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Sensor networks represent an important component of distributed pervasive infrastructure. A key challenge facing
sensor networks is cost-efficient collection of data streaming from these distributed data sites. In this paper, we
present a mobile data mule-based sensor data collection approach employing K-Nearest Neighbours queries. We
propose a novel 3D-KNN algorithm that dynamically computes nearest sensors spread within a 3D environment
around the data mule. The 3D-KNN algorithm incorporates a novel boundary estimation and neighbour selection
algorithm to compute the nearest neighbour set. Further, we propose a neighbour prediction algorithm that
computes sensor locations within the vicinity of the data mules’ trajectory. We simulate the proposed 3D-KNN
algorithm using GlomoSim validating its cost-efficiency by extensive evaluations. Results of our simulations
conclude the paper.

Keywords: Sensor networks, query-based data collection, 3D-KNN algorithm,intelligent data
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1. INTRODUCTION

Wireless sensor networks (WSN) have gained popularity in recent years with increased amount of
research focus in this area [Culler et al. 2004; Shen et al. 2001]. Sensors are tiny battery-powered
devices distributed within an area working together to achieve single or multiple goals [Shen, et
al. 2001]. Sensor networks enable acquisition of data which previously was expensive, difficult or
even impossible [Chu et al. 2006]. The inherent characteristics of sensor nodes represent them as
a distributed source of data. This has led to wide acceptance of WSN across various application
domains including military applications, environmental monitoring, habitat monitoring, logistic
support, human-centric applications, smart homes etc [Arampatzis et al. 2005; Gharavi et al.
2003; Xu]. The exponential increase in WSN deployment has resulted in exponential increase
in the amount of data generated by these smart sensing devices [Culler, et al. 2004; Shen, et
al. 2001]. However, due to processing and battery limitations of sensor nodes, energy-efficient
data collection from these distributed data sources has evolved into a key challenge. In this
paper we propose a cost-efficient approach to collect sensor data using intelligent mobile devices
namely ”data mules”. Advancement in technology and increased adaptation of mobility-based
services/applications has led to an extremely large growth of mobile device population [Ahonen
2010; Alexander 2006]. These devices act as an excellent platform for processing and communica-
tion, thus creating a heterogeneous sensor network architecture- higher capacity mobile devices
(data mules) interacting with low-powered sensor devices performing data dissemination, pro-
cessing, collection and delivery. Our vision of employing day-to-day mobile devices as mobile
data mules is presented in Figure 1. We propose a system framework that can be implemented
on any mobile device platform enabling sensor discovery and data collection.

We extend our system framework to propose K-Nearest Neighbour (KNN) query-based solution
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Figure. 1: Intelligent Heterogeneous Sensor Network

for cost-efficient sensor data collection. The mobile data mule employs KNN queries to dynam-
ically compute a cost-efficient set of sensor nodes around it. Further, we propose a prediction
algorithm to compute list of predicted neighbours along the data mules’ path. The KNN compu-
tation is performed on-the-fly and does not require any global sensor topology information. Our
proposed mobile data mule-based KNN algorithm is implemented over a three dimensional (3D)
sensor space rather than most existing approaches that deal with two dimensional (2D) spaces.
Our motivation to investigate a 3D sensor network originates from recent research that proves
sensors are spatially distributed across 3D domains [Ganesan et al. 2004] as against 2D terrains
assumptions in earlier works [Jea et al. 2005; Kansal et al. 2004; Liu et al. 2005]. We term our
mobile data mules intelligent due to their ability to make data collection decisions on-the-run
based on location, movement pattern and sensor information.

We use the term ”cost-efficiency” to represent a function of cost parameters namely: (1)
communication (energy); (2) query processing latency (performance); (3) overall network lifetime
(total energy consumed). To the best of our knowledge, this work is a pioneering effort in exploring
KNN query-based sensor data collection using mobile data mules in a three dimensional sensor
network. The key contributions of this paper are:

> A system framework that enables mobile data mule-based data collection in sensor networks
with no prior network topology knowledge and no special hardware requirements

> A 3D-KNN algorithm employed in a three dimensional space to compute cost-efficient set of
nearest neighbours surrounding the data mule

> A neighbour prediction algorithm that further improves the cost-efficiency of the nearest
neighbour set by computing future nearest sensor neighbours along the mobile data mules’
path.

The rest of the paper is organized as follows. In section 2, we present related work. Section 3
presents a motivating scenario and the system framework for sensor data collection using intelli-
gent mobile data mules. Section 4 presents the proposed 3D-KNN algorithm used to compute the
k nearest neighbours surrounding the data mule and the neighbour prediction algorithm. Section
5 presents implementation details of the mobile data mule framework and evaluation results of
3D-KNN algorithm. Section 6 concludes the paper with remarks on future extensions.

2. RELATED WORK

Data collection approaches can be broadly classified into: (1) Data collection using static nodes
(2) Data collection using mobile elements [Chakrabarti et al. 2003; Jain et al. 2006; Jea, et
al. 2005; Kansal, et al. 2004; Ren et al. 2006; Shah et al. 2003; Somasundara et al. 2006].
Directed Diffusion is a popular static node-based data collection paradigm [Intanagonwiwat et
al. 2003]. Directed Diffusion employs multi-hop data collection strategy, resulting in network
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flooding leading to broadcast storms [Tseng et al. 2002]. To overcome broadcast storms cluster-
based approaches [Abbasi et al. 2007; Moussaoui et al. 2005; Younis et al. 2002] have been
proposed. Though clustering reduces network flooding, the communication overheads involved
in cluster maintenance and the resulting energy consumption is very high. Wireless transmission
is the primary energy consuming operation in a sensor [Pottie et al. 2000]. Hence, reducing
communication across the entire network is a key design consideration for data collection ap-
proaches. This design consideration has motivated the use of mobile data collectors for sensor
data collection [Chakrabarti, et al. 2003; Jain, et al. 2006; Jea, et al. 2005; Kansal, et al. 2004;
Ren, et al. 2006; Shah, et al. 2003; Somasundara, et al. 2006]. The literature further discusses
mobility-based data collection approaches.

The use of mobility for data collection can be classified into: (1) Random Mobility (2) Predicted
Mobility (3) Controlled Mobility. Shah et al. [2003] and Jain et al. [2006] propose data collection
using random mobility. They propose a three- layered architecture over a two dimensional sensor
network. The middle layer comprises mobile elements that are equipped with specialized hardware
to communicate with sensor nodes in the surrounding. The data collectors presented in the paper
are animals or cars that move around the sensor network terrain. Chakrabarthi et al. [2003]
propose predicted mobility-based approach. Predicted mobility is the term used to describe
mobile elements whose movement pattern is fixed and does not change. An observer (e.g. a
shuttle bus) collects data from the sensor nodes while moving around the sensor field. The
observer is mounted with special designed equipments to communicate with the sensor nodes.
Kansal et al.[2004], Jea et al.[2005] and Somasundara et al. [2006] propose the use of controlled
mobility for data collection. They employ specially designed mobile robots that move along a
pre-defined path controlled by the user collecting sensor data. The performance improvements of
employing mobile elements for data collection over static node-based approaches are evident from
the literature. The above proposed approaches require specialized hardware for data collection
based on application requirement in one way or another. This is not practical in real-world
pervasive environments. Further, our proposal builds on using controlled mobility, except in
our case, we explore a K-Nearest Neighbour query based mobile data collection over a three
dimensional sensor network.

K-Nearest Neighbour (KNN) queries are a class of queries employed to retrieve spatially dis-
tributed data [Mouratidis et al. 2005; Mouratidis et al. 2005]. A sensor network is one typical
example of spatially distributed data. KNN queries have been traditionally used in databases that
requires maintenance of complex index structures to identify nearest neighbours [Liu, et al. 2005].
KNN query processing in sensor networks can be broadly classified into infrastructure-based and
infrastructure-less approaches. The work presented in [Lee et al. 2005; Liu, et al. 2005; Soheili
et al. 2005] are infrastructure-based approaches that work over fixed network dynamics requiring
maintenance of complex index structures (network topology structure). Adapting this approach
in sensor networks is expensive due to the amount of communication required to maintain the
index structures. Winter et al. [2005] propose a partial infrastructure-based two dimensional
KNN algorithm namely KBT. KBT uses ” TreeHeight” [Winter, et al. 2005] to estimate the KNN
boundary. The TreeHeight is a maximum hop distance that the KNN search query propagates
from the point-of-interest? . It uses restricted flooding and timers to achieve energy-efficient query
processing. The primary factor for energy consumption in KBT is flooding caused by the use of
fixed hop count (determined by network topology information). Hence nodes that are not nearest
neighbours deplete energy broadcasting messages. Wu et al. [2007] present an infrastructure-free
itinerary based KNN (DKINN). The DKINN propagates the KNN query Q from the sink to
a node closest to the point-of-interest. While the query routes to the nearest node, it collects
network information along the path. This information is used to estimates the KNN boundary.
The DKINN approach depends on pre-computed trajectory for data forwarding [Niculescu et al.

2The point-of-interest is a location within the sensor network. The K-Nearest neighbours are computed around
the point-of-interest.
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2003]. The trajectory provides the path the query needs to take to reach the node nearest to the
point of interest. Sensors require specialized hardware (parallel array antennas) [Niculescu, et al.
2003] to pre-compute the trajectory which may not be always feasible. Hence DKINN applies
only to a specific class of sensors.

The two approaches KBT [Winter, et al. 2005] and DKINN [Wu, et al. 2007] use the base
station (sink) as a central point for query origination which reaches a sensor close to the point-
of-interest. In our proposed approach, the mobile data mule is both the centre point for query
origination and the point-of-interest. The mobile data mule employs KNN to select a subset of
sensor nodes around it. The cost of collecting data from this subset is minimum compared to
any other subset of nodes around the data mule. The novelty of our proposal lies in dynamically
computing cost-efficient nearest sensors around the mobile data mules using 3D-KNN.

3. SENSOR DATA COLLECTION USING MOBILE DATA MULE: SYSTEM FRAMEWORK
3.1 Motivation

There are about 4 billion mobile phones®[ITU 2008] currently in use in the world. The profuse
existence of mobile phones contributes to a ubiquitous mobile data-access network. Most mobile
phones have a talk time of two and a half hours with only 50% of the talk time being utilized
leaving enough energy to perform other operations (processing/ communication). A survey con-
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Figure. 2: A Scenario Description using Intelligent Mobile Data Mule

ducted over three days at info security 2006 at London [Alexander 2006], resulted in discovery of
more than 2000 Bluetooth enabled devices in visible mode. This laid the foundation to our vision
of using day-to-day computing devices as mobile data mules for sensor data collection. The use
of such devices as mobile data collectors allow application developers to access sensor data which
previously required specially designed data-sink infrastructure. Our approach is software-based
allowing it to be implemented on any mobile devices with communication capability. This pro-
posed approach can be extended to wider range of sensors with the feasibility of Zigbee based

3We use mobile phone as a classic example of widely available mobile device platform in day-to-day environments.
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sensors [Zigbee August 2009] and Zigbee based mobile devices [Zigbee September, 2009]. A moti-
vating scenario is depicted in figure 2. In the rest of the paper, we use the terms ”data collector”
and ”data mule” synonymously to represent data collection using mobile devices.

3.2 System Architecture

Figure 3 illustrates the proposed system architecture. The system architecture has two compo-
nents namely the Mobile-Device platform and the Data-Collection platform. The Mobile-Device
platform comprises four main components namely: (1) mobile device-specific capability; (2) Lo-
cation Manager; (3) Communication Manager; (4) Profile Manager.

The mobile-device-specific capabilities are features that are available on the mobile device
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Figure. 3: Architecture of the system on the mobile node

platform. For example, the in-built GPS receiver of a mobile device is a mobile-device specific
capability. The Location Manager performs the function of communicating with the device spe-
cific positioning hardware providing the Data-Collection platform with location information. The
communication manager interfaces with the mobile device’s communication hardware exposing
them to the Data-Collection platform. E.g. if the mobile device is a mobile phone quipped
with Bluetooth and Wireless LAN hardware, the communication manager exposes these two
communication technologies to the Data-Collection platform. Finally the Profile Manager in-
terfaces with mobile device’s working states i.e. information that indicates if the mobile device
is available to perform data collection operations.The Data-Collection platform comprises the
Communication-Interface, Message-Parser, Node-Discovery, Context-Manager, Controller and
Mobile Device-Specific plug-in. The communication-interface is responsible for deciding the com-
munication mode required for node discovery, data collection and delivery. The message-parser
is responsible for parsing messages that are exchanged between the data mule and the sensor
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node or other data mules in the surrounding. There are two types of messages, control and data

Algorithm 1 : Node Discovery/Management Module
Require: Node List Ly (Node Repository).

1: Obtain state from Profile-Manager

2: if state then

3:  scan for nodes into new list Ly (new)
4:  for each node n in Ly(new) do

5: if n not exists in Ly then

6: add n to Ly

7 else

8: Initiate connection with n

9: if connection = false then

10: inactive_count for n =+ 1

11: if inactive_count = MAX_ALIV E then
12: declare node inactive

13: end if

14: end if

15: end if

16: end for

17: end if

18: Update Ly with Sink

Figure. 4: Pseudo Code - Node Discovery/Management Module

messages. The control messages handle single bit messages used in collecting initial sensor infor-
mation or instructing sensor to perform certain operation. For example, requesting the sensor to
enter a sleep state to save energy. The data message is used to offload the data collected by the
sensors. The node-discovery module handles node discovery and maintains a node repository.
The node repository has the list of discovered nodes along with other node information required
to make data collection decision. The node-discovery module synchronizes its information with
the sink which is also updated by other data mules. The pseudo code of the node-discovery
operation is presented in figure 4. The node management is capable of identifying inactive node.
The value MAX_ALIVE in the node-discovery algorithm is an application defined constant that
defines the number of attempts before which a mobile data mule declares a sensor node inactive.
This creates node-inactivity problem i.e. a sleeping node might be reported inactive. To solve
this, node information is synchronized with the centralised sink which solves the ambiguity be-
tween sleeping nodes and in-active nodes by comparing information obtained from other mobile
data mules. The system framework is decentralised and hence has the capability to function
without the availability of centralised sink. The context-manager handles context collection and
storage that are used for computing data collection decisions. The context information includes
location updates received from the Location Manager, mobile data mules’ trajectory and sensor
context information (Sensor sleep schedule, location, Received Signal Strength) obtained from
node repository. The mobile-device-specific plug-in includes components that can be integrated
into the data-collection platform based on mobile device specific capabilities. E.g. if the mobile
device is a robot that moves within a building collecting sensor data, the mobile device-specific
plug-in can incorporate an adaptive motion control algorithm that controls the speed of the mo-
bile robot within the vicinity of sensor nodes. Finally the controller component which is the brain
of the Data-Collector platform handles communication between each component and compute
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data collection strategies. It is responsible to discover, collect and deliver sensor data to the
centralized sink.

4. 3D-KNN ALGORITHM

Section 3 presented our motivation and the system framework that can be implemented on
any mobile device platform enabling intelligent sensor data collection. Our key contribution is

Sphere

4 Enclosing the

KNN Boundary

Mobile Data
Collector

3D Area

7

Figure. 5: A Three-Dimensional representation of the KNN Boundary Estimation Algorithm

employing KNN queries to compute cost-efficient set of sensors neighbouring the mobile data
collector.

4.1 Definition and Network Model

An illustration of the 3D sensor network model with a mobile data collector is depicted in figure
5.

Definition 1: (K nearest neighbour): Given a set S of n sensor nodes, location L of mobile data
collector, find a subset S’ of k’ nodes where S’ < § and k> < n such thatV k’e S andV n € § -
S’, DIST (k’, L) < DIST (n,L) and DIST (k’,L) < KNN_.BOUNDARY. The set S is the set of
all nodes in the network. From the set S, we compute a subset S’ of k’ nearest neighbour that
fall within the KNN boundary. For the rest of the paper, we use the notations S to represent
the set of sensor nodes within the entire area and S’ to represent the subset of nodes within the
estimated KNN Boundary.

4.2 3D-K Nearest Neighbour

The 3D-KNN algorithm comprises three phases namely: (1) estimating KNN boundary (2) pre-
routing or initial information collection and (3) plane rotation and cost-efficient nearest neigh-
bours selection.
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4.2.1 8D-K Nearest Neighbour: Boundary Estimation Phase. The KNN boundary estimation
is one of the challenging steps in an infrastructure-less sensor network. In our model, the initial
query Q is propagated from the mobile data mule which is located at the point-of-interest. The
boundary estimation computes a sensor boundary around the data mules’ location. The subset
S’ presented in the definition is depicted as a dotted circle in Figure 5. With the assumption
that nodes are uniformly distributed within the 3D area, we use (1) to determine the density of
nodes within the sensor network. We further use (1) to determine our KNN boundary (A) with
known node-density Np and sample size k’. Given a 3D building terrain, the computed KNN
boundary is represented as a cube whose volume is less than or equal to the volume of the entire
3D deployment area. Since radio range is represented as a sphere with radius R, we use equation
(2) to compute the radius of the sphere covering the &k’ nearest neighbours.

. No of nodes n
Node Density Np(per m3) - Volume of the Terrain (1)

Area A * 3
. _  JArea AT 3 9
Radius R N (2)

4.2.2 8D-K Nearest Neighbour: Pre-Routing Phase. Once the KNN search boundary is esti-
mated, the pre-routing phase is employed to collect the following sensor information

> Node Location

> Signal-to-Noise Ratio (a cumulative function for each hop from mobile data collector to
destination sensor node)

Given our assumption that no infrastructure information is required, the pre-routing phase is
used to collect initial information required to compute the set K of k energy-efficient nearest
neighbours such that K C S’. Each node that receives the initial messages forwards it to its
neighbours and sets a timer which is computed as a function of the KNN-BOUNDARY and the
nodes distance from the mobile data collector. The timer is employed to achieve data aggregation
saving additional communication. We use the notation K to represent the cost-efficient set of
selected nearest neighbours from S’.

4.2.3 38D-K Nearest Neighbour: Cost-Efficient Neighbour Selection. At the completion of the
pre-routing phase, initial node information i.e. node location and signal-to-noise ratio are avail-
able. We propose a plane rotation (mapping) algorithm that maps sensors in different planes onto
a single reference plane. The mapping algorithm employs a metric based on sensor parameters
namely signal-to-noise ratio (SNR) and distance to compute a single-valued output. We term
this metric "KNN-METRIC”. The KNN-METRIC provides a novel way of mapping sensors in
different planes based on their characteristics including channel quality, interference, obstacles
and distance. The technique of mapping sensors in different planes onto a single reference plane
based on KNN-METRIC is called plane rotation. The reference plane is the plane on which the
mobile data collector moves.

The KNN-METRIC is presented in (4). The distance D is computed using (3) while SNR
is collected during pre-routing phase. The SNR and the distance parameters are inversely pro-
portional i.e. higher SNR represents better channel quality and lesser energy consumption while
greater distance estimates to higher energy consumption. c is a constant and «, 8 are pre-assigned
weights. To compute a value for the constant ¢, we assume an ideal case (from simulation out-
comes) where KNN-METRIC = 1, with a = 0.4, 8 = 0.6 and ideal case values for R and SNR
being 100 and 60 respectively. We determine c from (5).

Distance D = v/(Xo — X1)2 + (Ya — Y1)2 + (Zy — Z,)? (3)
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a*x SNR
KNN - METRIC = _— 4
. [ * Distance D “)
0.6 % 100
=1 — =2,
c=1* 60 20 (5)

The KNN-METRIC provides a value that can be used to map the sensors around the data
mule based on sensor characteristics. This mapping is used to compute the set K that comprises k
sensors that are close to the data mule and are cost-efficient such that £ < &’ and K C S’. Current
related work focus on 2D planes relying only on Euclidian distance. Though the extension of
distance-based approaches is straight-forward in 3D planes, it necessarily is not energy-efficient.
For example, consider a sensor A at a distance d in a plane below the mobile data mule and
sensor B at distance dI in the same plane. Given the channel quality (computed using SNR) for
B is better than A and distance d1 > d, the distance-based approaches would choose A over B
while the KNN-METRIC would choose node B as B is the cost-efficient neighbour. Moreover,
current approaches consider error-free communication channel which does not hold true in real-
world scenarios. Our approach can be easily extended to incorporate more sensor metrics which
can improve cost-efficiency of data collection. For example, including sensor residual energy
parameters into the KNN-METRIC results in a set of sensors, whose distance from the data
collector is minimum, have good communication channel quality and enough energy to successfully
complete the data collection run. Further, the selection parameters can be correlated to improve
sensor selection accuracy.

4.2.4 8D-K Nearest Neighbour: Neighbour Prediction. At the completion of the selection
phase, the mobile data collector computes a set K of £ nodes ordered by the KNN-METRIC.
Based on our initial assumption that the mobile data collector is intelligent, the neighbour pre-
diction algorithm iterates through the selected nodes computing the distance between each node
k and mobile data collector’s future locations (based on trajectory) i.e. locations during time T,
T2 ... Tx.

Definition 2: (Predicted Set of Nearest Neighbours P): The predicated set of nearest neighbours
P is a set of p nodes where P X K such thatVp € P and Vk € K, DIST (p, Lt) < DIST (p, Lt;)
where it = 1 to z

L represents the data-collectors current location at time T and L; represents future locations
at time Tq, T5...Tx. A node p is said to belong to the set P if and only if its distance D from
the data collector’s current location L at time T is the less than its distances D1,D5, D3... Dx
at times Ty, To, T3...Tx respectively. The rest of the nodes in the set K whose distances are not
minimal at time T are added to mobile data collector’s predicted next hop collection set Kp. The
set P is an optimized energy-efficient set of sensor nodes from which data is collected by spending
minimal overall energy. The prediction algorithm computes distance between sensor locations
(obtained from KNN query) and mobile data mules’ future locations. Hence actual SNR values
may not be available. Hence the prediction algorithm ignores the SNR values while computing the
predicted set P. Once the mobile collector reaches the next location Lx at time Tx, it piggy-backs
the list of nodes whose distances were pre-computed with the new KNN pre-routing broadcast
message. Each node receiving the messages checks its nodelD. If the nodelD is not found, it
employs the KNN pre-routing phase to propagate the message to its neighbours. If the nodeID
exists in the list, it checks for any neighbours that are part of the list. If a neighbour exists, it
forwards the message to the neighbours and sets a timer. On timer expiry, the aggregated data
is returned to the mobile data collector. If none of its neighbours exist in the list, the sensor
responds with the actual data that needs to be delivered. The 3D-KNN neighbour prediction
algorithm is presented in Figure 6.
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Algorithm 2 : 3DKNN Algorithm to predict energy efficient set of neighbours
Require: K, set of k nearest nodes, mobile nodes future Location in a Vector V', sensor node
Location locy,.

1: for each node k£ in K do
2:  current_metric = current_metric
for each L in V do
Compute a max flow value between two nodes.
Assign the computed max flow value as an epitome
end for
if min_metric = current_metric then
Add node to P
else
10: Add node to Pri
11:  end if
12: end for

© P NP Rw

Figure. 6: 3DKNN Algorithm to predict energy efficient set of neighbours

5. IMPLEMENTATION AND EVALUATION
5.1 Prototype System Implementation

The prototype of the mobile data mule was implemented on a robot controlled by a laptop
equipped with 802.11 and Bluetooth communication capabilities. The robot used for implemen-
tation is a commercially available off-the-shelf robot (ER1) developed by Evolution Robotics
[Robotics 2010]. ER1 has a set of programmable APIs that provide an interface to control the
drive-motors, web-cam and the IR-sensors. The implemented system framework on the robot was
tested in a building. The robot has the ability to navigate itself using localisation information
obtained from Ekahau positioning engine (EPE) [Ekahau]. EPE is a software based location
system that provides location information using triangulation technique. It triangulates location
information by measuring signal strengths between access point and Wi-Fi card equipped on the
robot. The data collection framework was implemented using Java on the laptop. We use the
BlueCove [BlueCove], Bluetooth programmable interface to facilitate communication between
data mule and sensors.

The sensor node used for the prototype implementation is the Mulle [Eliasson et al. 2008].
Mulle is a generic wireless sensor node using Bluetooth for communication, developed at EISLAB,
Lulea University of Technology, Sweden. It is powered by a lithium ion battery ranging from 120
mAh to 2200 mAh. The Mulle can work with variety of sensing devices that can be connected
to the expansion port. The sensors are named in the format <sensor-id, location> . This
enables the mobile data mule to collect sensor information like name, location and received
signal strength (RSSI) by performing a Bluetooth inquiry rather than establishing a connection.
We use Bluetooth serial port profile for data exchange. The reason behind using serial port profile
is the simplicity of setting up and using the RFCOMM between data mule and Mulle. The data
received from the Mulle is time stamped and stored in the data mule which is later delivered
to the base station. Our framework can be applied directly to any mobile devices with varying
communication capabilities e.g. mobile phones can use GPRS to deliver data to the base station.
Figure 7 presents screen shots of our prototype implementation.

The prototype presented is a proof-of-concept implementation employing mobile data mules
as sensor data collectors within a Bluetooth based sensor infrastructure. To validate our pro-
posed KNN query based cost-efficient data collection, we have implemented our data collection
framework in GlomoSim [Gerla et al. 1999], a sensor network simulator. The simulation and
evaluation details are presented in the following section.
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Figure. 7: The Data Mule Framework implemented on a mobile robot platform and Screenshot of the Data
Collection interface running on the Data Mule

5.2 Simulation Evaluations

To prove the cost-efficiency of the proposed KNN query-based data collection using mobile data
mules, we validate the efficiency of our proposed 3D-KNN algorithm. The 3D-KNN algorithm
has been implemented in a GlomoSim [Gerla, et al. 1999]. GlomoSim is a parallel discrete-event
system simulator based on Parsec [Parsec]. GlomoSim has the features of simulating mobile
wireless sensor nodes. It incorporates a number of mobility models used to implement the mobile
data mules movement within the sensor network. For the simulation we use the parameters
presented in table 1.

Table I: Simulation Parameters

Parameter Value

Number of Nodes (N) | 20 to 200.

Area Size (Ar) 1000 x 1000 x 1000
Radio T, Power 15 dBm

k’ Number of Nearest nodes
c 2.5

Our sensor network is assumed to be distributed within a building (3D area). Neighbour dis-
covery is done at runtime by the sensors, though it is a not a requirement to process the KNN
queries. This approach allows the 3D-KNN algorithm to adapt to changing network infrastruc-
ture. The sensor nodes are assumed to be static with the mobile data collector moving along
a known path. To validate the performance of the proposed 3D-KNN algorithm, we evaluate
the algorithm over three criteria’s namely: boundary estimation, query processing efficiency and
energy consumption.

5.3 Boundary Estimation Algorithm Evaluation

The KNN query is disseminated into the sensor network by the mobile data collector. The
boundary area is estimated by the mobile data collector based on the sample size k’. It is
important to evaluate the boundary estimation algorithm as the boundary area computed needs
to cover at least k£’ sensor nodes. The result of evaluation is presented in Figure 8. As the result
show, for given sample size k’, the estimated boundary covers more than required &k’ sensor nodes.
Moreover, the key performance outcome is the size of the set S’ (subset of N) which is contained
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Figure. 8: Nodes Found within the KNN Boundary for request K using 3D-KNN algorithm

to cover at least k’ sensors rather than covering the entire sensor network. This validates the
efficiency of using node density-based sensor boundary estimation approach employed by the
proposed 3D-KNN algorithm.

5.4 Query Latency

The query latency is the time taken to process a KNN query for varying sizes of k’. To validate the
query performance of the proposed 3D-KNN algorithm, we compare the results of our simulations
with KBT [Winter, et al. 2005]. As mentioned in the literature, KBT employs fixed tree height
and hence does not adapt well for changing network topologies. The result of our simulation
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Figure. 9: 3D-KNN vs. KBT: Query Latency Comparison

is presented in Figure 9. A trend line projected on outcomes show exponential increase in the
query processing time for KBT while 3D-KNN is more linear. This is primarily attributed to the
efficient boundary estimation that adapts its outcomes based on sample size k’.
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5.5 Energy Consumption

The energy consumption using the proposed 3D-KNN algorithm to facilitate mobile data collec-
tion is a key metric to validate the proposed approach of using KNN to collector sensor data.
The mobile node in this simulation moves to a location, initiates a KNN query, computes the
cost-efficient set of k& sensor nodes and collects sensor data from them. The mobility-based ap-
proaches previously discussed in the literature do not explore KNN query-based cost-efficient
data collection area computation. Hence, we compare the result of our simulation with static
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Figure. 10: -KNN vs. KBT: Energy Consumption Comparison

KNN query processing approach KBT [Winter, et al. 2005].The result of the simulation is pre-
sented in figure 10. Trend lines projected over the results indicate exponential increase in energy
consumption using KBT while 3D-KNN based data collection has a linear increase. The energy
efficiency of the proposed 3D-KNN algorithm is primarily attributed to: 1) Proposed boundary
estimation based on network density that covers at least &’ sensors hence reducing the amount of
message broadcast in the network; 2) Plane rotation and k nearest neighbour selection based on
the KNN-METRIC choosing sensor nodes that are both closer and energy-efficient (better com-
munication channel). To further evaluate the plane rotation and neighbour selection based on
the proposed KNN-METRIC, we evaluate the proposed neighbour selection algorithm (employed
by the mobile collector to compute dynamic cost-efficient collection area comprising k sensors)
against a basic implementation of KNN query processing algorithm.The basic implementation
does not incorporate SNR heuristics while computing nearest neighbours and considers only Eu-
clidean distance. We have implemented the fixed tree height approach employed by KBT in the
basic KNN approach. The result of this simulation is presented in Figure 11. The highlighted
part of the graph illustrated by dark circles indicates the metric values computed using the two
approaches. Investigating the results, node 9 which is at a longer distance than 8 (deduced from
basic KNN metric) would be much energy efficient nearest neighbour as its SNR and distance
metric is higher than node 8. The similar outcome is observed for nodes 5 and 6. This evaluation
proves and validates the energy efficient k nearest neighbour selection employed by the mobile
data collector.

5.6 Energy Consumption of Individual Sensor Node

Figure 12 presents the result of the energy consumption of individual sensor nodes after a round
of data collection using the mobile data collector. The mobile data collector employs the 3D-
KNN algorithm to compute a dynamic collection area. The simulation was run over a 1000 x
1000 x 1000 area with 80 sensor nodes and the mobile data collector issuing KNN request from
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different locations within the sensor network with k& = 10. The simulation did not use a grid
based approach and hence the plots X, Y does not represent exact nodes locations. We used a
3D bar chart generated using MATLABS to present the uniform and efficient depletion of sensor
energy across the entire network. The nodes with nil energy usage were the border nodes which
did not fall within the path of the mobile data collector. The simulation results presented was
averaged from 10 simulation runs. The result presented in figure 12 further validates the energy
efficiency of the proposed 3D-KNN based mobile data collection approach.

5.7 Energy Consumption with Neighbour Prediction

The energy consumption results presented in Figure 10 and Figure 12 does not employ the pro-
posed neighbour prediction algorithm. To validate the proposed neighbour prediction algorithm,
we compare the overall energy consumed by the entire sensor network over a single mobile data
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Figure. 13: Simulation Setup with Nodes and Mobile Collector Trajectory

collection cycle with and without neighbour prediction. The prediction algorithm is employed
by the mobile data collector over the result-set obtained from the KNN query. Figure 13 gives
an overview of the simulation setup with the mobile data collector moving in a known trajectory
stopping at positions identified by the triangle.The prediction algorithm uses the mobile data
collector’s future locations at time T, Ts... Ty to compute nodes distances from the data collec-
tors future locations. The proposed algorithm’s energy efficiency is validated by the simulation
results in figure 14. The outcome clearly exhibits great energy savings using neighbour prediction
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Figure. 14: Energy Consumption output with and without nearest neighbour prediction

attributed to the pre-computation of future sensor neighbours within the vicinity of the mobile
data mules’ path. Employing the prediction algorithm allows the mobile data collector to fur-
ther optimize the energy consumed during data collection. This is validated by the simulation
outcomes.

6. CONCLUSION

In this paper we have proposed a novel 3D-KNN query-based cost-efficient approach for sensor
data collection using intelligent mobile data mules. The 3D-KNN algorithm accounts for sensors
distributed across three dimensional spaces taking sensor characteristics into consideration while
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computing data collection decisions. The mobile data mule employs the 3D-KNN algorithm to
compute a cost-efficient set of sensors surrounding it. The overall energy spent in collecting
data from this cost-efficient set of sensors is minimal. Further, the data mule employs neighbour
prediction algorithm that enables it to determine future sensors location information along its
path. The proposed 3D-KNN algorithm requires no prior network topology knowledge. The
proposed system framework has been implemented on a mobile robot based data mule as a
proof-of-concept. The 3D-KNN based sensor data collection algorithm has been simulated and
its cost-efficiency over large-scale sensor deployments has been validated. The 3D-KNN algorithm
clearly has improved performance compared to KBT, hence validating our proposal of using KNN
queries as a cost-efficient sensor data collection approach. We have also validated the proposed
neighbour prediction algorithm. The result of the predicted approach shows clear savings in
energy compared to the non-predicted approach. The results are promising and we look to
extend our work by incorporating sensor errors (location error, SNR error) that can influence
data collection decision. We would like to model and simulate the influence of these errors in real-
world situations and explore the benefits of incorporating these errors for sensor data collection.
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