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Due to the increasing availability of competing service providers and the decreasing costs of moving services online
recent trends in information systems development direct focus towards leveraging complex distributed system

interconnections. To that end service-oriented architectures and web services have become commonplace in busi-

ness and government application development because they facilitate rapid development and deployment through
the use of standards that document interfaces and the message exchanges. However, the hierarchically related

standards have complex documented interconnections and dependencies. The configuration of the services and

the messages they exchange must adhere to the mandates established in these documents, yet the guidance offered
by each specification is often too expansive for software developers to understand without assistance. Incorrect

configurations can lead to messaging configurations that result in software vulnerabilities, system unavailability,

service disruption, and ultimately loss of protected information. In this paper, we devise a Security Meta Language
for secure web service communication based on a dynamic modeling framework. The framework models expert

knowledge gathered from the intensive analysis of message protection protocols specified in web service standards.

We outline a process to create and modify secure messaging directives through a case study investigating X.509
PKI tokens and digital signatures for SOAP communication.
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1. INTRODUCTION

Service-oriented architectures (SOA) are a popular choice for systems development given the now
mature concepts of service discovery, resource sharing, always-on service availability, and cloud
computing. The interconnection of complex distributed systems has increased the availability of
competing service providers and decreased the costs of moving services online, exploiting web
services to promote rapid development of these integrated systems. Web services are built on
standardized interface specifications to facilitate their integration and efficient execution. Busi-
nesses and governments use these specifications to find, evaluate, select, and integrate services,
combining internal and external services to form their SOAs.

Communication between service endpoints frequently occurs over un-trusted networks meaning
that end-to-end message security is unreliable or impossible given certain circumstances. Tradi-
tional mechanisms to secure communication rely on transport layer protection mechanisms such
as SSL and HTTPS. Web services communicate through HTTP requests and complex invocation
patterns, including task delegation, and delayed responses can cause the existing transport layer
protection mechanisms to be insufficient to meet security needs. In response, significant message
protection mechanisms have been created and codified as web service standards [W3C, 2012].

These standards, collectively referred to as WS-*, enhance the basic messaging of web services
through extensions to their underlying core communication platform. One core WS-* standard is
the SOAP messaging protocol, a base framework enabling web services to store application related
data in a message payload and isolate security related extensions into a message header [W3C,
2007]. The message header is extensible, meaning that new standards can institute added features,
and features can be mixed together to provide different configurations of security. The number
of extensions, and their complex inter-referencing, make their correct and proper instantiation
problematic. A tremendous amount of information must be reviewed and checked to ensure proper
message configuration. Incorrect specifications can lead to disastrous application configurations
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leading to software vulnerabilities, system unavailability and service disruption, and ultimately
loss of secure protected information.

In this paper, we introduce a security meta-language (SML) that directs the configuration
of secure SOAP messages to reduce the burden associated with ensuring proper specifications.
We define a dynamic model to specify security directives regarding organizational expectations
for secure message communication. Our model builds on earlier work in which we modeled the
interrelationships of WS-* standards [Baird and Gamble, 2011]. The Security Meta Language
we express in this paper provides end-users with a novel language to represent the stringent
standards-based requirements required by different application scenarios (e.g. specific security
policies) with the fluidity of web services (e.g. unknown SOAP message payloads and security
token values). The language provides two major contributions for SOAs: (1) a mechanism to
explicitly visualize the configuration of secure SOAP messaging, and (2) a framework for WS-*
dependencies in secure messaging to be understood, justified, and adjusted for different archi-
tectures. As such the SML is a dynamic method for adapting security directives as application
needs change or errors in published messaging standards are manifested.

In the next sections, we review research related to a general investigation of web services,
modeling concepts, and security profiles in the Unified Modeling Language (UML), which we use
to define our framework. We overview the static portion of our security meta-model framework
[Baird, 2011], which includes the UML modeling artifacts we define to notate the WS-* stan-
dards. We then define the dynamic aspect of the framework that specifies directives for secure
message configurations, producing the SML. Finally, we use the framework and SML to demon-
strate attaching different security token types to messages, addressing different security control
requirements.

2. RELEVANT WORK

This work leverages the benefits found in Web Services, their standards, the Unified Modeling
Language, and other related research in security control modeling, which we review in this section.

2.1 Web Services

Service-oriented architectures with web services have become commonplace in business and gov-
ernment application development. Differing types of web enabled online services have evolved
over time including web applications, software as a service, and cloud computing. In this paper,
we primarily focus on traditional web services, that is, software functionality deployed onto an ap-
plication server framework that abstracts internal functionality behind a standardized interface.
These services have been researched from various security perspectives, including those involving
service-oriented architectures [Rahman and Schaad, 2007], [Sitaraman, 2010], mobile applications
[Ahmed, et al., 2014] and service clouds [She, et al., 2010], [She, et al., 2011]. The Web Services
Architecture [W3C, 2004] outlines a set of service characteristics that enable these complex func-
tionalities to exist including deployment descriptors and messaging protocols as performed by
government entities and commercial industries. Thus, web services exist for a multitude of do-
mains including energy trading, healthcare systems, e-commerce, telecommunications, banking,
and scientific research systems.

A variety of organizations have collectively authored standards documents to define web ser-
vices, the messages they exchange, and the protocols for their complex invocations addressing
issues of security, transactions, service-level agreements, and discovery. These organizations in-
clude the World Wide Web Consortium (W3C), the Organization for the Advancement of Struc-
tured Information Standards (OASIS), the Object Management Group (OMG), xmlsoap.org,
IBM, Microsoft, and Oracle, to name a few examples. Though web services may use different
communication patterns, the de facto mechanism through which web services communicate is the
Simple Object Access Protocol (SOAP) WS standard [W3C, 2007]. We visualize the connectivity
of the web services, clients, the standards organizations, and messages in Figure 1. Clients and
web services communicate with each other by crafting Extensible Markup Language (XML) mes-
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sages that are requests and responses. Each message must conform to a set of standards drafted
by the agreed upon organizations.

Figure 1: Web Service Messaging Architecture.

Frequently the standards are expressed in-part with XML [W3C, 2008], a hierarchical lan-
guage with elements and defined data structures. There are several different communication
patterns that are available for configuring a web service architecture [W3C, 2004] including re-
quest/response, conversation, delayed-response, and one-way. SOAP establishes a mechanism for
the web services and clients to refer to object data and encode it in XML to communicate over
the Internet. Other protocols, such as REST and JMS for example, are outside the scope of
this research. However, any XML-based communication protocol can benefit from the framework
described in this paper since it resolves many issues regarding the complexity for configuring
secure web service introduced by employing WS-* standards.

Shown in Figure 1, the SOAP message header is a portion of each web service communication
that allows for different security extensions to be expressed and attached. We refer in this text
to the different extensions as security controls due to the target of our Security Meta Language.
These security controls are more detailed and message-specific than those found in the NIST
SP800-53 for federal information systems [NIST, 2013]. One such example of a security control is
the application of a digital signature to the message. The problems with using SOAP messaging
given the differences among desired controls stem from the extensible nature of XML and the
complexity of the WS-* standards. In previous research ([Baird and Gamble, 2010], [Baird and
Gamble, 2011]), we outlined some of the difficulties of integrating WS-* standards into service
oriented architectures [Carlo, Albers, and Hao, 2006], [Hepner, Gamble, and Gamble, 2006],
[Bhargavan, et al., 2004]. In summary:

—a multitude of different standards exist, all of which must be reviewed by an expert architect
to understand their applicability and interrelationships,

—each standard frequently defines multiple security controls within a single document, for ex-
ample WS-Security defines a variety of different security token types each for different needs,
and
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—many standards lack concrete directives for universal applicability, as is the case with XML-
Encryption, which can be used to encrypt different portions of a SOAP message.

The requirements of a software architect or security engineer to understand the connectivity
among and between the different standards is quite exhaustive for a correct and complete in-
tegration of secure SOAP messaging. In many cases it is simpler to say a toolkit supports a
specific standard, and that a standard integrates the use of said toolkit, but this support may
not be coupled with verification. A more exhaustive mechanism is needed to check and under-
stand that the messages each web service exchanges is both syntactically and semantically correct
with regards to the application of security controls. Some existing research in this area of XML
investigation does exist. Specifically, the TulaFale language [Bhargavan, et al., 2004] targets the
XML WS-Policy statements of web services using pi calculus to verify the code generates SOAP
messages with the desired properties as stated in each policy document. A disadvantage of this
approach is the limited support for the different WS-* standards. Furthermore, an intermediary
script language must be learned by any user of the system, increasing complexity while reduc-
ing the general level of understanding that a software developer has about what the detailed
configurations of the WS-* standards intend.

2.2 Unified Modeling Language

The Unified Modeling Language (UML) is a multi-level, object-oriented modeling framework
providing a specification language for real-world objects built on top of a higher-level metaclass
framework. UML has structures for describing object-oriented concepts of classes with attributes
and operations (via class diagrams) as well as other complex structures including use cases and
state charts. UML allows us to model the messages that web services use for communication.
As such UML is a natural choice to model web services and SOAs due to the ease with which
components can be diagrammed, the interfaces can be modeled, and their interactions can be
explicitly sequenced.

Although UML models can be stored in an encoded XML notation [Object Management Group,
2007], UML itself does not explicitly include the necessary framework to model the descriptive
documents of XML specifications (schemas). UML is built upon a multi-level modeling paradigm
that specifies core language features including entities, relationships, attributes, and names. The
core language is then refined to produce usable modeling artifacts, such as a class, that a software
developer can use in a model or diagram. Generating a new diagram uses artifacts from the meta-
class structure. A software developer can then model real-world objects by creating class diagram
objects inside a UML diagram.

Since UML is extensible, it enables developers to extend core modeling functionality by ex-
pressing new artifacts known as stereotypes. Multiple stereotypes are collected into a UML profile
for easy documentation and distribution among software developers. In UML, a stereotype is
defined by extending (through a concept of generalization) from the core UML meta-class to
refine and create new modeling constructs. Standard UML modeling practices dictate that us-
ing a stereotype to describe a class is accomplished through a lower case text annotation of the
stereotype name surrounded in gullimets (e.g. <<stereotypeName>>). That is, defining a new
UML stereotype is accomplished by a UML Profile specification of linked generalizations, and
using the stereotype is done through tagging it with the appropriate stereotype name.

UML Profile specifications are quite common within the UML modeling community as a re-
sult of their extensive nature and capacity to model complex domains. Such profiles have been
authored for Service Oriented Architectures [Object Management Group, 2009], CORBA Compo-
nent Models [Object Management Group 2011], and Enterprise Application Integration [Object
Management Group, 2004]. We define the Security Meta Language (SML) using a new UML Pro-
file specification. The SML builds on top of an existing static model we have defined [Baird and
Gamble, 2011], which in part relies on the modeling of an XML Schemas specification developed
by Carlson [Carlson, 2008]. We review both of these works in detail in the next section.

International Journal of Next-Generation Computing, Vol. 5, No. 3, November 2014.



A Security Meta-Language for SOAP Messaging · 253

2.3 XML Schema Profile

Carlson [Carlson, 2008] developed a UML profile specifically for modeling general XML schemas.
The profile specifies extensions to common XML Schema constructs for data types. SOAP mes-
sages and the WS-* standards are frequently defined through the specification of these data types.
These include XML simple types, complex types, enumerations, sequences, and attributes. Table
1 serves as a mapping between the targeted schema element types we use in this paper.

Table I: XML Profile Stereotype names and corresponding XML Elements

Stereotype Name Metaclass Inheritance Corresponding XML

choice Class xsd:choice

sequence Class xsd:sequence

complexType Class, DataType xsd:sequence

simpleTyple DataType xsd:simpleType

any Property xsd:any

attribute Property xsd:attribute

content Property xsd:simpleContent

element Property xsd:element

Because WS-* specifications use XML Schema to define their data types and messaging config-
urations, the XML Schema profile is a natural choice to incorporate in a modeling framework for
WS-* standards. However, Carlson’s profile has major limiting factors: (1) an inability to model
multiple Schema files simultaneously, (2) a lack of support for modeling security related concerns,
and (3) the inability to track cross-document dependency links. In [Baird and Gamble, 2011], we
extend the functionality of the Carlson UML profile by expanding the number of standards the
framework supports, and by more rigidly defining the process through which users interact with
the WS-SMF.

Overall, our WS-SMF models highly complex WS-* specifications because we deliberately
structured it to represent each XML Schema in exhaustive detail. We review the relevant portions
of our static model later in this paper. By retaining a link to the WS-* standard Schema
specification our Security Meta Language (SML) remains standards-centric, and relevant to how
the standards are actually used in real-world systems. A complete model of the WS-* standards
for SOAP, XML-Encryption, XML-Signature, WS-Trust, and WS-SecureConversation has been
specified using the modified-Carlson model in [Baird, 2011]. The model tracks cross-specification
links based on the documentation of the WS-* standard and their intended use.

2.4 Security Modeling

In this section, we review related security modeling efforts that target or use different WS-* stan-
dards specification. Meta-modeling within WS architectures traditionally concerns the generation
of semantic information to attach to existing WS standards documents. A variety of current stan-
dards can accomplish the level of annotation that services require. Work in [Lautenbacher and
Bauer, 2007] establishes a meta-model across the different WS-* semantic standards (OWL-S,
WSDL-S, WSMO, SWSF, etc.) to join different conceptual semantic models. Although these
standards are XML in nature, the model targets the higher-level concepts across the different
languages. Modeling elements and associations are presented in UML; however, no extensions to
the base UML meta-model are created. Other approaches to model the different types of semantic
information that can be attached to WS include examining the different technology layers asso-
ciated with services and the types of standards that can be applied across them [Thuraisingham,
2005].

Researchers examining SOA security issues have focused on mitigation strategies, such as
determining the existence of a violation by employing models to understand how assets traverse
services [Menzel and Meinel, 2009]. Security patterns match detected problems with mitigation
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design strategies. Complex security problems may require applying multiple security patterns.
Dong and Akl [2007] use a model checker to examine composed security patterns for accuracy.
Their model checker determines if the patterns retain core mitigation properties once composed.
To apply the patterns, they interpret the architecture requirements surrounding the potential
security problem. They translate these requirements to UML and compare them with composed
patterns for consistency. The difference is that there is no well-defined method to get from the
security control to security problem. The Service Matchmaker [Zheng-qiu, et al., 2009] uses
an ontology-based approach to extend the WS-Policy standards document with semantics. The
goal is to determine if two policy documents match. The claim is that without semantics, this
matching produces limited results. The authors do not extend the semantics or address the
inter-referencing problem of the standards documents that have complementary information.

3. STATIC MODEL

In this section, we review the WS-* Security Meta-model Framework (WS-SMF) and the static
model it provides [Baird and Gamble, 2011]. To create the Security Meta-Language we leverage
the existing static portions of the WS-SMF and add in a new dynamic model as shown in Figure
2. The static model provides a stable, reusable foundation on which the more complex layers can
be formulated to accommodate the security directives we require.

Figure 2: Multi-layered Approach.

The dynamic model relies on a multi-layered approach that links the static model with real
world object instantiations of XML messages. The layers are the Schema Layer (static), Stan-
dards Layer (static), Directives Layer (dynamic), and the Object Layer (dynamic). The core
contribution of the work presented in this paper is the Directives Layer. It serves as an inter-
mediary between the static model and real world XML messages. For context, we review the
existing Schema Layer [Baird and Gamble, 2011], [Baird, 2011].

The Schema Layer codifies different UML classes that are representative of the XML Schemas
for each of the WS-* standards. Our representation uses a modified version of the Carlson
UML profile [Carlson, 2008] to iteratively model each WS-* standard, the Schema files that each
standard contains, and all of the XML elements that are defined within them. These classes are
generated from the WS-* standards for WS-Security, WS-Trust, XML-Encryption, and XML-
Signature, along with other standards such as WS-Trust and WS-SecureConversation. Because
the model forming the Schema Later is quite exhaustive, we diagram partial views that target
specific XML elements of interest. For example, we depict some of the different token types taken
from the static model, shown in Figure 3.

Figure 3 shows the corresponding UML representations of different XML security tokens. Each
XML element is shown with a corresponding stereotyped header, in this case <<complexType>>
to refer to the corresponding type of XML Schema element, a name with included package
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Figure 3: Variety in WS-* Tokens.

hierarchy (e.g., wsse:UsernameTokenType), and a set of corresponding XML sub-elements
and attributes. Figure 3 shows XML elements from the different known standards, as well
as a custom token type that is given the package name XYZ. The static model is stable in
its architecture configuration, yet supports the ability to add new elements when new WS-*
standards are drafted and used in service architectures. It is important to note that this model
is not limited to the token types shown in Figure 3, although one of the benefits of using a static
model is that we have identified several that are primary useful for security control modeling
[Baird, 2011].

Within the domain of the WS-* standards there is a significant amount of flexibility and re-use
designed into each Schema specification. For example, the BinarySecurityTokenType shown
in Figure 3 can codify several different token types including X509 public key tokens, Kerberos
tokens, and Rights Expression Language tokens [OASIS, 2012]. Each standard and XML ele-
ments must be used and carefully configured depending on the security control requirements of
the message and application. The problem for many software developers is selecting the appro-
priate token and security control configuration for the needs of the application and deployment
configuration. Not only must a standards specification user select the correct XML element
among multiple competing standards, but once the selection has occurred, the element must be
configured and integrated properly. Our modeling framework introduces new UML stereotypes
to assist in resolving these problems.

In [Baird and Gamble, 2011] we introduced a cross-element dependency relationship frame-
work to model the links among different WS-* standards documents. This approach uses an
implementation-based understanding of the connectivity and use of the XML elements in a way
that incorporates the re-use and integration that occurs among the different standards. Figure 4
shows such a view of the Schema Layer with associations that attach a WS-Security username
token to a SOAP message header. In the view, <<direct>> associations are those for which the
WS-* explicitly states a known relationship and <<elementof>> associations are links that occur
through potential configurations through the use of several interacting standards documents.

The development of the static model uncovered several issues with respect to using the WS-*
standards in any SOA environment that impact the design of the SML. Of primary interest is that
different standards do not completely guide the correct configurations of SOAP messages. For
example, the WS-Security standard that defines the UsernameTokenType element shown in
Figure 4 does not explicitly designate the attachment of the token to the SOAP header. Instead
the standard suggests that the token can be attached to a variety of different XML elements
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Figure 4: Schema Layer with Single Username Token.

to support reuse and flexible configurations. This variance burdens the software developer to
correctly choose the elements and their attachment by navigating the different standards and
their connectivity for specific security controls. Another issue found was that the XML Schemas
for each standard often do not populate the XML elements with complete security relevant
details. For example, in the case of the token in Figure 4, necessary sub-elements for username
details, passwords, and timestamps are not specified at the XML Schema level. Instead, the WS-*
standards incorporate the use of XML wildcards, that allow any XML element to fill certain sub-
element relationships. To correctly determine the configuration of the SOAP message the software
developer must reference both the XML Schema for type checking and the documentation of the
WS-* to find example instantiations that document intended configuration of the standard.

Figure 5: SML Modify.
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Our investigation into the WS-* standards and the static model uncovered a number of XML
Schema inconsistencies that must be addressed in any complete modeling framework. These
inconsistencies are the result of mismatches between the WS-* documentation and the constructs
that are provided in each standard′s XML Schema declaration. One clear example comes from a
detailed examination of lines 759-796 of the WS-Security specification [OASIS, 2012] that shows
attributes for the BinarySecurityTokenType element; yet the Schema does not outline these
attributes. Ultimately, to instantiate a proper SOAP message certain attributes about token
values are required and must be shown in the model. Our solution modifies the representative
Schema Layer as shown in Figure 5. The Standards Layer is tasked with manipulating the view
of the Schema Layer to introduce the necessary changes to guide SOAP message configuration.
This layer introduces two stereotypes, <<SMLadd>> to mark the changes in attributes and
elements, and <<SMLmodify>> to tag the updated Schema data type.

In Figure 5, we show the updated BinarySecurityTokenType along the left hand side in
contrast to the existing artifact obtained from the Schema Layer and WS-* Schema files. The
updated token includes new attributes for Id and EncodingType. A thorough examination of
the WS-* standards reveals several of the modifications that must be taken into account when
instantiating SOAP messages with security controls. This layer forms the transitional model
entity between the static and dynamic models within the framework because it relies heavily on
the static model artifacts but cannot adapt as much as to new directives as the remaining layers
we present in the next section. However, it is a distinct enhancement that we isolate from the
Schema Layer so that the changes can be tracked and understood for review at later dates.

Other problems with using the WS-* standards include ambiguity within specific token elements
and a need for cross element and multiple message dependencies. For example, the Binary
Security Token supports multiple token encoding types (e.g., X509, Kerberos, and REL tokens),
a SOAP message may contain more than one reference to the same token or multiple token types,
and often, the tokens are used within more complex security control structures, including digital
signatures and encryption protocols. Our approach incorporates a dynamic partition within the
framework that enhances modeling capabilities to address these issues and to generate the SML.
We define this dynamic model by introducing parameters and directives, which we introduce in
the following section.

4. SECURITY META LANGUAGE

In this section, we outline the dynamic modeling layers specifically related to the formation of
the Security Meta Language (SML). These models enable the attachment of different security
controls to messages through the expression of UML modeling constraints over the instantiation
of SOAP messages. The SMLs inherent flexibility can incorporate the different modeling needs
of a web service architecture as it changes over time, in contrast to the static nature of the WS-*
documentation standards. The security controls or constraints depend on organizational expecta-
tions and requirements, as well as implementation specific details that reflect those expectations.
Security requirements can originate from multiple sources including application needs, software
developer concerns, or regulatory documents. We refer to the collective set of constraints that
the web service architecture must adhere to as security directives.

4.1 Directives Layer

Directives are the codification of security controls attached to SOAP messages and are collected
into a single Directives Layer within the framework to clearly isolate their separation from the
existing static model and real-world XML objects. We refer to the collective set of directive
specifications as SML directives. The framework outlines a set of SML directives that can be
searched, examined, and used for to embed different security controls. To that end the SML
directives in the WS-SMF forms a catalog of known security controls for secure SOAP messages.
The Directives Layer defines stereotypes targeted towards the correct modeling of the SOAP
messages. From a modeling perspective we construct a Directives Layer using the following basic
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approach and modeling constructs:

—Determine which classes of the updated Standards Layer are targeted for the specific security
control requested.

—Use the new <<SMLrefinement>> stereotype to generate a new class tasked with modeling
the security control directive.

—Denote all refined classes with a <<SMLdirective>> stereotype in their header.

—Explicitly populate known attributes based on security controls and the WS-* standards guid-
ance.

—Revise the modeled classes by introducing new parameters using the <<SMLparameter>>
stereotype.

In the dynamic model, we use the Directives Layer as a definitive link between the abstract
data types specified in the WS-* data structures and the real world object instantiations found
in XML messages. Three key stereotypes accomplish this interconnection: <<SMLdirective>>,
<<SMLparameter>>, and <<SMLrefinement>>. Table 2 overviews the new stereotype defini-
tions that are part of the dynamic model, the specific UML metaclasses each generalizes, and a
semantic description of the intent of the stereotype with any additional constraints the stereotype
requires.

Table II: XML Profile Stereotype names and corresponding XML Elements

Stereotype Name Metaclass Inheritance Semantics and Constraints

SMLadd Attribute Corrects Schema Layer as necessary based on inaccuracies

found in WS-* document analysis: (1) Models missing
XML elements; (2) Models missing XML attributes.

SMLmodify Class Identifies and tags Standards Layer classes that have been

modified using the SMLadd stereotype.

SMLdirective Class, DataType Used throughout the Directives Layer for class-level mod-

eling of abstract security control relationships: (1) Names
directive shared among several classifiers; (2) Removes un-

necessary wildcards; (3) Names attributes and elements;

(4) Allows parameters as necessary; (5) Directive classes
are abstract.

SMLparameter Attribute Explicitly labels XML elements and attributes that cannot

be modeled until Object Layer is instantiated.

SMLdependency Association, Constraint Models complex element and attribute dependencies be-

tween classes modeled in the Directives Layer: (1) Asso-

ciation links between two SMLdirective classes; (2) Con-
straints specified in Object constraint language.

SMLrefinement Generalization Intermediary link between Standards and Directives Lay-
ers: (1) Generalization arrow points from left to right;

(2) Type from child to parent is retained; (3) General-
ization permits the non-standard refinement from regu-

lar class (Standards Layer) to abstract class (Directives

Layer); (4) Generalization removes directionality from as-
sociations between different classes within the Directives
Layer.

SMLinstantiates Generalization Intermediary link between the Directives and Object Lay-

ers: (1) Generalization arrow points from left to right; (2)
Type from child to parent is retained.

We introduce an example directive in Figure 6. On the right side of Figure 6 we display the
necessary XML Schema classes selected from the Standards Layer to model the corresponding
directive. Along the left side we place the <<SMLdirective>> stereotype in class headers that
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Figure 6: Directive Layer.

belong to specific security control attachments. There is a direct mapping from the left to the
right for each class that is necessary to express the directive.

Figure 6 contains the classes that correspond to a directive to specify a SOAP message with an
attached security token. This modeling approach involves the specification of the SOAP envelope,
header, and body, as well as the Security header and token elements. We start our investigation
into the mechanisms of the new stereotypes through an analysis of the SOAP envelope (located
in the upper left hand side of Figure 6 with the text envelope:Envelope). The class is marked
with the <<SMLdirective>> stereotype that mandates the class is a named object (envelope),
yet it is defined as an abstract class (marked via italic text). This mandate retains the concept
that the SML directive is not yet a real SOAP message. Still the defined classes within the
template must satisfy certain properties, such as the XML element attribute names, to embed
the correct security controls.

The application of the <<SMLdirective>> stereotype to the envelope class allows some addi-
tional modeling constraints to be embedded within the directive. Specifically, the wildcard[0..*]
attribute found in the corresponding s11:Envelope type is allowed to be removed from the
directive because the directive for this SOAP message does not need it. This removal is not
always necessary as shown in later classes for the SOAP body, for example; however, to simplify
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the model unnecessary wildcards are removed. The copy and removal of different XML element
and attributes are governed by the documentation of the WS-* standards and originates from a
process of refinement that is modeled between the Standards and Directives Layers.

Each class defined in theDirectives Layers must include a <<SMLrefinement>> stereotyped
generalization pointing towards the Standards Layer. The refinement accomplishes three main
things. First, the application of this stereotype relaxes the directionality link that exists between
all relationships that emerged within the Standards Layer description. The intent of this model
specification relaxation is to simplify the model by inferring it through the analysis of the named
object in theDirectives Layers. As shown in Figure 6 the children of the envelope class (body
and header) are not linked with <<direct>> or <<elementof>> stereotypes. Analyzing the
class names for each XML element can derive these links.

The second major accomplishment of the refinement generalization is the typing modification,
such as that which is applied to the envelope class. Traditional UML modeling constructs would
stipulate that a generalization of the s11:Envelope class defines a new and enhanced version
of the Standards Layer class. This is distinct from the objective of the SML, since we do not
need to generate modifications to this layer for this part of the model. In contrast, we adopt the
visual arrow to indicate that the child class (in this case, the envelope) is of the same type as
the parent class (in this case, s11:Envelope). This refinement facilitates data type checking as
well as grounds the modeled directives in the static portion of the framework (WS-SMF). Finally,
the generalization performs the non-standard refinement of a UML object of the data type in
the Standards Layer to the abstract class required to model the directive as mentioned in the
previously.

The definition of the header and body elements of the directive follow the general guidelines
established in Table 2 and described above, with one minor exception. In each of these classes, the
wildcard specifications for elements have been retained. We leave this in place to show the reader
that the model can define partially specified directives in the absence of full knowledge about
the execution environment. This allowance is very similar to the stereotype used in the security
header class shown in Figure 6 for a named <<SMLparameter>>. This stereotype tags certain
class attributes and elements as parameterized fields that require additional information prior
to object instantiation. As shown in Figure 6, the BinarySecurityToken object is a tagged
parameter since its value (e.g. the binary data) is unknown until the SOAP message is fully
crafted. Attributes can require parameterization due to factors including runtime constraints
(e.g. modeling SOAP messages yet not knowing the full invocation details until a later time),
privacy concerns (e.g. a software developer not wishing to store secret password information in a
UML model), and space issues (e.g. complex binary encodings of tokens requiring a large amount
of visual modeling space). For example, in username token keys, the username and password do
not need to be stored in the directive. Other examples of parameters include the key values of
X509 digital tokens and the calculation of signature values that are frequently unknown until
runtime, since digital signatures and encryption values are based on the message input, random
variables, and the keys generating the signature values.

Not all attributes in a codified directive need to be tagged as SML parameters. As shown in
Figure 6, for example, the BinarySecurityTokenType element has several named attributes
that have specified values including the Id, ValueType, and EncodingType. These are all of
the values that can be predicted before runtime and incorporated into the specification of the
modeled directive.

4.2 Object Layer

The final layer of the dynamic model that established the SML is the Object Layer as shown
in Figure 7. Recall that the existing Standards layer grounds the modeling framework in the
XML Schema elements that the WS-* standards provide. The Directives Layer expresses spe-
cific constraints on how those XML classes are instantiated, yet it is incomplete due to certain
parameter details that are unknown at the time the directive is expressed. The final Object
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Layer takes the stated requirements and instantiates known parameters to create XML objects.
The object instantiation relies on a new stereotype <<SMLinstantiates>> that connects to the
abstract directive classes to real world objects. This stereotype operates very similarly to the
<<SMLrefinement>> generalization defined in the previous section and in Table 2. In Figure
7, for example, the XML message includes a BinarySecurityToken filling in the existing pa-
rameter data for token data with ClientKeyData. Parameterized values and the SOAP messages
that have these values populated for real SOAP messages within the dynamic model fulfill the
final aspect of generating the complete SML. The language in this case illustrates the dynamic
models capacity to specify security control directives for SOAP messages with a variety of differ-
ent parameterized values. It also shows that the SML is not limited to single example case study
messages.

Figure 7: Object Layer.

Object Layer modeling is not a direct requirement for all SML directives; however, it serves
as a mechanism to show that with certain input parameters we can codify real XML messages
giving credence to the meta aspect of the model. Based on the information provided for the
Object Layer of Figure 7, the dynamic model generates the XML document shown in Figure 8.
The Object Layer provides the dynamic model with a simple and effective mechanism to check
directives for accuracies. When real SOAP message objects are generated that fulfill the security
control requirements, can be successfully type checked using XML namespace and data type
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declarations, and when the SOAP messages can be used in real world SOA application settings,
then the directive is known to be correct.

Figure 8: XML Instantiation of Binary Security Token.

The process of taking the WS-* documentation, refining its view into usable UML classes,
establishing constraints over their object instantiation, and finally generating real-world XML
objects is the primary goal of the modeling framework. We define how to correctly identify the
usable elements across the multiple WS-* standards and align their proper configuration given
a base set of message requirements. In the following section we investigate a more in-depth
case study dealing with XML digital signatures attached to SOAP messages, and how the SML
directives support the specification of even more complex dependencies. We do so through the
introduction of a reusable directive modeling process.

5. DIRECTIVE MODELING PROCESS - CASE STUDY

As stated previously, the SML contains a catalog of known directives for the instantiation of
SOAP messages. It is not the goal of this research to outline all possible XML messages, or
even all SML directives, but instead to outline a process for reusable directive specification
based on application requirements. Under ideal circumstances a software developer would search
the SML catalog for the correct directive and populate necessary SML parameters to generate
a correct application configuration. An example scenario could include which web services are
deployed in a government setting and that communication must be digitally signed using an X.509
public/private key pair. The SML directive in this case would be to apply the digital signature,
the communication protocol would include SOAP messages, and the application developer would
need an XML representation for the keys. In such a situation a software developer would search
the SML catalog to find the desired message configuration. Due to the simplistic nature of this
scenario it is highly unlikely such a basic directive would not exist. However, to illustrate the
process for generating a new directive, we outline the steps to follow in these situations. In this
section, we describe our modeling process to configure new directives for the SML. As an example
we model the attachment of an X509 public key to a SOAP message with a digital signature.
Figure 9 presents a brief outline of the four-part process for directive creation.

Figure 9: Directive Modeling Process.
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When new SML directives require modeling, the software developer can follow the process in
Figure 9. The process reflects situations that occur due to the release of a new software toolkit,
introduction of new security control technologies, or a general shift in operational goals for an
organization that requires the incorporation of new WS-* standards. When existing directives
are already in use and need to be adapted to new needs, or corrected to fix existing problems,
we outline a different process for directive modification in a later section. It is through the
specification and definition of the SML directive stereotypes that the SML framework provides a
specification language for reusable security controls applied to SOAP messages.

5.1 Control Selection

The first phase of the security modeling process, control selection, involves the selection of XML
elements from the static model to achieve the desired security control. This phase takes input from
the software developer and is heavily influenced by the application environment, configuration of
web service endpoints, and the goal statements of the WS-* standards documents. Ultimately,
control selection refers to the XML element identification at a class level in the UML model. The
existing static model assists in this process by explicitly denoting which XML elements share
sub-element relationships across and within the different WS-* standards.

For the case study, to apply a digital signature the software developer is sent to the SOAP
and XML-Encryption standards given a reasonable base knowledge of the WS-* documents.
The software developer must rely on the static mappings and links established in the Standards
Layer to determine correct specifications, XML elements, and examples to review in this process.
Through investigation, the SignatureType class is located within the Standards Layer of the
dynamic model and is shown in Figure 10. The static model guides the software developer in
understanding that this XML element is a core class; it has a fit within the XML SOAP message,
and it has sub-element dependencies. Given the needs of the environment and application, the
software developer must find the correct controls, even multiple security controls, to drive the
dynamic process.

Figure 10: SignatureType (Standards Layer Partial View).

It is important to note that this phase of the dynamic modeling process does not involve making
modifications to the static model or Standards Layer. These can be used as accepted practice.
The existing modeled classes in the Schema Layer exist and are unchanged, even if they do
not appear selected when the phase is completed. This is why the control selection presented in
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Figure 10 is referred to as a partial view of the Standards Layer. Furthermore, the complete XML
element selection is not required for this phase of the modeling process. Only the core security
control elements, in this case the SignatureType, are required for the process to continue.

5.2 Message Attachment

Once the necessary security controls elements have been identified and located within the Stan-
dards layer according to the application requirements (e.g. message protection through signature,
authentication, and encryption), the second phase of the modeling process is performed. Dur-
ing message attachment, the XML structures are navigated using the <<SMLdirect>> and
<<SMLelementof>> associations to attain a path whereby the control is attached to the SOAP
message envelope. Such a path for the SignatureType is shown below in Figure 11 and is
guided by the WS-* documentation.

Figure 11: Element Trace for SignatureType (Standards Layer Partial View).

The correct path must be chosen according to the intent of the WS-* standards documen-
tation. A digital signature, for example, can be embedded in any part of an XML document.
However, for the correct application in this case study, which requires the attachment of the
digital signature to a SOAP message, the SignatureType is a sub-element of the WS-Security
SecurityHeaderType, which is a sub-element of the SOAP message Header, which is a direct
sub-element of the SOAP Envelope. The path traversal process may, and frequently does, cross
different WS-* standards to ultimately reach the SOAP Envelope. As shown in Figure 11 the
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attachment links the XML element selected in the previous phase of the dynamic process. Once
this is accomplished the next phase expands the number of identified XML elements outward to
meet specific WS-* standard and messaging requirements.

5.3 Element Requirements

Upon locating the attachment path, the next phase of the dynamic modeling process involves
crafting the SML directive in such a way that all element requirements are satisfied. This phase
is the most exhaustive effort in the directive creation. Every required element in the Standards
Layer for the targeted classes must be specified through a <<SMLdirective >> attribute. The
specification of optional element attributes, such as the KeyInfo attribute of the SignatureType,
is left to the interpretation of the WS-* standards documentation by the software developer.

Figure 12 introduces the directive for the digital signature, which due to its size is investigated
in parts below. Figure 12 shows a decoupled view of the digital signature where only the Directive
Layer is visible and a partial set of classes is arranged hierarchically to assist with visualizing
the nested XML element structure. The tree structure is crucial for the software developer to
understand how the SML directive is crafted. The author of the SML directive must take care
to know that each element in the tree structure ensures that the attributes (sub-elements) are
correctly specified.

To fully declare an SML directive, it is broken down into key sub-specifications. These are the
digital signature element itself (signature:SignatureType), data and attributes regarding how
the signature is calculated (signedInfo: ds:SignedInfoType), the value of the signature when
it is calculated (signatureValue: ds:SignatureValue), and a reference to the key that is used
to perform the signature (keyInfo: ds:KeyInfo). We notate two items of importance regarding
this directive. First, the signature value is not known within the specification of the directive due
to a lack of important information necessary for its calculation (i.e., the message payload and the
key data). Thus, it is stereotyped as an <<SMLparameter>>. Secondly, the digital signature
requires an X509 security token for the KeyInfoType. To that end, the developer must add
the BinarySecurityToken directive to the SOAP message security header. This addition is based
on the application configuration, the fact that the web services encode their security tokens in
specific ways, and the fact that those codifications require the WS-Security element classes from
the static model.

Completing the full element requirements phase of the dynamic modeling process requires per-
forming an iterative tree-traversal to ensure all element attributes are specified in accordance
with the WS-* standards and the requirements of the application. This portion of the process
relies on the use of the <<SMLrefinement>> and <<SMLdirective>> stereotypes to both pop-
ulate the correct classes and express constraints on the attributes to meet security concerns.
Figure 13 provides a closer view of the relationship between core XML Signature elements from
the Standards Layer and the SML directive specification. For example, the signedInfo directive
fulfills all element requirements through the sub-specification of the canonicalizationMethod, sig-
natureMethod, and reference objects. These requirements stem from the <<sequence>> defined
for the SignedInfoType. Similarly, the directive for the canonicalizationMethod object contains a
single attribute for the Algorithm, with an appropriate algorithm value set as ”...xml-exc-c14n”.
The algorithm attribute is taken from the XML-Signature standard documentation and refers
to the Exclusive XML Canonicalization algorithm as defined in [W3C, 2001]. The directive for
the signatureMethod object documents an example of an optional attribute field (HMACOut-
putLengthType) which is not necessary for the model specification and is subsequently dropped
from the attribute list. This deletion is allowed by the <<SMlLrefinement>> stereotype since
not all attributes are necessary to satisfy given specifications.

The last attribute of the signedInfo object is the reference:ReferenceType object that
defines the object over which the digital signature calculation is to be performed. In this case,
the software developer understands the requirement for the digital signature must be expressed
over an explicit XML element. In the example, this is the entire SOAP message body. Also,
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Figure 12: Directive for Digital Signature (Directive Layer).

the URI attribute is given a tagged name of SOAPBody. Other attribute fields (transforms and
digestMethod) require the creation of other sub-element directive classes.

Once all sub-elements have been fully instantiated in the final phase of the dynamic modeling
process, the SML directive must express the logical dependency requirements to exist between
attributes of the SML classes in the Directive Layer. This phase enables the software devel-
oper to codify XML element and attribute interrelationships found to exist within the WS-*
documentation. Dependency modeling is accomplished through the use of a UML stereotype
<<SMLattributedependency>>. We show the dependency modeling process as part of the next
section, illustrating how the directive can be adapted within the dynamic framework. Generally
dependency modeling would occur immediately during the creation of the directive.
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Figure 13: SignedInfo Attribute Specification.

6. DIRECTIVE RE-USE AND RE-SPECIFICATION

Dependency modeling is the final aspect of directive specification. However, as is often the case
with WS-* use, there are problems with respect to correctly integrating and selecting the necessary
message configurations. The ability for our dynamic model to adapt over time is an important
property that is necessary to resolve these issues. In many cases the dependencies within the
different WS-* standards and XML elements are explicitly known at the time a directive is
created. For example, in the case of using any type of token and digital signature there will be a
requirement that specific ID attributes match throughout the entire message. In the case of the
specification of more complex relationships with multi-part message exchange, these dependencies
are often only inferred through software developer knowledge as time goes by and a software
product evolves. From this reasoning, we constructed the Directive Layer to be flexible with
respect to modifications. As changes need to be made to directives, the users of the dynamic
model can browse, select, and adjust the directives as necessary. In this section, we show how
the existing directive for the digital signature can be altered when it is discovered that changes
are needed to achieve correctness.

Figure 14 shows an updated view of the existing directive for a digital signature using an
X509 public key token. Two different types of overlay boxes have been introduced over different
sections of the message. After review of the directive, the SOAP messaging standard, and the
digital signature two key dependency issues are manifested. First, shown in Figure 14 with a solid
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line, the referenced token used by the digital signature must match the attached token included
in the header of the message. Secondly, shown in Figure 14 with a purple line, the referenced
digital signature must point to the ID element of the body of the SOAP message. Different tokens,
digital signatures, and message configurations would each have unique corresponding dependency
requirements. However, a user of the directive would note that the directive as specified in Figure
14 lacks any of the correct model dependencies.

Figure 14: XML-Security Digital Signature Directive.

To correct this problem the directive must be updated to add the necessary constraints. The
dynamic model includes a <<SMLattributedependency>> stereotype that adds the final struc-
ture necessary for comprehensive modeling of the complex SOAP message exchanges present in
the web services architectures. Figure 15 shows an example dependency for the token ID require-
ment. Each dependency links two XML element classes and contains a constraint. Constraints
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are expressed using the Object Constraint Language (OCL) [Object Management Group, 2010]
and Boolean based on elements and their attributes as defined in UML.

Figure 15: Digital Signature Dependency.

The most common use of the <<SMLattributedependency>> stereotype is the expression of
== indicating the left hand side expression must match the right hand side expression; however,
any valid OCL statement can be used. In Figure 15, the constraint states that each ID reference
must match the other. Since these values are tagged as <<SMLparameter>> attributes, this
type of dependency cannot be verified until runtime or a corresponding Object Layer model is
created. The dependency for the SOAP body element is shown in Figure 16.

Figure 16: SOAP Body Dependency.

In this case, both the URI and ID attributes must equal SOAPBody in order for the digital
signature to exist over the SOAP body element. From the directive specification and attribute
values it is easy to view that this dependency is already satisfied. The updated directive that
incorporates each of the dependency specifications is shown in Figure 17.
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Figure 17: Updated XML-Security Digital Signature Directive.

We define dependency directionality (e.g. the establishment of child/parent in the relationship)
based on a sub-element analysis and message ordering. For example, if expressing a single XML
document, the element dependency denotes the child in the relationship as an XML element
that is nested further down in the XML hierarchy. In multi-message exchanges (such as with
WS-Trust RST/RSTR exchanges), the directionality is established such that the child element
is associated with the message that is generated first in the sequence.

Fully specifying all dependency requirements is the final task in the dynamic modeling process
outlined in Figure 9. Any object instantiation that the software developer codifies, generating
SOAP XML messages, must satisfy the SML directive and dependencies. Users of the SML only
need to invoke the modeling process when the constraints of the application environment specify
controls and configurations that have not been modeled previously. In the previous example
the existing specified directive was selected and updated to correct it and align the specification
with the established WS-* standards. An alternative method of update to the directive is also
available in the dynamic framework wherein the existing directive is selected and modified to
perform a new functionality. We do not review this process in this work; however it is clear how
the digital signature case study we present can be modified to use a variety of different token
types from Figure 3, or different security control structures found within the static model. In
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these cases the directive is copied, adjusted, and added to the existing catalog of known directive
statements.

7. CONCLUSION

In this paper we define a Security Meta Language (SML) as a two-part model and dynamic process
that documents the security relevant portions of the standards for their consistent, comprehensive,
and correct application. We leverage an existing static model build in UML and based on XML
Schema specification by adding to it the stereotypes necessary to model security control directives
for web services. Figure 18 provides a complete view of the interconnected layers of the SML
showing a portion of the complete language.

Figure 18: Sample Directive of the SML - SOAP Username Token.
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