidability
problem, since the user will have access to permitted set of concepts only that have positive au-
thorization and will appear to be a open system to the user. However, if a user updates his/her
credentials, his/her policy set will also change and thus the permitted set of concepts. Ontology
management system will then create a new ontology view for the concerned user.
This approach may create a confusion that creation of user specific views, instead of application
specific views as done in standard databases, would give rise to too many ontology views. The
research group engaged in this effort have found that most of the users for a digital library are
making remote accesses. The idea of user specific view is to transfer a particular view to the
client end. It will be created only once and would be transferred to the client machine so that
further queries from the same client can be made on the view at the client end itself. The view
will be changed only if a user earns different set of authorizations or there is a change in the
ontology structure. Depending on the environment, a user specific view at the client end can as
well be considered as a site specific serving a group of users. So, the entire procedure is equally
applicable for a group of users as well. The access policies will then be applicable to the entire
group and all members of the group will inherit them under the assumption that all the members
of a user group will have a common credential set. The View-Creation Algorithm is given below:

Algorithm 2 View Creation algorithm

1: Input : Set of Ontology data O and User u
2: Output : User Specific view Ō
3: function createView(O, u);
4: Ō = {}; . Initialization of Empty Ontology
5: for i = 0 to n do
6: color[i]←WHITE; . color is the node coloring to differentiate visit. We have use

three variation of color i.e. WHITE , Gary and Black.
7: mCountNode[i]← 0; . mCountNode is Hash list to store Number of visit remaining

for a multiple parent Concept.
8: mStatusNode[i]← 0; . mStatusNode is a Hash List to store the permission status

flag.
9: end for

10: repeat
11: for each i
12: v ← Oi ;
13: OntologyAccess(v, u); . Initialization of Ontology Access Algorithm.
14: i+ +;
15: until i � n;
16: end function
17: function OntologyAccess(v, u) . Recursive function of Pre-order Traversal
18: color[v]← GRAY ;
19: mCount[v] ← GETPARENTS(v);
20: α ← GetXacmlService(v, u);
21: π ← getListOfChildren(v);
22: δ ← 0 ;
23: passover ← 0
24: if (π.size() = ∅

∧
color = Black) then

25: removeNode(v, Ō) . Remove node will remove the node from view.
26: else if then
27: Ō ← v;
28: end if
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29: if α 6= true then
30: v ← nodeObfuscationService(v)
31: end if
32: for i = 0 to π.size() do
33: passover ← 0
34: µ← π[i];
35: mCount[µ] ← GETPARENTS(µ);
36: if mCount[µ] � 1 then
37: mCount[v]−−;
38: if α 6= true

∧
mStatusNode[µ] 6= 1

∧
mCount[µ] 6= 0 then

39: Remove Link of v ;
40: RemoveHasContributed(µ, Ō);
41: else if α 6= false then
42: passOver ← 1
43: else if α 6= true

∧
mStatusNode[µ] 6= 0

∧
mCount[µ] � 0 then

44: RemoveHasContributed(µ, Ō);
45: µ← nodeObfuscationService(µ)
46: end if
47: else if mCount[µ] � 1

∨
passOver 6= 0 then

48: if α 6= true then
49: δ ← 1;
50: if getListOfChildren(µ) = ∅ then
51: color[µ] ← Black;
52: else if getListOfChildren(µ) 6= ∅ then
53: Ψ ← getListOfChildren(µ)
54: n = Ψ.size()
55: flag ← 0;
56: repeat
57: p← Ψ[i]
58: if color[p] = Gray then
59: flag ← 1;
60: end if
61: i+ +;
62: until (flag! = 1 | n = 0)
63: if flag = 0 then
64: color[µ]← Black;
65: end if
66: OntologyAccess(µ, u)
67: end if
68: end if
69: end if
70: end for
71: end function

Before explaining the view creation algorithm, some basic operations done on the ontology for
creation of such view need to be explained. These operations are:

(1) Branch Removal: Whenever a user tries to access a node/concept, security policy server
returns the corresponding authorization of that user for that particular node/concept. Re-
peating the discussion made earlier, it is important to note that the authors have considered
that a library would be accessed primarily in an open environment. In other words, unless
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Figure 12. Sub-Graph Removal

otherwise blocked, i.e. denied access, a user will have positive authorization, by default, to
all concepts with their documents as soon as he/she logs in successfully. A user may get
a negative authorization to a node/concept by analyzing his/her credentials and assigning
explicit denial to some nodes/concepts, or by inheritance from parent nodes. However, if a
user has negative authorization (implicit or explicit) to a concept node, all nodes inferable
from that node will also inherit that negative authorization. The branch removal algorithm
during user-specific view creation will remove those nodes of the ontology that have nega-
tive authorization for the concerned user. The associated links are also removed. Thus, the
sub-graph of the ontological structure that the concerned user is not supposed to access for
negative authorization would not be present in his/her view.
Figure.0?? explains the situation. Left side of the figure shows the ontological structure before
branch removal. In Figure.0??, node-1 has positive authorization. Hence all nodes below the
node-1 (i.e. inferable from node-1) will inherit the same positive authorization. Now, node-5
has an explicit negative authorization. So once again, nodes inferable from node-5, i.e. nodes
6, 7 and 8 will inherit the same negative authorization. Branch removal algorithm will remove
these nodes and associated links to generate user-specific view, as shown in the right-hand
portion of the Figure.0??. As mentioned earlier, +ve authorization is available by default,
hence specifying -ve authorization should have been sufficient. However, in Figure.0??, +ve
authorization has been shown for the purpose of clarity only. It will be shown later that even
explicit +ve authorization will be required in some other operation.

(2) Concept Obfuscation: No doubt, branch removal algorithm retains only those concepts/nodes
in the user specific view for which the concerned user has positive authorization. As a result,
the undecidability problem is avoided. However, the same algorithm may leave the view as
a collection of disconnected sub-graphs. Node obfuscation is required to solve the problem.
Figure.13 explains the situation. Left side of the figure shows the ontological structure before
node obfuscation. In Figure.13, node-1 has positive authorization. Hence all nodes below the
node-1 (i.e. inferable from node-1) will inherit the same positive authorization. Now, node-5
has an explicit negative authorization. So once again, nodes inferable from node-5, i.e. nodes
6, 7 and 8 should inherit the same negative authorization. Now nodes 6 and 8 are again
assigned with explicit positive authorization. So branch removal algorithm would remove
nodes 5 and 7 with associated links and leave nodes 6 and 8 as isolated nodes away from the
original ontological structure. To avoid such a situation, node-5 is retained in the view to
connect nodes 6 and 8. However, since the concerned user has a negative authorization for
concept represented by node-5, it is obfuscated. Right side of the Figure.13 shows the user-
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Figure 13. Node Obfuscation

specific view after node obfuscation. While an user query traverses the ontological structure,
it identifies the existence of node-5 but doesn’t get its identity or cannot access any document
under it. This problem may occur for controlled access to any ontological structure and it is
quite common for semantic web applications [Qin and Atluri 2010][Kaushik et al. 2005]. The
authors of this paper are not sure whether such situation would occur in a Digital Library
application, never the less decided to extend the facility. However, node obfuscation would
occur only if explicit +ve authorization is allowed which may create one or more nodes with
-ve authorization in between two positively authorized nodes.

(3) Partial Access: This situation happens when a child node/concept has multiple parents and
the child node is partially inferable from all of them. Referring back to Figure.1, concept
Database has three parent concepts, CS, GIS and BIO. So, Database is partially inferable
from all three of them. Now, if from the credentials of a user, administrator infers that he/she
can access only the CS concept as the parent of Database concept, then the system would
impose implicit negative authorization on concept GIS and BIO. Now the concerned user
for its positive authorization to CS and inherited positive authorization to Database, will get
access to document classes 1, 4 and 5 only, as shown in Figure.3 and associated Table I. So,
the branch removal algorithm will remove the GIS and BIO nodes and their children nodes
other then Database and the nodes directly inferable from Database concept. Continuing
the example, document class nodes of Database concept not relevant for CS concept will
also be removed, keeping only the CS related document classes (i.e. document classes 1, 4
and 5). As a result of this branch removal, in the resultant view, the children of Database
concept will only have positive authorization inherited from Database which would also have
only positive authorization inherited from CS.
Figure.14 shows an example ontology where for a particular user, +ve and -ve authorizations
are clearly indicated in Figure.(a) on the left side. Figure.(b) on the right side shows the
created view along with the obfuscated nodes.

The important steps of the view creation algorithm are listed below.

Input: . Digital Library Ontology O, credential and access rights of a user u.

Output: . User’s specific Ontology view.

(1) A node will be added to user’s view once it is visited.

(2) If a node is not a leaf node, algorithm will start traversing to it’s child. This algorithm follows
pre-order traversal rules.
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Figure 14. Creation of View

(3) If a leaf node which has single parent and does not have authorization for the user u, the
node will be deleted from user’s view with all its document classes.

(4) If a node has single parent, has negative authorization for user u and it is not a leaf node,
then the node will be obfuscated. Its document classes will not be available to the concerned
user.

(5) If a node has single parent and has positive permission for user u, all its document classes
will be added to user’s view.

(6) If a node Ci has multiple parents, then the node will be traversed completely to reach its
child nodes only after visiting Ci from all its parent nodes to find the inherited authorizations
from all its parents.

(7) If a node Ci has multiple parents and if anyone of the parent has positive authorization, node
Ci will inherit positive authorization which will also be propagated to the child nodes of Ci.
Other parent nodes of Ci having negative authorization will be deleted from the view.

(8) If a node Ci has multiple parents and all parent nodes have negative authorizations, then Ci

will be obfuscated and traversed. Similarly the negative permission will be propagated to its
child nodes unless there is any explicit positive authorization.

(9) Starting from the first node with negative authorization, all nodes inferrable from it will be
obfuscated till a leaf node is encountered. Then the entire path with negative authorizations
starting from the first node mentioned to the leaf node will be deleted from the view. However,
if any node in between including the leaf has a explicit positive authorization, the intermediate
nodes with negative authorizations will be obfuscated.

(10) The algorithm will continue till all the nodes of the ontology are visited.

Process of view creation has made the following assumptions:

(1) There are sufficient number of users in the system so that any concept on the ontology is
accessed by at least one user.

(2) Any node pair in the ontology is present in at least one view.

The above assumptions give rise to the following properties of the views created:

(1) Completeness: All user specific views taken together represent the entire ontology with all
its concepts and inter-concept relationships.

(2) Finiteness: Number of views generated by view creation algorithm is finite. If the ontology
has n concepts, number of views can maximum be 2n. Actual number of views will be much
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less since each created view will depend on the connection structure of the ontology hierarchy
and all nodes are not reachable/inferable from all other nodes.

(3) Safety: A view created against a given set of authorizations is unique. Credentials of a
user give rise to a user specific policy set that in turn decides the authorizations. If the
authorizations are different, different sets of concepts will be available with different sets of
inter-concept relationships and hence would generate different views. If two views for two
users are found to be same, they should belong to same user group. This is a necessary
safety property for view creation. If same view can be created by more than one set of
authorizations, security policies can be comprised.

5. CONCLUSION AND FUTURE SCOPE

Since the present research effort considers a library ontology, no removal of concept (subject area)
has been considered. However, an alter concept and/or add concept operation can not only add
a new concept, it can also change the document classes and redistribute the documents among
those classes. So basically, after each add concept and/or alter concept operation, document
classification is done implicitly and hence no special operation like add classification or alter
classification is required. Identifying the document class of any document is done by the algorithm
run by the underlying IR engine. Placement of a document to a particular document class is
done by a document hashing mechanism against the unique id assigned to each document stored
in the library. Such implementation details are not within the scope of this paper. It has already
been discussed by the authors in [Dasgupta and Bagchi 2011]. This paper has highlighted the
importance of view creation. Transfer of views to users’ systems, reduces unnecessary loads
to the ontology server and also ensures users’ access to permitted set of concepts only. This
paper discusses control of access for reading only. Future research effort would be on addition of
documents and also updation of existing documents if necessary. This paper has not considered
the implementation details which will be covered separately later.
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