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The relationships among partial computable functions, e.g., the query “If applying a function z to a function y
yields a function z?”, are undecidable in general, and therefore we do not have corresponding built-in operators
in programming languages or database management systems. Limited to a finite set of finite functions, i.e.,
finitely many functions with finitely many ordered argument-value pairs, however, the relationships are decidable.
The Enterprise-Participant (EP) data model is one that manages data as finite sets of finite functions and that
has a set of built-in operators to express the relationships. In this article, we introduce the EP data model.
Considering a data model as a recursive language, i.e., its executions always terminate, the EP data model is the
most expressive among all contemporary data models including the relational data model and hierarchical data
models (e.g., XML), and among all contemporary structured data representations including semi-structured data
and graph-based data. Further, it mathematically reaches the limit in database management, i.e., we can use the
EP data model to manage arbitrarily computable information. The aim is to consolidate heterogeneous data into
a general data structure and to offer more powerful built-in operators for data analysis in cloud computing and
big data initiatives.
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1. INTRODUCTION

The relational data model (SQL) has an expensive operator - join, e.g., the time complexity is O(n
In(n)) in querying many-to-many relationships. It causes the response time unacceptably long
when data volume becomes very large. Application data and logic in a database applicaton system
are separately embedded in the database and in the source code of a programming language. It
causes dependencies between database and source code. A data partitioning (sharding) strategy
change due to data volume increase, for example, may require a source code change. NoSQL
technologies, e.g., Google Bigtable, Apache HBase, and MongoDB [Ferguson et al. 2012, Hayes
et al. 2010, Krzyzanowski et al. 2011, and Ward et al. 2013], resolve the time complexity
issue in a price of losing some of SQL expressive power. NoSQL does not have a solution to the
dependency issues. Even worse, it increases the dependencies because it loses some expressive
power of SQL. Now a typical database system is added with another component NoSQL beyond
the complexity of SQL and programming language. The complexity further isolates and buries
originally connected information deeper into heterogeneous systems, which causes data analytics
more difficult.

Lacking a mathematically sound data model that is able to consistently represent arbitrarily
computable information is the root cause of the challenging issues substantially and inevitably
faced by cloud computing, where big data is stored and data analytics is desired within a big
data system or across multiple big data systems. Such a data model would have to generalize all
existing data models and data structures. Additionally, we require the data model to have low
time complexity in executing advanced built-in operations, including SQL join operations.

The Enterprise-Participant (EP) data model meets all the requirements. It has an underneath
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data structure that preserves all the relationships among managed objects (instead of shredding
objects into separated tables) and therefore the time complexity is optimized for all kinds of
queries, including SQL-equivalent queries, e.g., the linear time complexity of O(n) in expressing
SQL many-to-many relationship queries.

The EP data model was originally proposed to have a single data structure for both database
management and data communication [Xu et al. 1996]. Later it was found that it is a method of
semantically approximating the lambda calculus [Xu et al. 2014]. As a result, the EP data model
can model all kinds of business data in a consistent manner, and therefore offer an opportunity
to reduce the degree of data variety in the future big data management.

Here are a few examples that intuitively demonstrate how EP databases are constructed and
will be referenced in the later discussion.

Example 1.1 The set z z := z is an EP database, where z can be viewed as a function that
yields to itself when it is applied to itself, and yields to null (a special constant in EP) when it
is applied to other arguments. Given the set x = :=z, there are infinitely many expressions z, z
T, TxT x T ... that are reducible to . The letter z actually represents an approximation
to all the functions that yield to themselves after being applied to themselves, e.g., the identity
function Az.z.

Example 1.2 A directed graph with connections from vy to ve, from vs to w1, and from vy to
vs can be expressed in an EP database: v vy :=vs; vo v1 := v1; Vo vs := v3, where v1, vo, and
vg represent vertices, and an assignment represents a directed connection. In this example, the
vertex vy is viewed as a function that yields to v, when it is applied to vy, and yields to null
when it is applied to others. The function v, yields to vy when it is applied to vy, vz when it is
applied to wvs, and null otherwise. The vertex vz is also a function, but a constant one for the
time being. It may become a non-constant function later with an EP update operation. With
this database, we can reduce infinitely many expressions vy vg, v1 Vg V1, ..., U1 Vg ... V1, ... tO
x1. It could be thought of as if one walked along the circle z; to x2 and x5 to 1 as many times
as she liked and eventually stopped at the vertex x1. The query “If is there a path from x; to x3
?7” is simply expressed in EP as x3 (=+ x1, where the binary operator (=+ reflects a pre-ordering
relation among functions, arguments, and values that exist in a database. The answer would be
the truth value true.

By adding constants, such as integers, strings, and truth values, the EP data model can express
common business data in software practice.

Example 1.3 A school administration can be expressed in the following database:
SSD.gov John SSN := ‘1283/56789°;
SSD.gov John birth := ‘6/1/1990’;
SSD.gov John photo.jpg := ...; /* a binary stream for a photo™/
college.edu admin (SSD.gov John) enroll :=‘9/1/2008’;
college.edu admin (SSD.gov John) Major := college.edu CS;
college.edu CS CS100 (college.edu admin (SSD.gov John)) grade := “F”;

The sampe database is alternatively expressed in a diagram in Figure 1. The immediately
visible benefits of using the EP data model include: 1) The EP data model has more expressive
power than any existing data models (or data structures) for data analytics. 2) Analogous to
network file system (NFS), multiple EP database systems can be plugged together to provide a
larger and consistent view as a way of application integration. As a matter of fact, more and
more information can be accumulated in the system to reflect better and better the real world.
This process is done purely in the EP data model without other technologies. Taking as a data
exchange protocol, the EP data model will also find broad applications in large integrated systems
such as cloud computing and knowledge management. 3) The EP data model is extended to a full
programming language Froglingo which logically and physically treat business data and business
logic equally. 4) Analogous to NFS, the EP data model has built-in security (data access control)
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Figure 1: Figure. 1: A sample EP database

mechanism for protecting data privacy. 5) EP data model has a built-in ability for comparing
objects in similarity that is often needed in knowledge management.

In this article, we introduce the EP data model itself as a language, from which we see how
one constructs databases in the EP data model. We also discuss the decidable (dependent and
pre-ordering) relations among the objects in EP databases. The relations are the mathematical
underpining of a rich set of built-in operators that supersede the available database operations
of the contemporary database technologies. The dependent relations are the mathematical un-
derpining of the tree-structures in the implementation of the EP data model (The optimized
performance of the EP data model comes from the tree-structures).

In Section 2, we give the core concepts of the EP data model: terms, assignments, database,
normal form, and reduction. Separately in Sections 3 and 4, we discuss the built-in operators
of the EP data model and their uses in set-oriented queries. (Note that the proofs of related
lemmas and theorems can be found in [Xu et al. 2014 and 1999.]). In Section 5, we briefly review
previous research work on data models. We also briefly mention Froglingo, a programming
langugae expanded from the EP data model that helps in data security, web service, and data
analytics.

2. THE EP DATA MODEL

Rather than defining functions in formulas or algorithms, the EP data model defines functions in
ordered argument-value pairs. A collection of ordered pairs, in the form of assignments, is called
a database. Starting from a set of identifiers, we construct a set of EP terms.
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Definition 2.1 Given a set of constants C including a special constant null and a set of (func-
tional) identifiers F, the set of EP terms, denoted as E, is defined inductively® as follows:

€ CUF= z€ FE

r,ye E= zye E

We adopt many notations from the lambda calculus, including sub-term? (SUB(t) for all sub-
terms in t), left-most 3 sub-term (LMS (t) for all left-most sub-terms in ¢), and applications
without surrounding parentheses, e.g., a b, instead of (¢ b) when there is no ambiguity. Given a
term a b (¢ d), for example, SUB (a b (¢ d)) =a b (cd),a b, cd, a, b, ¢, d, LMS (a b (¢ d))
=a b (cd), ab, a. Given a term ¢, we further call a sub-term of ¢, except for ¢ itself, a proper
sub-term, and therefore we use SUB™ () to denote all the proper sub-terms of ¢, i.e., SUB™ ()
= SUB(¢) - t.

A constant can be a string, an integer, a character, a time, an image file, or any binary stream
data. So any objects required to be managed in big data are manageable in the EP data model.

An EP database (simply called a database in this article) is a finite set of assignments where
assignees and assigners are terms. Some terms that have a constant as a left sub term, e.g., &
t, are not allowed to be in a database. We identify a sub set out of E, denoted as E°, which is
inductively defined as:

r€ F= z¢e€ E°
re€ E° (ye CUE") = (zy)c E°

It means that if an application a b is a term in E°, then the left sub term a cannot be a
constant. An assignment is in the form of

a:=b
where a, b € E° are called the assignee and the assigner respectively.
Definition 2.2 A database D is a finite set of assignments with the following constraints:

(1) Each assignee has only one assigner, i.e.,
a:=bjand a :=by € D= by = by
(2) A proper sub term of an assignee cannot be an assignee, i.e.,
a:=be D= Vze SUBT(a) Vece E°[z:=c¢ D]
(3) An assigner is a non-null constant, an identifier, or a sub-term of an assignee, i.e.,

a:=b€ D= be C-null,be F,or3c¢,dec E°[c:=dec Dandbec SUB(c)

(4) If there is a sequence of assignments ag := a1, a1 := ag, ..., ¢j_1 :=a, € D for n >0, then
a, must not be identical to ag, i.e.,
ap :=ai, a1 :=ag, .., Gj—1 :=ap, € D = ag #an

The system being discussed in this article was originally called the Enterprise-Participant data
model [Xu et al. 1996], where given an application a b € E, a was meant an enterprise and b
a participant. The notion term in Definition 2.1 says a lot about how objects in the real world
interact to each others, such as a person participates in a party. The constraints in Definition
2.2 require that a participation has a outcome, i.e., applying a function to an argument yields
a value. Put it differently, a database is a collection of functions, each of which has a finite set
of triplets function-argument-value, i.e., a b := ¢ where a, b, ¢ are respectively a function, an
argument, and the corresponding value. An assignee is normally an application, and an assigner
is a value. The first constraint ensures that each application yields only one value. The second
constraint prevents two equivalent applications from being assigned with multiple values. Given

IWhen an inductive definition is given, it will always be understood that the class defined is the smallest set
satisfying the conditions. It is applied to other inductive definitions introduced later in the article.

2Precisely, t € A = t € SUB(t), and m n € SUB(t) = m,n € SUB(¢).

3Precisely, t € A = t € LMS(t), and m n € LMS(t) = m € LMS(t).
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assignments ag ... a; ... ag :=b, a; :=c € D,and b # e, for example, we prevent the assignment
ag ... ¢ ... ag := e from being in D.

The value of an application is a term which is in turn interpreted as a function as well. We
could choose any term in F to be a value along with an adjustment to the definition 2.2. But we
limit it by the third constraint in an ultimate form desired to represent a value. The ultimate
form is called a normal form.

As a notation, we say that terms a and b are in database, denoted as a, b € D, if a :=b €
D. Similarly, we say that b is in database, denoted as b € D, when there is a term a € D and
b € SUB(a).

Definition 2.3 Given a database D, a term n € FE is a normal form in D if it is a constant or
a term in D except for an assignee in D, i.e., n € C,orn€ DandVbe E°[n:=b¢€ D]

In other words, a normal form is a constant, an identifier in D, or a proper sub-term of an
assignee, i.e, n € C,n€ FND o 3abe E°[a:=bec Dandn e SUBT(a). For
example, the terms z, vy, va, v3, John, SSD.gov John are normal forms of the example databases
in Section 1. We use NFP to denote all normal forms with a database D.

Now, we want every term in F to have a value. This becomes possible by introducing a set of
reduction rules.

Definition 2.4 Given a database D, we have one-step reduction rules, denoted as — :

(1) An assignee is reduced to the assigner, i.e.,
a:=be D= a— b

(2) An identifier not in database is reduced to null, i.e.,
a€ F,a¢ D= a— null

(3) If @ and b are normal forms and a b € D, then a b is reduced to null, i.e.,
a,be NFP. abdg D= ab— null

(4) a— a,b—>b = ab— ab.

Definition 2.5 Let a — aq, ..., an_1 — a, for a number n € N. Then we say that a is
effectively, i.e., in finite steps, reduced to a,, denoted as a — gp a,.

Definition 2.6 A term a has a normal form b if b is a normal form and a— gp b.

If a; — gp b and as — gp b, then we say that b, a; and ao are equal, denoted as b == a; ==
as.

Here are a few sample equations under the databases of Section 1:

SSD.gov John SSN == 123456789

college.edu admin (SSD.gov John) Major == college.edu CS

V1 Vg V1 == V1

V1 V2 V1 V2 V1 V1 == U1

TTT===x

With the reduction rules, we want the value of an assignee to be the value of its assigner. Note
that a reduction may not terminate if there is a set of circular assignments, i.e., there are a chain
of assignment ag := a1, a1 :=ag, ..., aj_1 :=a, € D for an >0 such that ap := a1, a1 :=ag, ...,
aj—1 :=ap € D,and ap = a,. The constraint 2.2.4 ensures that all reductions terminate, which
lead to the following conclusion: a term has one and only one normal form, i.e., it is strongly
normalizing.

Lemma 2.7 An assignee has a unique normal form in a database.
Theorem 2.8 A term a € F has one and only one normal form under a database D.

Our discussion has emphasized that under a database D, a term a has a normal form as its
value, either a constant, an identifier in D, or a proper sub-term of an assignee. In comparing
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with the contemporary programming language and database management systems, it is easy to
understand that a takes a constant as its value, or a takes a proper sub-term of an assignee which
is not a itself as its value. One difference in the EP data model is that a proper sub term of an
assignee, say a as a term in E takes itself as its normal form. It has been a misleading in this
article so far to say that a takes a itself as it’s own value. Precisely, we say that a is a name
to a’s value which is not explicitly given in D but implicitly derivable from D. For example, the
term SSD.gov John is a normal form in the database of Example 1.3. Rather than saying that
SSD.gov John has a value SSD.gov John, we should have said that it has a value of a function:
{(birth, 6/1/907), (SSN, 123456789), (photo.jpg, ‘...))}, here ‘...’ stands for a binary stream as
the content of a file named photo.jpg. Allowing a proper sub term of an assignee to take itself
as its normal form and to reference an implicit value provides a syntactical mean to express
meaningful applications without constants and to express self applications in the EP data model.
That is the distinguishing feature making the EP data model untyped. With the discussion so
far, we can see that the EP data model is a language that generalizes all the concepts appeared
in the contemporary technologies. A key-value pair in NoSQL, for example, is simply expressed
as an assignment in the EP data model, where the assignee is an identifier. The containment
relationships in hierarchical data models are well embedded in EP databases where assignees give
the containment relationships (See Section III below for the dependent relations that precisely
capture the containment relationships).

The many-to-many relationships in the relational data model are “denormalized” in the EP
data model without redundancy. For example, to express the many-to-many relationships be-
tween projects and employees where an employee is tasked with multiple projects and a project
needs multiple employees to work on, we will have a sample EP database:

Example 2.9 Emps I name := “John”;
Emps 2 name := “Mary”;
Projs 10 (Emps 1) := true;
Projs 10 (Emps 2) := true;
Projs 20 (Emps 1) := true;

For the query “Print all the projects and for each project print the names of all employees who
work for the project”, which is a joint operation in the relation data model, the EP data mode
has the corresponding expression: select mterm p,e name where pe == true, where mterm is a
constant function that returns the right sub-term of an application.

To facilitate our further discussion in coming two sections, we give another sample EP database
representing food recipes [Xu et al. 2010].

Example 2.10 A sample database representing two recipes:

(1) grill (marinate (rub (beef short loin 8 0z) garlic salt)) := dishl;

(2) grill (plate (grill (rub (beef short loin 8 0z) garlic salt)) (sauce chile) (cheese cheddar) ) :=
dish?2;

The first assignee embeds the preparation steps of a recipe: 1) Rub beef short loin, 8 ounces,
with garlic and salt; 2) Marinate it; and 3) grill the short loin. The second term embeds the
preparation steps of another recipe: 1) Rub beef short loin, 8 ounces, with garlic and salt; 2) grill
the short loin; 3) place short loin in a plate and spread with chile sauce and cheddar cheese; and
4) place the plate back to grill.

The database above does not exactly reflect the recipes in reality. However, Froglingo allows a
recipe to be represented as accurate as a software application desires by accumulating more at-
tributes. It does not care if an attribute of a recipe is an ingredient, a piece of cooking equipment,
or a process. All the attributes are indiscriminatingly embedded in high-order functions.

Another benefit of doing this is that all the recipes are stored together with the attributes
shared among them. For example, the attribute “Rub beef short loin, 8 ounces, with garlic and
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salt”, which appeared in both sample recipes given earlier, is stored once in the database as:
rub (beef short loin 8 0z) garlic salt;

Before ending this section, we show that given a database D, the EP data model defines a total
function with a bounded support. A function f: X — Y, where X and Y are arbitrary sets of
objects, has a finite support if and only if there exists a finite set A C X and a member a € Y
such that

f(z) =0, where b € Y and b # a ifre A
a ifxe g A

A function f : X — Y, where X and Y are arbitrary sets of objects, has a bounded support,
if and only if there exists a finite set A C Y such that
f(x)e Aforal z € X.

In this article, we simply call a function finite if it has a finite support, and bounded if it has
a bounded support. A finite function is bounded, but a bounded function may not be finite.

Lemma 2.11 Given a database D, the set of all non-constant normal forms, i.e., NFP - C, is
finite.

Given a database D and a term m € E, we use m™ to denote m’s normal form.

Theorem 2.12 Given a database D, there exists a computable function YP: E — E such
that

YP (m) = m~f

for all m, n € E.

Theorem 2.13 Given a database D, there exists a finite function XP: D — NFP such that
XP (m) = m™

forall m € E and m € D.

Theorem 2.14 If there exists a sequence of assignments ag := a1, a1 := a2, ..., aj_1 :=a, € D
for an n >0 such that ag™ # null and a,, € SUB(ap), then YP is not finite but bounded.

YP is the constant application operator we discussed in Section 1. In the next two sections,
we discuss many more operators including <=+ mentioned in Example 1.2.

3. DEPENDENT RELATIONS

An application depends both on its function and on its argument; and thereafter it depends on
the sub-terms of the function and the argument. This leads to the development of the dependent
relations.

Given an application m n, we called m and n the left sub term and the right sub term earlier.
To give the relevant operators in this section and the coming section, we also called m and n the
plus-term and the minus-term in [20], in corresponding to the signs “4” and “-” that appear in
the operators.

Definition 3.1 (1) Given an application m n in a database D, the operators {+ and {- in the
following expressions are defined such that the expressions are evaluated to be true:

mn {+m

mn{-n

(2) Given a term m in a database D, let I, s, r are a left-most sub-term, a sub-term, and a
right-most sub-term accordingly, then the operators {=+, {=-, and {= in the following expressions
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are defined such that the expressions are evaluated to be true:

m {=+1
m{=-r
m {=s

Here are the sample expressions with the value of true:

SSD John birth {+ SSD John;

SSD John birth {=+ SSD;

SSD John birth {=- birth;

College CS CS100 (College admin (SSD John)) {=- John;
birth {= SSD John birth;

John {= SSD John birth.

In a correspondence with the binary operator {+ and {-, there are two unary operators pterm
and mterm, where the first letters ‘p’ and ‘m’ are the prefixes of “plus” and “minus”. Given an
application m n, we define that pterm (m n) = m and mterm (m n) = n. In Section II, we have
used the operator mterm.

We will define a type of ordering relations - dependent relations and show that the operators
above are dependent relations.

Definition 3.2 Given a non-empty set A, a strict subset B C A, and z, y € A, z is dependent
on y in B, denoted as z p y, if and only if z € B implies that y € B, ie., p={<z, y>| =,y €
A;if z € B, then y € B}. Here we say that p is a dependent relation in B.

Proposition 3.3 The relations {+, {-, {=+, {=-, and {= are dependent relations in a database
D.

Notation 3.4 The operators {+, {-, {=+, {=-, and {= are called functional dependency, argu-
mentative dependency, recursively functional dependency, recursively argumentative dependency,
and recursively neutral dependency correspondingly.

The EP data model supports set-oriented operations in conjunctions with ordering relations.
We give two examples to demonstrate it in the rest of the section.

Example 3.5 Select all the participations of John in the database of Example 2.5:
select $x where $x {=- John;

The output would be John, SSD John, College admin (SSD John), College CS CS100 (College
admin (SSD John)).

Note that a variable, e.g., $x in the example above, can appear in the where clause of a select
operation. Syntactically, it is the same as those introduced in Section 6. Semantically, however,
it plays no role at all to the construction of a database since it is local to the select expression.

Given the recipes representation in Example 2.10, the recursively neutral dependency, i.e., {=,
is found useful in supporting the queries from the customers in a restaurant who know nothing
about knowledge representation but remembering a few attributes about dishes. For example,
she may express: “I want a marinated beef short loin. I hate cheese”. A system having the
EP data model may simply translate her query into a list of key words with possible negations:
“beef, short, loin, marinate, no cheese”. Further, the system is able to translate the query to an
EP expression:

Example 3.6 select dish where dish {= beef and dish {= short and dish {= loin and dish {=
marinate and not (dish {= cheese);

The system would include dish1, but not dish2 of Example 2.10 as the result.
When a database stores thousands of recipes, the query above may bring up hundreds of
satisfied answers. To narrow down to fewer answers that customers really want, the customers
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can describe more attributes as a part of queries.
Before ending this section, we give the relationships among the dependent relations.

Lemma 3.7 (1) m {+ n = m {=+n
2)m{-n= m{=—n
B)m{=tn,orm{=—-n= m{=n

The above lemma say that if a term is dependent on another, so is it recursively, and if a term
is functionally or argumentatively dependent on another, so is it neutrally. In other words, {+
and {- are stronger than {=+ and {=-; and {=+ and {=- are stronger than {=.

Dependent relations imply partial orderings. The first four relations in Notation 3.4 are further
tree-structured orderings. The operator {= is not tree-structured, but only partial ordering. For
example, a term A B (A C) neutrally dependent on both A B and A C; and the terms A B and
A C dependent on term A.

4. PRE-ORDERING RELATIONS

The normal form, resulting from an application, does not have to depend on the function and
the argument of the application because it exists independently. However, the normal form is
derivable from the application; and therefore it is derivable from the function, from the argument,
and from the sub-terms of the function and the argument. This leads to the development of the
pre-ordering relations.

Definition 4.1 (1) Let m, n, ¢ € E and D a database, if m n == ¢, then the operators (+ and
(- in the following expressions are defined such that the expressions are evaluated to be true:

q (+m

q(n
(2) Let m, q, 1, s, v € E, D a database, m == ¢, 1 is a left-most sub-term of m, s is a sub-term
of m, and r is a right-most sub-term of m. Then the operators (=+,(=-, and (= in the following
expressions are defined such that the expressions are evaluated to be true:

qg (=+1
q (==
q (=s

Example 4.2 Given the databases in Example 1.1 and 1.2, here are a few Boolean expressions
with true values:

“F” (+ College CS CS100 (College admin (SSD John));

“F" (=+ College CS CS100;

“F” (== SS8D John;

“F” (= College admin;

vg (=+ v vy (=+ vg;

v (= vy;

Notation 4.3 (1) A relation p in a set X is reflexive iff z p z for each z in X. p is symmetric if
z p y implies y p x, and it is transitive iff z p y and y p z imply z p 2

(2) p is antisymmetric iff whenever z p y and y p z imply = = y.

(3) A relation p is called partial ordering in X iff p is reflexive, antisymmetric, and transitive.
(4) A relation p is called pre-ordering in X if p is reflexive and transitive.

Proposition 4.4 (=+, (=- and (= are pre-ordering.

The pre-ordering relations appear loose and irrelevant to the queries supported in traditional
database technologies. However, they were found useful in the following examples.

Example 4.5 Given the data presentation in Example 1.2 for a directed graph,

(1) The query: if there is a path from vy to vs is expressed as: vz (=+ v;. It is evaluated to be
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true since vs == vo v3 == (V1 v3) V3.
(2) The query: if there is a circle between v and vy is expressed as: v; (=+ vo and vy (=+ vy. It
is evaluated to be true because v; == vy v1 and vy == vy va.

In the real life, an object can have many different names. For example New York steak is also
named beef short loin. it can be represented as an assignment in the EP data model:

New York steak := beef short loin;

Then the query: “I want a marinated New York steak and I do not like cheese” would be
translated to the following expression:

Example 4.6 select dish where dish (= New and dish (= York and dish (= steak and dish (=
marinate and not (dish (= cheese);

This expression may not exactly produce the result that Example 4.5 does, but it guarantees
that dish1 of Example 2.10 will be included as part of the outcome.

Notation 4.7 The operators (+, (- , (=+, (=-, and (= are called functional derivative, argu-
mentative derivative, recursively functional derivative, recursively argumentative derivative, and
recursively neutral derivative correspondingly.

Lemma 4.8 (1) m {=+ n = m (=+n
2)m{+n= m(+n
B)m{==-n= m(=-n
4G m{-n= mn
B)ym{=n= m(=n
(6) m (=+ nyorm (==n= m (=n
The lemmas say that if a relation is dependent, it is also derivative. In other words, the
dependent relations are stronger than derivative relations.

5. RELATED WORK

Developing a generic language system that is suitable to all possible software applications has been
a main stream the fields of programming language and database management. Many database
programming languages, i.e., descriptive languages over databases, were proposed between the
late 1970s and the early 1990s. The work on Machiavelli [Ohori et al. 1989] was a typical example
that used functional programming language over relations. Driven by the concept of the semantic
web [Feigenbaum et al. 2007], many descriptive languages geared toward the management of
the web-related data have been currently proposed. The examples are OWL (Web Ontology
Language), a language taking ontology as the underneath data structure [OWL 2004], RuleML
(Rule Marked Language), a family of Web rule language using XML as the underneath data
structure [Boley et al. 2001, 2010, and Lee 2003], the Linked Data, a language to publish and
to connect data available on the web by taking RDF as the underneath data structure [Bizer et
al. 2009, Ferguson et al. 2012, and OWL 2004], and XQuery, a language taking XML as the
underneath data structure [Bonez et al. 2006]. Obviously each approach has its unique features in
terms of methodologies and the scopes of their applications. But the most fundamental difference
relevant to Froglingo lies in the underneath data structures. Instead of discussing the languages
themselves, we here focus on the data structures used by the different approaches in this section.

Table (or relation) in relational DBMSs has been the dominant data structure for database
management systems in industry. However, the popularity of the relational DBMSs does not
say that table is perfect. As soon as the relational data model was proposed in 1970s, the flat
structure of table was recognized as a weakness in expressing richer semantics [Kent et al. 1979].
The weakness has become evident in the wake of big data initiatives. Hierarchical data, for
example, can be folded (or decomposed) into a table in a relational DBMS, but its containment
relationships cannot be captured by the relational data model.
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The hierarchical data structure has been very successful in managing those business applica-
tions embedding containment relationships. For example, a file management system organizes
files in hierarchies, and a LDAP (Lightweight Directory Access Protocol) system like a Microsoft
Active Directory manages resources in a corporate environment in hierarchies. Another well-
known example is the HTML and XML documents embedding text-based data in hierarchies,
which constitute almost the entire information available in the Web. Unfortunately, not all the
business applications can be well fit into hierarchical structures. The most typical example is the
many-to-many relationships well managed in relational data model.

The network-based structure, i.e., semi-structured data and graph-oriented data, has been
widely applied in programming languages, by which almost all of the software applications by far
were constructed. In addition to being embedded in programming languages, the network-based
structure now has been widely used in many NoSQL database systems such as Google Bigtable
and MongoDB with which a set of built-in operators are supported. However, the network based
structure has its own dilemma: while it is capable of capturing everything by incorporating the
hierarchical structure, it found itself the inability of representing and querying cyclic data. The
work presented in the article [Buneman et al. 2000] was an attempt to resolve the cyclic data
issue for semi-structured data. However it does not work without introducing an extra concept
“marker”. In addition, the network based structure without the incorporation of hierarchical
data structure cannot contribute to set-oriented operations except for the navigational walking
one node at a time.

In this article, we have demonstrated that the EP data model can express any business data and
queries that are expressible in the traditional data models and network-based data structures. The
conclusion has become clear when the EP data model is said to approximate partial computable
functions in [Xu et al. 2014]. In addition, the EP data model has much more functionality. The
application function introduced in Section 2 and the pre-ordering relations are some examples of
the advances of the EP data model. The query of “if there is a path between two vertices in a
directed graph” in Example 1.2 is a case that the EP data model is more expressive.

Without addressing data security and system performance, the EP data model would not
truly address the issues of big data. The EP data model has its built-in data security facilities.
Heavily relying on the dependent relations discussed in Section 3, the EP data model organizes
data in multiple tree structures and therefore the built-in data security facilities control data
access according to data dependencies, as if the access control facilities of an operating system
controlled file accesses according to the hierarchical structure of files.

The limitation of the relational data model in expressive power has been well known since it
is proposed in the 1970s. But the most noticeable obstacle facing big data is its poor perfor-
mance scalability, i.e., the response time increases much faster than the increase rate of relational
database sizes. Separating dependent data into multiple tables by normalization is the root cause
of expensive join operations. Similar to hierarchical data models and network-based data struc-
tures, the EP data model stores dependent data together and uses indexes. As a result, the
system performance of the EP data model is minimized. For example, the query given in Exam-
ple 2.9 has the complexity O(n) while the corresponding join operation in SQL is O(n log(n))
[Xu et al. 2006]. The experiment in the EP data model also demonstrates a high performance
scalability over various data media including data, files, and HTML web pages, and over various
data volumes.

Added with variables, the EP data model is expanded to a Turing-machine equivalent pro-
gramming language, called Froglingo [Xu et al. 2013|. For example, the factorial function, f(n)
= 1 if n = 0 otherwise n * f(n-1), can be expressed in Froglingo as a database: f 0 := I; f $n
:= (8n * f ($n - 1)), where all business logic are treated as data and are expressed in databases.
Froglingo, with additional extension, is for data constraints, web service, and data analytics [Xu
et al. 2010].

Beyond the considerations of big data, the EP data model is claimed to be a universal data
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exchange protocol. It is concluded in [Xu et al. 2014] that a database in the EP data model
defines a finite set of finite functions that is an approximation to partial computable functions.
Therefore the union of all databases and the union of all partial computable functions amount to
the same object: the universe of all computable information. Put it differently, though the EP
data model is not as expressive as a programming language, it can be as practically effective as a
programming language in the sense that it produces all the outputs that a programming language
can produce, as far as the limitation of finite time and space available to computers is concerned.
Saying that the EP data model is as practically effective as Turing machines does not mean that
a programming language is no longer needed in software development for a productive software
development. However, it gives us a full confidence to choose the EP data model as a standard
database management tool and a data exchange protocol. One can imagine that some day we
have one database that accumulates more and more data to better and better approximate the
real world. The accumulation process implies that all business data are stored as finite sets of
finite functions and that no further tools are needed to translate or interpret data, in a contrast
to today’s practice in the contemporary technologies.

6. CONCLUSION

Lacking a higher expressive data type in programming languages for finite data is a reason to
utilizing multiple data types such as lists, trees, graph-based structures, and relations imported
from a relational database. As a result, the communications among the multiple data types
complicate software development efforts. The EP data model eliminates the extra burden in
expressing finite data in programming languages and in data communications.

Provided that all data desired to be managed in a database is bounded functions definable in the
EP data model, the EP data model is a mathematical underpinning universally for arbitrary data
management and data exchange. The desire of managing the bounded functions for business data
is quite reasonable because all a computer can do is to produce finite approximations to partial
computable functions. Even more, the desire is a little luxurious because bounded functions are
more than finite approximations.

Froglingo has been implemented as a language system that unifies database management,
programming languages, file systems, and web services. It is an all-in-one tool for general-
purpose software development. A food recipe advisor in Froglingo was an award recipient in the
ICCBR 2010 Computer Cooking Contest. Many commercial applications, including the website
www.froglingo.com, a school registration website, a data format converter, and an on-line health
advisor, have been implemented in Froglingo. Through the experiences, Froglingo demonstrated
the anticipated results (in addition to a high performance scalability as discussed earlier). It
allows developers to focus on business logic and barely worry about anything else beyond since
it is a unified tool and does not have much facilitating concepts (constructors) such as classes
or types. Given a software application written with 1000 lines of source code in traditional
programming languages, for example, our experience shows that one only needs to write about
100 line of code in Froglingo. Also it hardly leaves security holes for cyber attacks since it is a
highly abstracted - business focused - language.
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