
k-anonymity Chord for Anonymous Query
Response

AHMET BURAK CAN

Hacettepe University

and

BHARAT BHARGAVA

Purdue University

Peer-to-peer systems provide a distributed way of sharing and storing information. Each peer stores some infor-

mation and responds to queries. In some applications, protecting anonymity of a responding peer is important to
increase availability of information. This paper presents a cryptographic protocol on Chord to protect anonymity
of peers when responding to queries. In this protocol, peers form anonymity groups and generate responses inside
groups. Responder of a query has k-anonymity protection against an adversary who can sniff all communication

on the network. Validity of an anonymous reply can be verified so fake replies of malicious peers are prevented.
The proposed approach can be adapted to other DHT structures to protect responder anonymity.

Keywords: Peer-to-peer systems, Responder Anonymity, Cryptography

1. INTRODUCTION

Peer-to-peer systems rely on collaboration of peers while performing system tasks, e.g., organizing,
sharing, and searching resources. Responder anonymity is an important problem especially in
publisher anonymity, and censor resistance applications [Waldman et al. 2000]. Peers sharing
important resources are vulnerable to attacks of malicious peers. Protecting anonymity of a
responder during a search query may mitigate some attacks. Hence anonymity can motivate a
peer to perform information sharing task without worrying about identity reveal and can make
information more available.
Probabilistic random path building, tunneling [Reiter and Rubin 1998; Freedman and Mor-

ris 2002; Mislove et al. 2004], flooding [Clarke et al. 2001; Dingledine et al. 2001; Singh and
Liu 2003], limitations on routing information exchange [Hazel and Wiley 2002], and redundant
queries [Nambiar and Wright 2006; Panchenko et al. 2009] are the most common methods to pro-
tect anonymity on peer-to-peer systems. Although these methods provides a protection against
local adversaries, they are generally vulnerable to global passive adversaries who can sniff all
communication on the network. Another common approach, mix networks [Chaum 1981] might
be adapted to peer-to-peer systems. Trusted mix nodes encrypt and shuffle the network traffic
so a global passive adversary can not easily determine communicating parties. However, in an
ideal solution on peer-to-peer systems, trusted nodes should not involve in anonymity protocols,
and peers should organize themselves to protect anonymity.
Our previous work on anonymity [Can and Bhargava 2010] introduced the oblivious reply

protocol on Chord [Stoica et al. 2001] to protect anonymity of trust holders in a reputation-based
trust model. This paper presents a general solution on Chord to protect anonymity of responders
applicable in various peer-to-peer applications and discusses security properties of the proposed
approach in cryptography perspective. We modify the search operation on Chord and call this
modified distributed hash table (DHT) structure as k-anonymity Chord. Responders on this
DHT structure have k-anonymity protection even adversaries sniff all network communication.
During the search operation, the k-anonymity Chord runs the oblivious reply protocol to protect

Author’s address: A.B. Can, Department of Computer Engineering, Hacettepe University, 06800 Ankara/Turkey
B. Bhargava, Department of Computer Science, Purdue University, West Lafayette, IN 47907 US

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 275

anonymity. In this protocol, peers form anonymity groups of size k. A query is sent to anonymity
group instead of individual peers. After receiving a query, each peer in an anonymity group sends
back a reply using the oblivious reply protocol. Even adversaries sniff all communication on the
network, these replies can not distinguished from each other so the real responder has k-anonymity
protection. Furthermore, initiator of a query can check authenticity of replies and identify fake
replies of malicious peers.
Section 2 discusses related research. Section 3 introduces the general architecture and peer

registration operations. Section 4 presents the k-anonymity Chord, analyzes security properties
of the oblivious reply protocol, and provides a discussion about vulnerabilities and performance
considerations. Section 5 outlines the results of this work.

2. RELATED WORK

Anonymity in communication networks has been studied by many researchers in different perspec-
tives. Chaum [Chaum 1981] first proposed mix networks to protect anonymity of communicating
parties for delay tolerant applications, e.g., e-mail systems. Trusted mix nodes use cover traffic to
shuffle messages so an adversary can not determine who is communicating with whom. Chaum
also proposed dining cryptographer networks [Chaum 1988], which provide unconditional sender
anonymity in a group of participants. If the group size isN , this approach requiresO(N2) message
exchange for each message sending operation. Furthermore, before sending a message, O(N2)
encryption keys should be distributed among N participants using a secure external method.
This makes Chaum’s DC-net impractical for real life scenarios.
Onion routers [Syverson et al. 1997; Goldschlag et al. 1996], form an overlay network to build

anonymous, bi-directional virtual circuits for real-time communication such as HTTP. While mix
networks are designed for delay tolerant applications, onion routing is more feasible for real-time
applications. A widespread deployment of onion routing, Tor [Dingledine et al. 2004], extends
onion routing with forward secrecy, congestion control, integrity checking, and configurable exit
policies. Although it’s high traffic overhead issues [Dingledine and Murdoch 2009; Wacek et al.
2013; AlSabah et al. 2013], Tor is widely used by research community. Tor uses directory servers
to maintain onion router topology. Nodes learn whole topology from directory servers to select
random relays while building a circuit (anonymization path). NISAN [Panchenko et al. 2009]
and Torsk [McLachlan et al. 2009] use DHTs to solve scalability issues of Tor networks due to
topology maintenance costs. In both approaches, random relays to build a Tor circuit are selected
using DHTs. NISAN uses redundant independent lookups and bounds checking to mitigate some
active attacks to reveal relays. In Torsk, random walks are used to select secret buddies of lookup
initiators so secret buddies can hide the identity of initiators. However, Wang et al. [Wang et al.
2010] present that both NISAN and Torsk are vulnerable some passive and active attacks. To
protect relay nodes from attacks, Mittal et al. [Mittal et al. 2011] proposed a privacy preserving
information retrieval method. Resilience of anonymity networks against denial of service attacks
is also studied by researchers [Danner et al. 2012; Elahi et al. 2012; Barbera et al. 2013; Das
and Borisov 2013]. Since selection of relay nodes is an important issue to mitigate attacks, some
researchers [Wang et al. 2013; Das et al. 2014; Akavipat et al. 2014] proposed reputation-based
approaches to select reliable nodes and collaboratively filter malicious peers. Shirazi et al. [Shirazi
et al. 2013] proposed a metric to measure resilience of anonymity networks.
Besides mix networks and onion routing, another interesting anonymity approach, the buses

[Beimel and Dolev 2003; Ren et al. 2008], traverse synchronous message tokens in the network
continuously. When a sender receives a bus, it fills some seats with encrypted messages. If the
sender does not have any real message, it puts encrypted dummy messages. When a bus arrives
to a receiver, all or related seats are decrypted to understand if there is a message. Although this
approach can protect sender and receiver anonymity, a bus should travel in a network forever
and nodes should produce dummy messages when they don’t have any real message.
In peer-to-peer systems, random path building, tunneling, flooding, and limitations on routing

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

276 · Ahmet Burak Can and Bharat Bhargava

information exchange are the most studied approaches to protect anonymity. In Crowds [Reiter
and Rubin 1998], nodes form anonymity groups (crowds) to protect requester anonymity. A
request started in a crowd is randomly forwarded in the crowd several times and finally sent
to the outside world by a node, which also receives the response from the outside world. In
peer-to-peer storage systems, Freenet [Clarke et al. 2001] and Freehaven [Dingledine et al. 2001]
flood storage requests to protect requester and responder anonymity. Since no peer on the
path between the requester and responder knows the whole query path, it is hard to determine
communicating parties. Tarzan [Freedman and Morris 2002] establishes a random tunnel in a
peer-to-peer network between a peer and an Internet server. Since no peer on a tunnel knows
the whole path, a query initiating peer can have anonymity. Like Tarzan, MorhpMix [Rennhard
and Plattner 2002] defines a peer-to-peer mix network with a collusion detection mechanism.
Randomly selected peers behave as mix nodes and build a circuit to protect anonymity. AP3
[Mislove et al. 2004] also use a random tunnel building approach and a multicast group approach
to protect publisher anonymity. Some approaches use secret sharing schemes and random path
building together to protect anonymity. Publius [Waldman et al. 2000] uses a secret sharing
scheme to protect publisher anonymity. Shares of a master key are distributed among several
nodes so nodes sharing a file encrypted with the master key are not accountable for what they
stored. Han and Liu [Han and Liu 2008] split a query into n shares and send them to neighbors
in a mobile peer-to-peer network. Peers who take t shares can decrypt and flood the query. The
responder builds an onion path to the requester and sends a response on this path. Another
study, Salsa [Nambiar and Wright 2006], uses a DHT to create anonymous circuits. This DHT
defines a secure lookup mechanism with redundancy and bounds checking, which allows to select
random relays on a circuit anonymously. Although each node knows a part of the network, relays
are selected from all peers. Shadowwalker [Mittal and Borisov 2009] introduces shadow nodes,
which enable construction of secure virtual circuits to protect anonymity.

Although most approaches in peer-to-peer systems protect anonymity for unstructured net-
works, there are few approaches to protect anonymity on structured overlay networks, a.k.a.
distributed has tables(DHTs). Since DHTs provide efficient access to information, anonymity
on DHT structures can find many applications [Jahid et al. 2012; Fabian and Feldhaus 2014].
However, ensuring anonymity on DHTs is a difficult problem [Mittal and Borisov 2008; Tran
et al. 2009]. In one of the first approaches, Hazel and Wiley [Hazel and Wiley 2002] use routing
limitations as a way of protecting anonymity on Chord [Stoica et al. 2001]. Borisov and Waddle
[Borisov and Waddle 2005] use recursive, randomized, indirect, split, bidirectional routing on
Chord. Anonymity on these approaches is not dependent to cryptographic properties and thus
vulnerable against adversaries who can observe the whole anonymity path or network. Kondo
et al. [Kondo et al. 2009] introduce node management and anonymous communication layer to
protect anonymity on Chord. Anonymity layer implements a protocol similar to onion routing
and enables sender/receiver anonymity by using encrypted traffic. Wang and Borisov [Wang and
Borisov 2012] also proposed an approach by splitting queries, launching dummy queries, and
removing malicious peers with an attacker identification mechanism.

Most of the above approaches in peer-to-peer systems try to protect anonymity on a large
scale network model and assume that an adversary can not observe the whole path on a circuit
or flooding path. Methods like random relay selection, redundant lookups, limiting knowledge
about the network, and changing routing methods can mitigate attacks of an adversary who can
observe only a part of the path. If an adversary can observe the whole path, these methods
may not protect anonymity. An adversary who can sniff the whole query and response path can
determine the communicating parties. Additionally, excessive network traffic caused by flooding
or maintaining information about relay nodes may reduce scalability of these systems.

In our approach, k-anonymity of a responder is protected even an adversary sniffs all network.
To achieve this, search operation of Chord is modified. However, anonymity is protected through
cryptographic properties, rather than changing network structure or routing operation. Our

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 277

Table I. Preliminary notations

Notation Description

Ubp, Rbp the bootstrap peer’s public/private key pair

Pi the ith peer

AIDi Pi’s pseudonym

AUi, ARi Pi’s public/private key pairs used in

OUi, ORi anonymity operations

K(M) encryption of M if K is a public/symmetric key

K{M} signing of M if K is a private key

H[M] hash digest of M

X|Y concatenation of X and Y

approach tries to protect anonymity among a small group of peers instead of a large network.
Therefore, it should not be directly compared with approaches like Tor, AP3, Salsa, NISAN,
Torsk, etc. Our approach should be considered as a way of enhancing anonymity of responders
on DHT structures and can be adapted on various DHT structures.

3. ARCHITECTURE

Every peer-to-peer network needs a connection point to the network. Even in a complete peer-
to-peer architecture like Gnutella [Gnutella], some bootstrap peers are needed to connect new
peers to the network. As in other peer-to-peer approaches, we assume that a bootstrap peer
(bp) provides a connection point to the network for new peers. The bootstrap peer is a basic
certification authority for pseudonyms and encryption keys. Ubp and Rbp are the public and
private keys of the bootstrap peer. We assume all peers learn Ubp in a secure way, such as using
a secure web site or digital certificates. There might be multiple bootstrap peers to provide
tolerance to failures. For simplicity, the paper considers one bootstrap peer.
Let Pi be the ith peer. In peer registration, Pi is assigned to a pseudonym, AIDi, which

is Pi’s pseudonym. AIDi is selected by the bootstrap peer so an adversary can not easily
set up multiple peers within a specific range of pseudonyms and launch coordinated attacks
in the network [Douceur 2002]. For anonymity operations, Pi randomly selects {AUi, ARi} and
{OUi, ORi} public key pairs. These key pairs have no relation with each other. We assume that
peers have good pseudo-random number generators to prevent brute force guessing attacks.
We give some notations to describe message formats. Assuming K is a public key or a sym-

metric encryption key, K(M) denotes encryption of M with key K for message confidentiality. If
K is a private key, K{M} denotes signing of M . Assuming H is a hash function, H[M] denotes
hash digest of M . If X and Y are two messages, X|Y denotes concatenation of X and Y . Table
I lists these notations for easy reading of the following sections.
Adversary model. An adversary tries to learn the responder of a query. It1 has polynomial time

computational capabilities and can not break cryptographic algorithms in polynomial time. It
has global passive attack capabilities, i.e., it can sniff all network communication. Note that, even
an adversary may not sniff the whole network by itself, it may collaborate with some peers and
launch passive attacks with them to obtain global passive attack capabilities. If the adversary
involves in a anonymous query, it behaves in semi-honest adversary model [Goldreich 2001]. In
this adversary model, an adversary obeys the rules of the running protocol but passively observes
network communication to obtain information.

1Since an adversary is a peer, we use ”it” to refer an adversary.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

278 · Ahmet Burak Can and Bharat Bhargava

2. Challenge - Response

1. Registration Request

3. Oblivious Reply Certificate

)||(iiibp OUAUIDU

})||{(TSOUAIDRAU iibpi

iP Bootstrap Peer

Figure 1. Registration of Pi to the bootstrap peer

3.1 Peer registration

Each peer must register itself to the bootstrap peer when joining the network for the first time.
During the registration, the bootstrap peer selects an AID value and issues a certificate for the
new peer. Assuming Pi is registering itself, the following registration steps are done as shown in
Figure 1:

(1) Pi sends the bootstrap peer a registration request containing AUi, OUi values. The request
is encrypted with Ubp so only the bootstrap peer can read its content.

(2) The bootstrap peer runs a challenge-response protocol to ensure that Pi has the corresponding
private keys, ARi, ORi. After ensuring that Pi is the owner of ARi, ORi keys, the bootstrap
peer saves AUi, OUi public keys for future accountability. We do not limit our design to any
specific challenge-response protocol. A well-known public-key based protocol can be used
[Boyd and Mathuria 2003] for this step.

(3) The bootstrap peer selects an AIDi value either randomly or in a way to maintain uni-
form distribution in the network. The bootstrap peer sends Pi an oblivious reply certificate,
Rbp{AIDi|OUi|TS}. The certificate is encrypted with AUi for confidentiality. Pi decrypts
this message and stores the certificate.

The certificate informs Pi about its AIDi and is used in the oblivious reply protocol. Pi

or another peer can not forge fake certificates without having Rbp key. The certificate expires
based on a timestamp field, TS. In case of expiration, Pi can request a new certificate from the
bootstrap peer, in a similar way to the registration operation.
Figure 1 briefly explains the peer registration. At first, Pi sends a registration request to the

bootstrap peer (step 1). Then, the boostrap peer runs a challenge-response protocol to validate
that Pi has the private keys, ARi, ORi (step 2). After passing this validation step, the bootstrap
peer sends the oblivious reply certificate to Pi (step 3). The registration operation may contain
more implementation details. We omit such details to focus on our problem.

4. K-ANONYMITY CHORD

Chord [Stoica et al. 2001] is a distributed hash table for peer-to-peer networks. It assigns each
resource to a particular peer. Search operations (queries) on Chord locate resources in O(lgN)
time, where N is the number of peers in a network. Chord can provide an efficient way of
storing and accessing information on peer-to-peer networks but can not protect anonymity of a
peer when responding to a query. Peers on a Chord ring partially know the network structure
and may guess the responder. A malicious peer may learn more about Chord’s address space
by sending excessive finger requests [Hazel and Wiley 2002], which makes guessing a responder
easier without having global sniffing capabilities.
We propose the oblivious reply protocol to provide k-anonymity protection on Chord [Sweeney

2002] against global passive attacks. A responder’s identity can not be distinguished from k
other peers when responding to queries. We call this DHT structure k-anonymity Chord, which
performs peer join, leave, and finger table maintenance operations like a normal Chord ring.
However, search operation is modified to protect anonymity of responders.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 279

4.1 Formation of anonymity groups

A peer joins the k-anonymity Chord with its pseudonym, i.e., Pj joins with AIDj value. The
pseudonym determines the location of Pj on the Chord ring. Peers form anonymity groups on
this ring based on their MAID values. For Pj , MAIDj is a masked value of AIDj where the
last m bits are set to zero. Peers in MAIDj and MAIDj + 2m − 1 range form the anonymity
group of Pj . The peers in an anonymity group are called as target peers. The target peers in an
anonymity group have the same MAID value, which can be considered as an identity number of
the group. The bootstrap peer should decide an m value so that the expected number of target
peers in an anonymity group is equal to or greater than k. Since the bootstrap peer registers all
peers and determine their positions in the network, it can compute a precise m value. Assuming
the bootstrap peer uniformly distributes peers on the Chord ring, MAIDj can be computed as
follows:
Chord allocates peers on a 2n circular address space where n is the length of AID values in bits.

Suppose that n = 32, k = 64, AIDj = 12345678H and there are N = 216 peers in the network.
Let Xi be an indicator random variable, which represents if there is a peer on a particular location
i (When Xi = 1, there is a peer on the location i). The probability of Xi = 1 is

P (Xi = 1) =
N

2n
=

216

232
=

1

216

and the expected number of nodes on a particular location is

E[Xi] = 1 · P (Xi = 1) + 0 · P (Xi = 0) =
1

216

Let S be the number of total locations (addresses) in an anonymity group and Y be a random
variable representing the number of peers in the group. Assuming uniform distribution of peers,
the expected number of peers in an anonymity group is

E[Y] =

MAIDj+S∑
i=MAIDj

E[Xi] = S · 1

216

In a peer-to-peer network, peers frequently go offline/online. Therefore, number of online peers
in an anonymity group changes with time. Let Z be a random variable representing the number
of online peers in an anonymity group. Assuming at least 25% of all peers are online in any time
period, the expected number of online peers in an anonymity group is

E[Z] ≥ S · 1

216
· 1
4
=

S

218

E[Z] should be greater than or equal to k = 64. Thus, the bootstrap peer finds that S ≥ 224.
This inequality suggests us that m = log2 S ≥ 24. Then, the bootstrap peer sets at least the last
24 bits of AIDj to zero and computes MAIDj as follows:

MAIDj = 12345678H ∧ 0FF000000H

= 12000000H

MAIDj = 12000000H means that Pj has anAIDj value between 12000000H and 12FFFFFFH.
The expected number of online peers in this range is at least 64 due to our selection.

4.2 Query operation on k-anonymity Chord

Let P0, P1, . . . , Pk−1 be the target peers in MAIDj and MAIDj + 2m range, in other words,
the anonymity group of Pj . By the design of k-anonymity Chord, we know that P0 is the owner
of MAIDj value. Assume that Pr starts a query to get an anonymous response from Pj . To
start this query, Pr needs to know MAIDj value, ID of the requested resource, and AUj key

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

280 · Ahmet Burak Can and Bharat Bhargava

1−kP

0
PjP

rP

0=AID

(a) With naive reply

12

3

4
5

6

7
1−kP

0
PjP

rP

0=AID

(b) With random-route reply

1−kP

0
PjP

rP

0=AID

(c) With oblivious reply

Figure 2. Routing of a query on k-anonymity Chord and various reply protocol options

of Pj . How to obtain this information is dependent to the application. If the aim is to protect
anonymity of a responder which provides a handle for a file in a peer-to-peer storage system, an
index peer [Napster] or a web site [Bittorent] can provide the necessary information for a query.
ID value should be a descriptor value (such as name) that uniquely identifies the requested file.
If the aim is to protect anonymity of trust holders in a reputation-based trust model [Aberer
and Despotovic 2001; Kamvar et al. 2003], Pr can obtain the necessary information as a signed
certificate from another peer[Can and Bhargava 2010].
After getting MAIDj , AUj , ID values, Pr can send an anonymous query to Pj ’s anonymity

group. As an anonymous query, Pr sendsMAIDj |TS′|AUj(Krj |TS′|ID) to the network. MAIDj

represents the destination of this query, Pj ’s anonymity group. TS′ is a time-stamp to guarantee
uniqueness and freshness of the query. Krj is a random session key created by Pr. Due to the
encryption with AUj , only Pj can read the content of AUj(Krj |TS′|ID) part.

4.3 Routing a query

k-anonymity Chord defines a two-phase routing method for a query. The first phase is a recursive
Chord search to find P0, who is the owner of MAIDj value according to Chord’s algorithm. Pr

starts the first phase by sending a query, MAIDj |TS′|AUj(Krj |TS′|ID), to the closest peer
preceding P0 according to its Chord finger table. The receiving peer forwards the query to
another one by looking up MAIDj value in its finger table. Forwarding operation continues
until P0 receives the query. Each forwarding peer caches the query for a period of time so Pj ’s
reply can be send back to Pr later.
After the query reaches to P0, the second phase is started to get Pj ’s reply among target peers.

In the following sections, we present three methods for the second phase of the query. The first
two methods are vulnerable to global sniffing attacks. These methods are discussed to clarify
our contribution. Our method, the oblivious reply protocol, protects anonymity against global
passive adversaries. In the attack scenarios, we assume that Pr or another peer tries to identify
the responder, Pj .

4.4 Naive reply

After receiving a query, P0 tries to decrypt AUj(Krj |TS′|ID) part. If AUj key does not match
with P0’s key, P0 can not identify TS′, ID values. Since the query is for another target peer, P0

forwards the query to its successor, P1. If P1 is not the receiver, it forwards the query to P2. This
operation continues until Pj receives the query

2. Pj sends a reply, MAIDj |TS′|Krj(M |ID|TS′),
back to its predecessor. M is the response message of Pj to the query. Each target peer sends the
reply back to its predecessors until P0 receives it. P0 sends the reply back to the previous peer
on the query path. All peers on the path repeat the same operation until Pr receives the reply.

2If Pj is not online, the query reaches to the last target peer, Pk−1, and the query is dropped.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 281

Pr checks encrypted ID and TS′ values in the reply. If values are correct, M is an authentic
response from Pj . Figure 2(a) shows two-phase routing of a query with the naive reply. Points
on the Chord ring represent the peers involved in routing of Pr’s query. Gray points represent
the target peers. The black point is Pj . Solid arrows represent the path of Pr’s query. Dashed
arrows represent the path of Pj ’s reply.
The encryption scheme protects authenticity of a reply. A malicious target peer can not obtain

Krj key and forge a fake reply. However, if Pr can sniff all network links or just Pj ’s links, it
can observe that Pj neither forwarded the query nor received a reply from its successor. Thus,
Pr can identify that Pj is the responder.

4.5 Random-route reply

After P0 receives a query, all target peers forward the query to their successors until Pk−1 receives
it. Pj decrypts the query and waits for while to ensure that Pk−1 receives the query. Then, Pj

prepares a reply as in the naive reply method and sends it to a random target peer (assuming all
target peers in the anonymity group know each other). Receiving peer randomly forwards the
reply to another one with a probability of pf . A peer may receive and forward the same reply
several times. Finally, a peer decides to send the reply to P0. Peers on the query path between
P0 and Pr forward the reply until Pr receives it. Figure 2(b) shows two-phase routing of a query
with random-route reply.
If Pr only has local observation capability, random-route reply may provide a probabilistic

anonymity protection for Pj but does not eliminate chance of being identified. A forwarding
peer only knows its preceding hop, but can not ensure if the preceding hop is Pj . In case of a
collaboration between Pr and some target peers, Pj has probable innocence [Reiter and Rubin
1998] if

k ≥ pf
pf − 1/2

(c+ 1)

k is the number of target peers and c is the number of Pi’s collaborators. The probable innocence
means that a peer is no more likely to be the responder than not to be the responder. If c > k

2 −1,
there is no probable innocence for Pj . In other words, random-route reply does not protect
anonymity when half of the target peers are compromised. In this analysis, adversaries are
assumed to have local sniffing capabilities. If Pr has global sniffing capabilities, anonymity of Pj

can not be protected.

4.6 The oblivious reply protocol

Naive and random reply protocols are vulnerable global passive adversaries. The oblivious reply
protocol protects anonymity of a responder against global passive adversaries. The basic idea is
that each target peer generates a separate reply for a query. However, a reply can not be linked
with its sender. Thus Pj ’s reply can not be traced while replies are being collected from target
peers. We have several assumptions for the protocol:

(1) Peers have good pseudo-random number generators.

(2) Each target peer knows other target peers in its anonymity group and its exact location in
the group, i.e, the number of hops from P0 and Pk−1.

(3) All target peers exchange their oblivious reply certificates, i.e., Pj exchanges
Rbp{AIDj |OUj |TS} with others. Once certificates are exchanged, they can be used in many
queries.

(4) The public key encryption scheme is not commutative, i.e., A(B(M)) ̸= B(A(M)). Addi-
tionally, the public key encryption scheme satisfies semantic security [Goldwasser and Micali
1982]. This implies that result of an encryption depends on the message and a sequence of
coin tosses. Thus, encryption of a plaintext with the same public key results in a different
ciphertext in each trial. However, decryptions of these ciphertexts give the same plaintext.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

282 · Ahmet Burak Can and Bharat Bhargava

As shown in Figure 2(c), when Pr’s query reaches to P0, each target peer forwards the query
until Pk−1 receives it. Pk−1 tries to decrypt contents of the query. If the decryption is successful,
it prepares Ok−1

k−2 as follows:

Ok−1
k−2 = OUk−2(O

k−1
k−3)

Ok−1
k−3 = OUk−3(O

k−1
k−4)

· · ·
Ok−1

1 = OU1(O
k−1
0)

Ok−1
0 = OU0(Krj(M |ID|TS′)|AB)

Ok−1
k−2 denotes Pk−1’s oblivious reply to be delivered to Pk−2. The innermost encryption layer

contains Pk−1’s response, M . The authenticity bit, AB, is set to 1 in order to show that the
reply is authentic.
If the decryption of the query fails, Pk−1 generates a false oblivious reply and sets AB = 0 to

indicate that the reply is inauthentic. Then, the innermost layer of Ok−1
k−2 contains

Krnd(RM |RID|TS′)|AB as the content. Krnd is a randomly generated key. RM and RID are
random response message and ID values respectively. These random values should have the same
amount of bits as the authentic values. Due to the layered encryption, only P0 can read AB field.
Therefore, regardless of its content, Pk−1’s oblivious reply looks same for other peers. For the
rest of paper, we will use ”reply” and ”oblivious reply” terms interchangeably. The protocol runs
as follows:

(1) Pk−1 sends MAIDj |TS′|Ok−1
k−2 to its predecessor, Pk−2.

(2) Pk−2 decrypts the top layer of Ok−1
k−2, which becomes Ok−1

k−3. Then, Pk−2 prepares Ok−2
k−3 and

sends MAIDj |TS′|(Ok−1
k−3 ∪ Ok−2

k−3) to Pk−3. The operation ∪ denotes the concatenation in

random order. Since Ok−1
k−3 and Ok−2

k−3 are encrypted and contain the same number of bits,
Pk−3 can not distinguish these replies after randomization of their order.

(3) Pk−3 decrypts the top layers ofOk−1
k−3 andOk−2

k−3. It createsO
k−3
k−4 and sendsMAIDj |TS′|(Ok−1

k−4∪
Ok−2

k−4 ∪Ok−3
k−4) to Pk−4.

(4) All target peers repeat this operation until P0 receives MAIDj |TS′|(Ok−1
0 ∪ Ok−2

0 ∪ . . . ∪
O2

0 ∪O1
0). After decrypting the last layers of all replies, P0 checks AB fields and determines

the authentic reply. P0 sends this reply to the previous peer on Pr’s query path. All peers on
the path repeat the same operation until Pr receives the reply. If there are multiple replies
with AB = 1, all of them are sent to Pr since only Pr can determine the authentic reply.

(5) Pr decrypts all incoming replies using Krj . The reply with the correct ID and TS′ values is
the authentic one. A malicious peer can not forge an authentic reply since it can not obtain
Krj .

The protocol uses layered encryption concept of mix networks and onion routers in a different
way. For a better understanding of the encryption scheme, the reader may refer to [Chaum 1981;
Goldschlag et al. 1996]. Figure 3 shows operation of the protocol among target peers. All replies
are accumulated from Pk−1 to P0. At the end, P0 receives k − 1 replies and sends some replies
to Pr.

4.7 Security analysis of the oblivious reply protocol

If Pr is a global passive adversary, it can observe all communication among target peers but
layered encryption of replies, identical reply sizes, randomization of replies on each target peer,
and semantic security assumption do not allow Pr to identify Pj ’s reply. The oblivious reply
protocol provides k-anonymity protection for responders as long as adversaries perform passive
attacks. We demonstrate this as follows:

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 283

1−kp

2−kp

3−kp

1

2|| −

−
′

k

kj OSTMAID

)(|| 2

3

1

3

−

−

−

−
′

k

k

k

kj OOSTMAID U

)(|| 321 −−−
′

kkk OOOSTMAID UU

1p

0p

)(|| 2

1

3

1

2

1

1

1 OOOOSTMAID kk

j UUKUU
−−

′

)(|| 1

0

2

0

3

0

2

0

1

0 OOOOOSTMTID kk

j UUUKUU
−−

′

)(|| 3

4

2

4

1

4

−

−

−

−

−

−
′

k

k

k

k

k

kj OOOSTMAID UU

M

Figure 3. Message communication among target peers in the oblivious reply protocol

(1) Pr can not learn any information about the sender of an oblivious reply by sniffing incoming
and outgoing replies of a target peer.

Let Px ∈ {P0, . . . , Pk−1} be an honest target peer and Pr be capable of sniffing Px’s com-
munication. When Px+1 sends MTIDj |TS′|(Ok−1

x ∪ Ok−2
x ∪ . . . ∪ Ox+1

x) to Px, Pr can sniff
these replies. However, Pr can not learn contents of Ok−1

x , Ok−2
x , . . . , Ox+1

x due to layered
encryption with ORx, . . . , OR0 keys. This condition is also true for Px’s outgoing replies.

Pr may try to link Px’s incoming and outgoing replies. If it can succeed on this, Pr may try
trace a reply by sniffing all target peers’ incoming and outgoing replies. However, this is not
possible for two reasons:

(a) Layered encryption of oblivious replies, randomization of their order by Px, and identical
reply sizes do not allow Pr to distinguish a particular outgoing reply from others. All
replies look same for Pr.

(b) When Px exchanges its oblivious reply certificate, Rbp{AIDx|OUx|TS}, with other target
peers, Pr can learn OUx by sniffing messages. It can encrypt Px’s outgoing replies with
OUx and try to obtain an incoming reply. However, Pr can not do this due to our
semantic security assumption. None of the outgoing replies can be linked to an incoming
reply without knowing ORx key.

Let Pr be capable of sniffing P0’s communication. Pr can decrypt P0’s outgoing oblivious
replies since it is encrypted with Krj . However, Pr can not find a link between P0’s outgoing
and incoming replies due to the reasons explained above. Pr must have OR0 key to establish
such a link.

Therefore, sniffing a peer’s incoming and outgoing replies does not provide any information
to adversaries.

(2) If Pr has global observation capability, the oblivious reply protocol provides k-anonymity pro-
tection for Pj.

Pr can observe all messages among P0, P1, . . . , Pk−1 but it can not obtain any information
due to above arguments. Pr can not distinguish Pj ’s reply from other k− 1 replies so Pj has
k-anonymity protection.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

284 · Ahmet Burak Can and Bharat Bhargava

Pr may obtain some collaborators among target peers by compromising them or injecting decoy
peers into them (Sybil attack [Douceur 2002]). With the help of these collaborators, Pr may try
to track replies and identify Pj ’s reply. We claim that if collaborators behave in semi-honest
adversary model [Goldreich 2001], the protocol protects Pj ’s anonymity. Assuming Pr is a global
passive adversary, we demonstrate this as follows:

(3) If all except two target peers are Pr’s collaborators, replies of two honest target peers can
not be distinguished from each other as long as collaborators behave in semi-honest adversary
model.
Without loss of generality, let Px and Py be honest target peers where 0 < x < k − 2 and
x + 1 < y ≤ k − 1. All other peers are collaborators of Pr based on our assumption. As
a collaborator, Px+1 can identify Py’s reply, Oy

x+1, since all peers between Pk−1 and Px+1

except Py are collaborators. Px+1 decrypts top layers of its incoming replies, adds its own
reply, and sends MAIDj |TS′|(Ok−1

x ∪ . . . ∪Ox+2
x ∪Ox+1

x) to Px.
Px repeats the same operations and sends MAIDj |TS′|(Ok−1

x−1 ∪Ok−2
x−1 ∪ . . .∪Ox+2

x−1 ∪Ox+1
x−1 ∪

Ox
x−1) to Px−1. Knowing oblivious replies of all collaborators, Px−1 can figure out Ox

x−1 and
Oy

x−1. It can also learn Oy
x from Px+1. To identify senders of Ox

x−1 and Oy
x−1, Px−1 has to

find a link between one of these replies and Oy
x. However, Px−1 can not do this as discussed in

listing 1. In Px−1’s view, O
x
x−1 and Oy

x−1 are equally likely to be decryption of Oy
x. Without

having ORx key, neither Pr nor other collaborators can learn any further information than
Px+1 and Px−1. Therefore, Pr and its collaborators can not distinguish replies of Px and Py.
If Px, Py are two consecutive peers (x+ 1 = y), collaborators still can not distinguish replies
of two honest peers. When Py sends its reply to Px, collaborators may identify Oy

x. However,
without having ORx key, they can not establish a link between Oy

x and Px’s outgoing replies,
Ox

x−1, O
y
x−1.

(4) If m target peers are collaborators of Pr, the oblivious reply protocol provides k−m anonymity
protection for Pj as long as collaborators behave in semi-honest adversary model.
With the above arguments, if there are k − m honest target peers, adversaries can not
distinguish k−m honest replies from each other in the semi-honest adversary model. Pj has
k −m anonymity protection since it can not be linked with any of k −m replies.

We conclude that the oblivious reply protocol provides k-anonymity protection for responders
as long as adversaries perform only passive attacks.

4.8 Vulnerabilities of the oblivious reply protocol

A passive attack to the oblivious reply protocol is possible due to open nature of peer-to-peer
systems. A global passive adversary may observe an anonymity group for a long time to catch a
responder’s offline period. It can periodically send queries. If no reply comes back, the adversary
understands that responder is offline and may guess its identity. High churn nature of peer-to-peer
systems makes this attack possible. Even a perfect anonymity providing system is vulnerable to
this attack since peers intermittently join and leave the network. A possible approach to mitigate
this attack is making anonymity groups large enough to provide responders offline anonymity.
When calculating MAID values in Section 4.1, we consider this situation and form anonymity
groups by assuming that nearly 25% of peers in an anonymity group are online in any time period.
If Pj is offline during a query, 75% of target peers in its group will be offline on average. Thus,
determining Pj ’s identity will not be easy. Statistical results of empirical analysis [Ripeanu et al.
2002; Saroiu et al. 2002] can be used to guess churn rate and determine appropriate group sizes
more accurately.
The oblivious reply protocol can not protect anonymity if adversaries perform active attacks.

We identify several active attacks that can be launched by Pr or its collaborators. Assuming Px

is an honest target peer, the following attacks may break Pj ’s anonymity:

(1) Forging replies: Let Px+1 be a collaborator and one of target peers, where 0 < x+1 < k− 1.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 285

Px+1 can ignore its incoming replies and send fake replies to Px. Since peers in Px, . . . , P0

range can not understand this situation, they perform normal operation. At the end of
protocol, if Pr receives Pj ’s reply, Pj is located in Px, . . . , P0 range. Otherwise, Pj is probably
in Pk−1, . . . , Px+2 range

3. If Pr has several collaborators, the attack can be repeated to reduce
the number of possible target peers for Pj .

If Pr has global active attack capability, it can perform the same attack by forging Px’s
incoming replies. If Pr receives Pj ’s reply, Pj is located in Px, . . . , P0 range. According to
the result, Pr can repeat the attack on various target peers and can reduce the number of
possibilities.

(2) Dropping selected replies: Assume that Px+1 is a collaborator and one of target peers, where
0 < x+ 1 < k− 1 and there are some other collaborators in Pk−1, . . . , Px+2 range. Px+1 can
identify replies of honest peers in its incoming replies by communicating other collaborators.
If Px+1 drops all honest replies, Px can understand this situation (By our assumption, Px

knows its exact location in the anonymity group and the number of replies that it should
receive from Px+1.). Therefore, Px+1 sends Px forged fake replies instead of dropped ones.
If Pr does not receive Pj ’s reply, Pj is probably one of the honest peers in Pk−1, . . . , Px+2

range. Otherwise, Pj is in Px . . . P0 range.

(3) Skipping a peer : Let Pk−1, . . . , Px+1 be collaborators. Px+1 forges fake replies and sends
them directly to Px−1 so it skips Px. If Pr does not receive Pj ’s reply, Px is probably Pj .
This attack can succeed only if Pk−1, . . . , Px+1 are all collaborators.

(4) Isolating a peer : If Pr has global active attack capability, it may intercept all communication
to Px. Other target peers think that Px is offline and do not send Px any message. Pr sends
a query and waits for Pj ’s reply. If Pr does not receive an authentic reply, Px is probably
Pj . By repeating this process for other target peers, Pr can narrow down candidates for Pj .

In addition to above attacks, a collaborator may also drop all queries and replies passing
through it. Although such an attack does not give any information about Pj ’s identity, it can be
considered as a denial of service attack. Such adversaries can be reported to the bootstrap peer
and excluded from the query and reply operations. We are considering such attacks since it is
out of our discussion.
If a target peer is forced to stay complaint with the rules of oblivious reply protocol, some

active attacks can be prevented. Goldreich [Goldreich 2001] explains that semi-honest behavior
can be forced by compiling each instruction (message), which might be the next step of this study.

4.9 Performance Considerations

We consider message complexity and computational complexity to evaluate performance of our
protocol. In the oblivious reply protocol, a reply is forwarded up to Θ(k) times. For k replies,
Θ(k2) network packets are forwarded in phase 2. However, more than one reply can be sent in
the same network packet for efficiency. While oblivious replies are getting closer to P0, size of an
oblivious reply decreases and number of replies that fit into a network packet increases. Therefore,
number of network packets does not increase as quick as the number of replies while replies are
forwarded from Pk−1 to P0. Efficient implementation of layered encryption and compression may
also decrease reply sizes and improve the performance.
During an anonymous query, each peer makes Θ(k) public-key decryptions while decrypting top

layers of its incoming replies and Θ(k) public-key encryptions while creating its own reply. For
each run of the protocol, Θ(k2) public-key encryptions and decryptions are performed in total.
This can be acceptable comparing to multiparty computation approaches [Goldreich 2001].

3Pj might be offline at the time of query.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

286 · Ahmet Burak Can and Bharat Bhargava

5. CONCLUSION

In a peer-to-peer system, anonymity protection against local passive attacks results in a weak
anonymity protection. An adversary with global passive attack capabilities may identify anony-
mous peers in most anonymity solutions. Furthermore, an adversary with some collaborators
may reveal identity of anonymous peers by launching collaborative attacks even it does not have
global attack capabilities. The oblivious reply protocol provides k-anonymity protection for re-
sponders against global passive adversaries. If k is the group size, the oblivious reply protocol
requires Θ(k2) message exchanges for each anonymous reply, which is good comparing to complex
secure multi-party computation approaches. The protocol allows to send multiple replies in the
same network packet so message complexity can be reduced depending on the implementation.
As a future work, the proposed approach can be adapted to other DHT structures such as

CAN [Ratnasamy et al. 2001] and Tapestry [Zhao et al. 2004] to create alternative anonymity
solutions. Reducing complexity of the oblivious reply protocol and protecting anonymity against
active attacks are some other future work directions. Anonymity against active attacks requires
compilation of each protocol message, which means more message and computation complexity.
Therefore, reducing complexity and increasing security against active attacks are conflicting tasks.
Finding a trade-off between these tasks might be an interesting future work study.

REFERENCES

Aberer, K. and Despotovic, Z. 2001. Managing trust in a peer-2-peer information system. In Proceedings of
the 10th International Conference on Information and Knowledge Management (CIKM).

Akavipat, R., Al-Ameen, M., Kapadia, A., Rahman, Z., Schlegel, R., and Wright, M. 2014. Reds: A
framework for reputation-enhanced dhts. Parallel and Distributed Systems, IEEE Transactions on 25, 2 (Feb),
321–331.

AlSabah, M., Bauer, K., Elahi, T., and Goldberg, I. 2013. The path less travelled: Overcoming tors bottle-

necks with traffic splitting. In Privacy Enhancing Technologies. Springer, 143–163.

Barbera, M. V., Kemerlis, V. P., Pappas, V., and Keromytis, A. D. 2013. Cellflood: Attacking tor onion
routers on the cheap. In Computer Security–ESORICS 2013. Springer, 664–681.

Beimel, A. and Dolev, S. 2003. Buses for anonymous message delivery. Journal of Cryptology 16, 1, 25–39.

Bittorent. Bittorent web site. http://bittorrent.org. Accessed Nov 2014.

Borisov, N. and Waddle, J. 2005. Anonymity in structured peer-to-peer networks. Tech. Rep. UCB/CSD-05-
1390, EECS Department, University of California, Berkeley.

Boyd, C. and Mathuria, A. 2003. Protocols for Authentication and Key Establishment. Springer.

Can, A. B. and Bhargava, B. 2010. Anonymous access to trust information using k-anonymity chord. In

Proceedings of the Second International Conference on Advances in P2P Systems (AP2PS).

Chaum, D. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the
ACM 4, 2.

Chaum, D. 1988. The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal

of Cryptology 1, 65–75.

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. 2001. Freenet: A distributed anonymous information
storage and retrieval system. In Proceedings of the First Privacy Enhancing Technologies Workshop (PET).
LNCS, vol. 2009.

Danner, N., DeFabbia-Kane, S., Krizanc, D., and Liberatore, M. 2012. Effectiveness and detection of denial-
of-service attacks in tor. ACM Transactions on Information and System Security (TISSEC) 15, 3, 11.

Das, A. and Borisov, N. 2013. Securing anonymous communication channels under the selective dos attack. In
Financial Cryptography and Data Security. Springer, 362–370.

Das, A., Borisov, N., Mittal, P., and Caesar, M. 2014. Re 3: relay reliability reputation for anonymity

systems. In Proceedings of the 9th ACM symposium on Information, computer and communications security.
ACM, 63–74.

Dingledine, R., Freedman, M., and Molnar, D. 2001. The Free Haven project: Distributed anonymous storage
service. In Proceedings of the First Privacy Enhancing Technologies Workshop (PET). LNCS, vol. 2009.

Dingledine, R., Mathewson, N., and Syverson, P. 2004. Tor: The second-generation onion router. In Pro-
ceedings of the 13th USENIX Security Symposium.

Dingledine, R. and Murdoch, S. J. 2009. Performance improvements on tor or, why tor is slow and what were
going to do about it. Online: http://www. torproject. org/press/presskit/2009-03-11-performance. pdf .

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 287

Douceur, J. 2002. The sybil attack. In Proceedings of the First International Workshop on Peer-to-Peer Systems
(IPTPS).

Elahi, T., Bauer, K., AlSabah, M., Dingledine, R., and Goldberg, I. 2012. Changing of the guards: A
framework for understanding and improving entry guard selection in tor. In Proceedings of the 2012 ACM

workshop on Privacy in the electronic society. ACM, 43–54.

Fabian, B. and Feldhaus, T. 2014. Privacy-preserving data infrastructure for smart home appliances based on
the octopus dht. Computers in Industry.

Freedman, M. J. and Morris, R. 2002. Tarzan: A peer-to-peer anonymizing network layer. In Proceedings of

the 9th ACM Conference on Computer and Communications Security (CCS).

Gnutella. Wikipedia entry for Gnutella. http://en.wikipedia.org/wiki/Gnutella. Accessed Nov 2014.

Goldreich, O. 2001. Foundations of Cryptography. Vol. 1. Cambridge University Press.

Goldschlag, D. M., Reed, M. G., and Syverson, P. F. 1996. Hiding Routing Information. In Proceedings of
the First International Workshop on Information Hiding.

Goldwasser, S. and Micali, S. 1982. Probabilistic encryption & how to play mental poker keeping secret all

partial information. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing.

Han, J. and Liu, Y. 2008. Mutual anonymity for mobile p2p systems. IEEE Transactions on Parallel and
Distributed Systems 19, 8, 1009–1019.

Hazel, S. and Wiley, B. 2002. Achord: A variant of the chord lookup service for use in censorship resistant
peer-to-peer publishing systems. In Proceedings of the First International Workshop on Peer-to-Peer Systems

(IPTPS).

Jahid, S., Nilizadeh, S., Mittal, P., Borisov, N., and Kapadia, A. 2012. Decent: A decentralized architecture
for enforcing privacy in online social networks. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference on. 326–332.

Kamvar, S., Schlosser, M., and Garcia-Molina, H. 2003. The (eigentrust) algorithm for reputation manage-

ment in P2P networks. In Proceedings of the 12th World Wide Web Conference (WWW).

Kondo, M., Saito, S., Ishiguro, K., Tanaka, H., and Matsuo, H. 2009. Bifrost: A novel anonymous com-
munication system with dht. In Parallel and Distributed Computing, Applications and Technologies, 2009
International Conference on. IEEE, 324–329.

McLachlan, J., Tran, A., Hopper, N., and Kim, Y. 2009. Scalable onion routing with torsk. In Proceedings of

the 16th ACM conference on Computer and communications security.

Mislove, A., Oberoi, G., Post, A., Reis, C., Druschel, P., and Wallach, D. S. 2004. Ap3: Cooperative,
decentralized anonymous communication. In Proceedings of the 11th ACM SIGOPS European Workshop.

Mittal, P. and Borisov, N. 2008. Information leaks in structured peer-to-peer anonymous communication
systems. In Proceedings of the 15th ACM conference on Computer and communications security. ACM, 267–

278.

Mittal, P. and Borisov, N. 2009. Shadowwalker: peer-to-peer anonymous communication using redundant
structured topologies. In Proceedings of the 16th ACM Conference on Computer and Communications Security.

Mittal, P., Olumofin, F. G., Troncoso, C., Borisov, N., and Goldberg, I. 2011. Pir-tor: Scalable anonymous
communication using private information retrieval. In USENIX Security Symposium.

Nambiar, A. and Wright, M. 2006. Salsa: a structured approach to large-scale anonymity. In Proceedings of
the 13th ACM conference on Computer and communications security.

Napster. Wikipedia entry for Napster. http://en.wikipedia.org/wiki/Napster. Accessed Nov 2014.

Panchenko, A., Richter, S., and Rache, A. 2009. Nisan: network information service for anonymization
networks. In Proceedings of the 16th ACM conference on Computer and communications security.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. 2001. A scalable content-addressable
network. SIGCOMM Comput. Commun. Rev. 31, 4, 161–172.

Reiter, M. and Rubin, A. 1998. Crowds: Anonymity for web transactions. ACM Transactions on Information
and System Security 1, 1, 66–92.

Ren, J., Li, T., and Li, Y. 2008. Anonymous communications in overlay networks. In Proceedings of IEEE

International Conference on Communications (ICC).

Rennhard, M. and Plattner, B. 2002. Introducing morphmix: Peer-to-peer based anonymous internet usage
with collusion detection. In Proceedings of the Workshop on Privacy in the Electronic Society (WPES).

Ripeanu, M., Foster, I., and Iamnitchi, A. 2002. Mapping the Gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design. IEEE Internet Computing 6, 1, 50–57.

Saroiu, S., Gummadi, P., and Gribble, S. 2002. A measurement study of peer-to-peer file sharing systems. In

Proceedings of the Multimedia Computing and Networking.

Shirazi, F., Diaz, C., Mullan, C., Wright, J., and Buchmann, J. 2013. Towards measuring resilience in
anonymous communication networks. In 6th Workshop on Hot Topics in Privacy Enhancing Technologies,
Bloomington, USA. Vol. 12.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

288 · Ahmet Burak Can and Bharat Bhargava

Singh, A. and Liu, L. 2003. Trustme: Anonymous management of trust relationships in decentralized P2P system.
In Proceedings of the 3rd IEEE Conference on Peer-to-Peer Computing (P2P).

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. 2001. Chord: A scalable peer-
to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev. 31, 4, 149–160.

Sweeney, L. 2002. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness
and Knowledge-based Systems 10, 5, 557–570.

Syverson, P. F., Goldschlag, D. M., and Reed, M. G. 1997. Anonymous connections and onion routing. In

Proceedings of the IEEE Symposium on Security and Privacy.

Tran, A., Hopper, N., and Kim, Y. 2009. Hashing it out in public: common failure modes of dht-based anonymity

schemes. In Proceedings of the 8th ACM workshop on Privacy in the electronic society. ACM, 71–80.

Wacek, C., Tan, H., Bauer, K. S., and Sherr, M. 2013. An empirical evaluation of relay selection in tor. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

Waldman, M., Rubin, A. D., and Cranor, L. F. 2000. Publius: A robust, tamper-evident, censorship-resistant
web publishing system. In Proceedings of the 9th Conference on USENIX Security Symposium.

Wang, Q. and Borisov, N. 2012. Octopus: A secure and anonymous dht lookup. In Distributed Computing
Systems (ICDCS), 2012 IEEE 32nd International Conference on. IEEE, 325–334.

Wang, Q., Lin, Z., Borisov, N., and Hopper, N. 2013. rbridge: User reputation based tor bridge distribution
with privacy preservation. In Proceedings of the Network and Distributed System Security Symposium (NDSS).

Wang, Q., Mittal, P., and Borisov, N. 2010. In search of an anonymous and secure lookup: attacks on
structured peer-to-peer anonymous communication systems. In Proceedings of the 17th ACM conference on

Computer and communications security.

Zhao, B., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Kubiatowicz, J. 2004. Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications 22, 1, 41–53.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

k-anonymity Chord for Anonymous Query Response · 289

Ahmet Burak Can is currently affiliated with Department of Computer Science & En-
gineering at Hacettepe University, Turkey. He received the Ph.D. degree in Computer
Science from Purdue University, West Lafayette. He has BS and MS degrees in Com-
puter Science and Engineering from Hacettepe University. He is a member of the IEEE.
His main research areas are computer networks, distributed systems, network security,
and computer vision. His current research activities focus on trust and reputation man-
agement, anonymity protection, and incentive mechanisms in peer-to-peer systems.

Bharat Bhargava is a professor of the Department of Computer Science at Purdue
University. Professor Bhargava is conducting research in security and privacy issues in
distributed systems. Professor Bhargava is a Fellow of the IEEE and of the IETE. He has
been awarded the charter Gold Core Member distinction by the IEEE Computer Society
for his distinguished service. He serves on seven editorial boards of international journals.
He also serves the IEEE Computer Society on Technical Achievement award and Fellow
committees. Professor Bhargava is the founder of the IEEE Symposium on Reliable and
Distributed Systems, IEEE conference on Digital Library, and the ACM Conference on
Information and Knowledge Management.

International Journal of Next-Generation Computing, Vol. 5, No. 3, Nov 2014.

