
PaaS Performance Evaluation Methodology
MARCIN JARZ ↪AB
Department of Computer Science, AGH University of Science and Technology
Samsung Research and Development Poland
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This paper proposes a PaaS performance assessment methodology which is oriented towards cloud computing
attributes such as resource pooling, rapid elasticity and measured service. PaaS evaluation procedure requirements

and taxonomy have been specified in this context. The innovative concept exploited by the proposed methodology

is its completeness, evidenced by stress, dynamicity, and stability testing scenarios. A theoretical analysis of PaaS
under test load conditions has been provided for the each proposed testing scenario. This allows interpretation

of the experimental study performed using private and public cloud environments. Results validate the proposed

methodology and establish it as a useful tool for benchmarking PaaS deployments.
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1. INTRODUCTION
Platform as a Service (PaaS) [Cohen 2013] is a cloud computing service model that bridges the
gap between business requirements, policies, available runtime resources and development of end-
user solutions. Instead of relying on standardized software capabilities, PaaS users have more
control over the architecture, quality of service, user experience, data models, identity, integration,
and business logic. As a result, PaaS can be used to build and deliver customized applications
or information services and support DevOps [Hosono et al. 2011] practices which include self-
service, automated provisioning, continuous integration, and continuous delivery. On the other
hand, PaaS must exploit the underlying infrastructure in order to satisfy IT objectives such
as optimizing resource utilization, administration of resources across multiple tenants, workload
processing scalability and performance optimization. Validation of these requirements should
acknowledge attributes of the cloud computing model as defined by NIST [Mell and Grance
2009], including: (i) on-demand self-service, (ii) broad network access, (iii) resource pooling, (iv)
rapid elasticity, and (v) measured service.
PaaS evaluation procedures should determine to what extent a particular solution is optimized
not only for traditional static single-tenant deployment but also for multi-tenancy in the context
of the above mentioned cloud environments. Multi-tenancy enables per-consumer customization
of applications and services by changing runtime configuration settings instead of provisioning
new instances. As user demand grows or shrinks, an elastic and distributed platform should
re-size the application resources based on utilization, quality of service and cost optimization
policies. When resources are added, subtracted, or moved, the automated service management
components should dynamically re-wire resource connections.
The goal of this paper is to propose a PaaS performance evaluation methodology oriented towards
cloud computing attributes. The evaluation procedure built in accordance with this methodology
might be applied to existing or planned installations of cloud platforms, and should result in
selection of the most suitable solution for a given application, help identify existing bottlenecks
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and support assessment of the efficiency of key PaaS characteristics.
The proposed approach is the outcome of theoretical analysis of the platforms (also referred to as
Systems Under Test - SUTs), validated by experimental studies of real cloud installations, both
public and private. The presented evaluation methodology concerns quantitative and qualitative
metrics and is based on a black-box approach in order to more accurately reflect practical use
cases which represent various common application categories.
The paper is organized as follows: Section 2 provides a short review on current research in related
topics. Section 3 discusses requirements which apply to the evaluation procedure. Section 4
presents a generic PaaS architecture model and singles out the elements which are of key relevance
to cloud user experience. In Section 5, a procedure for testing PaaS performance is introduced.
The procedure has been evaluated in a series of test scenarios, which are presented in Section 6,
executed on public and private cloud resources. A discussion of the results is presented in Section
7. The paper ends with Section 8, which lists key conclusions drawn from the described research.

2. STATE OF THE ART
The most recent available research study regarding selection of PaaS platforms for end users fo-
cuses on business aspects and qualitative evolution. In [Geene 2012], a five-steps PaaS selection
procedure is proposed. It begins with a business strategy for application definition. Subsequently,
the availability of essential services for application development, such as databases, integration
and security services is verified. Later steps address application portability, language support
and availability of experienced human resources. Very similar concepts can be found in [Geene
2013]. The authors of [Ramchandani 2012] describe the process of choosing and implementing a
suitable enterprise PaaS. Their study extends the evaluation criteria with aspects of architectural
flexibility which indicate that PaaS solutions are built to decouple hardware from virtualization,
allowing enterprises to pick the virtualization technology of choice and adopt a VM orchestration
solution which decouples infrastructure services and applications entirely from the underlying or-
chestration layer. The referred papers provide very important selection criteria but they almost
entirely neglect performance aspects. In [Orlando 2011] the selection criteria are extended with
elastic scalability requirements. The notion of PaaS performance testing is addressed in [Blok-
land 2013] but this proposal is limited to scalability testing only. In order to define more generic
performance test procedures for clouds, [Avram 2010] proposes four types of tests and five native
application benchmarks running on five different cloud platforms. To perform measurements the
authors used WebMetrics’ services, sending requests at various intervals from various locations
worldwide over the period of one month. Two of the cloud platforms, namely Salesforce.com
and Google App Engine, provide PaaS services, while the other three, i.e. Amazon, Rackspace
and Terremark, provide IaaS services. The only metric evaluated by this study was the aver-
age latency of retrieving data objects of different sizes. Recent papers [Agnihotri and Sharma
2014] [Mohammad and Mcheick 2012] [D.Jayasinghe et al. 2013] addressing PaaS improvements,
scalability testing and performance also do not propose a generic PaaS evaluation methodology.
The authors of [Agnihotri and Sharma 2014] focus on evaluating PaaS scalability and introduce a
graphical model named Scalability Improvement System (SIS). The proposed scalability improve-
ment metrics concern scaling down delays, scaling down the usage cost, scaling up connectivity
and scaling down the implementation cost. [Mohammad and Mcheick 2012] presents extensive
experimental measurements which reveal variance in the performance and scalability of clouds in
two nontrivial scenarios. In the first scenario public Infrastructure as a Service clouds were tar-
geted – the case concerns a multi-tier application migrated from a traditional datacenter to one
of the three IaaS clouds. In the second scenario a similar study was performed upon three private
clouds built using three mainstream hypervisors. These studies used the RUBBoS benchmark
and compared its performance and scalability when hosted in Amazon EC2, Open Cirrus, and
Emulab. A very important conclusion from this work is that a best-performing configuration in
one cloud may become the worst-performing configuration in another cloud. This emphasizes the
International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.
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importance of a proper PaaS performance evaluation methodology, much like the one presented
in our paper. In [Reitbauer et al. 2011] interesting aspects related to the impact of virtualization
on performance management in the context of running middleware within guest OS instances
are evaluated. The paper precisely describes the relation between performance metrics related
to virtualized infrastructures and hosted applications, including a testing methodology for such
deployment architectures. The VMware vFabricPaaS Planning Service [VMware 2011] consulting
program provides in-depth understanding of successful PaaS deployment through specification
of related processes and their implementation according to production scenarios. It also defines
blueprints showing how to monitor performance and application management, including metering
and chargeback.
Interesting work has been performed by the [Spec 2012] committee which elaborates generalized
cloud testing systems. Their specification recommends a common framework for cloud bench-
marks, application workloads and performance metrics and shows how they can be adapted to
the cloud context.
There are also research activities in the area of PaaS evaluation methodology which concentrate
on adaptive management to automatically satisfy predefined SLA contracts. In [Zhang et al. 2012]
the approach bases on the so-called LQN (Layer Queue Network) model as a performance model
for PaaS. [Gunther 2007] introduces such concepts as iterative cycle of improvement called “The
Wheel of Capacity Planning” and Virtual Load Testing, which provides a highly cost-effective
method for assessing application scalability. The book facilitates rapid forecasting of capacity
requirements based on opportunistic use of available performance data and tools so that man-
agement insight is expanded.
Unfortunately, none of these research and standardization activities provide a comprehensive
methodology for evaluation of PaaS, including qualitative and quantitative elements. The pre-
sented testing environments instead focus on selected aspects of either PaaS functionality or
performance.
In this paper we propose a different approach, combining various metrics and strategies targeted
for PaaS environments. The innovative concept presented in the paper is a PaaS evaluation
methodology utilizing qualitative and quantitative metrics. Based on the generic architecture of
a PaaS we define specific use cases which reflect the organization of testing scenarios and affect
selected aspects, related to stress, dynamicity and stability testing. The scenarios help us observe
system behaviour and identify the maximum operating capacity, which is a crucial requirement
for cloud providers wishing to define SLAs for potential customers. The presented methodology
is a detailed procedure and consists of a series of steps which specify specific activities to be
performed in order to evaluate any PaaS implementation. In our opinion the presented work is
a solid foundation for definition of industry benchmarks for PaaS-based clouds.

3. PAAS EVALUATION PROCEDURE REQUIREMENTS
Evaluation of PaaS platforms is a very complex process, mostly because the platforms themselves
are sophisticated distributed systems deployed over virtualized infrastructures. Evaluation is a
multi-aspect procedure which may be constructed in accordance with the taxonomy presented in
Fig. 1. A single path from the root of the taxonomy tree to its leaves categorizes an evaluation
scenario. For example, an evaluation scenario might be categorized using the following path:
Evaluation → Quantitative → Performance → Local → White box → Functional →
Dynamicity.
Note, however, that a single path in the taxonomy tree does not define a single scenario; rather it
denotes a class of test procedures to be performed. A complete multi-aspect evaluation of PaaS
should cover all possible paths with a large number of possible scenarios.

The meaning of the proposed taxonomy in the context of evaluation scenarios can be explained
by specifying taxonomy tree nodes as follows.
Quantitative vs. Qualitative evaluation. Quantitative evaluation describes system perfor-
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Figure 1: Taxonomy of evaluation scenarios

mance. Therefore this aspect refers to performance testing. System performance can be measured
using synthetic load, generated in accordance with a particular test design. System operation
can be evaluated under artificial load generated by testing tools or by a real application serving
requests coming from a simulated population of users. On the other hand the goal of qualita-
tive analysis is complete, detailed description and comparison of functional characteristics of the
PaaS. Those features can be divided into the following groups: (i) security, (ii) high availability,
(iii) usability, (iv) DevOps, and many others.
Performance testing. This is an essential element of quantitative analysis. It can serve various
purposes, e.g., (i) demonstrate that the system meets performance criteria, (ii) compare two sys-
tems to find out which performs better or (iii) identify parts of the system or workload patterns
that cause the system to perform poorly. The specification of a performance testing evaluation
procedure should take into account the attributes described below.
Remote vs. Local. Regardless of the deployment mode (private, public or hybrid), the geo-
graphical distribution of request processing by geo-location services has to be considered as even
private clouds may span multiple physical locations. The deployment topology of the benchmark
workload generators must reproduce real user locations in respective availability zones of the
PaaS. When a public PaaS cloud is considered, testing can be performed remotely from the re-
spective users’ locations. On the other hand, when the PaaS is private or hybrid, the assessment
should be conducted locally, i.e. on the provider side.
White box vs. Black box. In this case it is necessary to choose either a white-box or a
black-box approach to the evaluation procedure. Black-box testing is often preferred because the
latter requires instrumentation of PaaS building blocks. In the case of PaaS testing, black-box
evaluation relies on knowledge about the PaaS architectural components and their services, which
may be defined using a generic, partially abstract architecture. Black-box testing is also simpler
to implement and easier to repeat using different PaaS platforms. On the other hand, a white-box
approach requires specific code instrumentation and detailed knowledge of the internal design of
PaaS components, but enables more detailed monitoring features, and, as a consequence, provides
more insight into potential performance bottlenecks.
Functional vs. Application. Functional evaluation concerns testing a system under artifi-
cial load conditions custom-tailored to test selected PaaS operations. In contrast, application
International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.
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evaluation concerns the application characteristics that need to be addressed while developing
enterprise benchmarks for PaaS, which are as follows:

—Multitiered nature of applications, consisting of the presentation, application and persistence
tiers, deployed on distributed instances of virtual machines.

—User scaling, i.e., the capability of a system to scale up to satisfy increased user load. It is
crucial to understand how the system behaves under increasing load and also to identify the
limits beyond which performance may degrade substantially.

—Vertical (scaling up) and horizontal (scaling out) scaling which means that scalable systems
are designed and constructed in such a way that each tier can scale independently to meet the
growing user demand.

—Secure interactions where both secure and non-secure access is provided. It is important
to understand the impact of enabling security to the overall performance of the application
running over PaaS.

—Session maintenance is an important factor for ensuring the availability of applications
deployed in a PaaS environment. Session persistence is an expensive concern and an important
performance characteristic that should be examined.

—Service and data availability is also critical. Due to the large number of components
distributed over multiple tiers, obtaining an accurate estimate of the availability of PaaS is a
complex and difficult task.

Load testing is the process of generating demand for a system or device and measuring its
response. Its goal is to observe a system’s behaviour under both normal and anticipated peak load
conditions. It helps identify the maximum operating capacity of the PaaS, detect bottlenecks and
determine which elements are responsible for performance degradation. Load testing is performed
to observe how a system operates in terms of responsiveness and stability under a particular
workload. Because load testing procedures (and, consequently, test cases and scenarios) are
conducted in the context of performance-related metrics based on assumed load characteristics,
they might be categorized as one of the following three classes:

—Stress testing. In these tests the load is increased to the maximum level which still results
in stable operation of the SUT.

—Dynamicity testing. In dynamicity tests the load is increased in steps, e.g. according to
Heaviside’s unit step function [Abramowitz 1964]. The time it takes the SUT to reach a new
steady state and its performance level are duly observed. This test category evaluates the
response of architectural elements to rapid load changes.

—Stability testing. In stability tests the load function resembles a stepped wave, parame-
terized by frequency and amplitude. The critical frequency and amplitude which necessitate
operational changes (e.g. launching a new artefact) are observed. This test category evaluates
sensitivity to changing conditions for a specific architectural element.

The presented evaluation taxonomy raises question about the most appropriate selection of
testing procedures. Taking into account the PaaS evaluation aspects, the following requirements
should be satisfied: (i) exploit as little knowledge about the PaaS internal construction as possible,
i.e. rely only on a very generic PaaS architecture model, (ii) allow for remote and local testing
scenarios, (iii) allow for both functional and application-oriented load testing.

4. GENERIC PAAS ARCHITECTURE MODEL
As discussed in the previous section, black-box PaaS testing should assume a generic PaaS model.
This means that only selected services should be considered by evaluation scenarios when func-
tional testing is performed. Relying on generic knowledge about the PaaS structure does not
contradict white-box testing as long as it does not require any additional information collected
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Figure 2: PaaS architectural components

via internal instrumentation of services.
This section introduces an unified terminology for common PaaS components as well as a generic,
partially abstract, PaaS model. The model is used in later sections as a basis for tests related to
PaaS configuration and application deployment.

4.1 PaaS components
The most important logical components of PaaS are presented in Fig. 2. An entity that serves as
an entry point to the PaaS is called a Router. It is responsible for receiving requests from users
(both direct PaaS users and PaaS applications’ users) and forwarding them to an appropriate
component – usually a Cloud Controller (CC) or an application running on an Application
Execution Agent (AEA).

The Cloud Controller is a management entity that maintains metadata of all applications
hosted in the PaaS and of services provided by the cloud for such applications. All management
requests, such as starting an application, changing the number of its instances or restarting a
service, are passed to the CC. When a user requests deployment of a new application or its
newer version, the CC passes an application bundle to the Stager component. The Stager then
updates the application’s data sources and other configuration files. Subsequently, a re-packaged
application is returned to the CC and then deployed by CC to the AEA. The AEA is a runtime
environment (written e.g. in Java, Scala or Ruby) with a set of popular frameworks and libraries
(e.g. Spring, Play, Lift). Multiple AEAs can reside in a single PaaS installation.
In addition to applications, PaaS hosts services such as databases, messaging queues or e-mail
hosts that can be accessed by applications. The services are managed by CC, running on Exter-
nal Services Nodes and accessed by applications via unified interfaces called Service Con-
International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.
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nectors.
One of the requirements of the PaaS is to be fault-tolerant. To achieve this, a Health Manager
(HM) component constantly checks whether running services match predefined cloud configura-
tion parameters. If some component is missing then, most probably, it has gone down due to
some failure and therefore the HM will try to restart it. Finally, all management communica-
tion between PaaS components is performed asynchronously via a publish-subscribe distributed
queuing messaging service depicted as the message bus in Fig. 2. The reliability of the messaging
system is crucial for proper operation of the whole platform. When the number of requests is
high, queues will begin to fill up with requests waiting to be processed.
Each PaaS component can be replicated to provide scalability. Multiple Routers, CCs and AEAs
can coexist in the same environment. In most cases a load balancer is needed to distribute re-
quests between Router instances. If possible, applications running on the PaaS should rely on
built-in services; however when integration is inevitable, External Services can be accessed via
Service Connectors.

As stated in the introduction, our methodology aims at testing elastic and dynamic clouds.
However, most existing PaaS platforms do not provide auto-scaling features by themselves. To
address this limitation, we assume that the PaaS is augmented by an additional external com-
ponent called Cloud Management System (like Scalr, RightScale or Kaavo) depicted on the
right-hand side in Fig. 2. The goal of this component is to add some advanced management
features to the PaaS (such as auto-scaling, intelligent provisioning, policy-based management
and automated monitoring).

4.2 IaaS influence on PaaS platform
In order for a particular PaaS to provide a multi-tenant, elastic and scalable environment, its
services can utilize infrastructures exposed in accordance with the Infrastructure as a Service
(IaaS) paradigm; e.g. Heroku PaaS is built on top of the Amazon Web Service technology. Such
a deployment model supports adaptation to changing demands by adding or removing service
instances. Note, however, that, in general, PaaS can run on top of a physical infrastructures as
well.
Owing to the Cloud Management System described in the previous section, the scaling process
can be automated and moreover the configuration of hybrid clouds becomes possible. Such
deployment provides the means for evaluation of PaaS platforms deployed over public and private
resources.
In order to perform reliable tests of the PaaS, the underlying infrastructure has to be stable and
efficient. It would be relatively easy to ensure high performance parameters if PaaS services were
deployed at the PaaS provider’s data center. However, as mentioned above, we assume that PaaS
runs on some third-party IaaS machines, so it is much harder to ensure stability of the testing
environment. In particular, if it is desirable to compare two (or more) PaaS solutions, it would
be important to provide the underlying IaaS cloud with the same configuration and allocation of
resources.

4.3 Application testing aspects
In order to prepare appropriate test cases and execution scenarios we should first determine how
the applications of interest use the underlying PaaS. Just as in the case of PaaS, the applications
can be treated either as white- or black-box components. In the black-box approach tests focus
mainly on Quality of Experience (QoE) measurements.
When no applications of interest can be readily identified, application-based assessment can rely
on representatives of the most popular Internet application categories: social media (e.g. Face-
book, LinkedIn), multimedia processing (e.g. Shazam, Siri, Iris), multimedia streaming (e.g.
Grooveshark mobile), data storage (e.g. Dropbox) and computer games hosted in cloud environ-
ments.
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Figure 3: Steps of the load testing procedure

5. PAAS PERFORMANCE TESTING PROCEDURE
The proposed generic load testing procedure consists of 7 steps, depicted in Fig. 3. These steps
need to be executed for any test case. First, the scope and objective is defined. Next, suitable
metrics and aspects of evaluation are selected. These two initial steps allow for appropriate
selection of benchmarks and tools, and have substantial influence on the definition of use cases
and usage patterns (steps 3 and 4 respectively). Usage patterns determine the types of load
applied to the applications and services deployed in the PaaS. Key parameters (e.g. request
volume) are specified at this point. Note that application parameters constitute only a subset of
the test environment configuration, which also includes the configurations of the required services,
underlying infrastructure, geographical locations of users and end device types, numbers of users
simultaneously using a given service or application, time of day, etc. All this data is used in
step 5, which concerns preparation of the test environment and test implementation. Following
application tests (step 6), a throughout analysis can be performed (step 7) to determine the
influence of various factors upon end-user experience.

As a very useful effect of the simple application testing procedure, key metrics that affect
user experience can be identified. In the following subsections the presented procedure will be
elaborated further, with particular focus on the specification of metrics, benchmarks and test
cases. The test management system will also be briefly described.

5.1 Definition of aspects and metrics
As already elaborated in Section 2, the testing and evaluation methodology has to cover two
fundamental classes of testing, i.e., quantitative and qualitative testing. As this paper focuses on
performance testing, only qualitative testing will be discussed here.
Performance testing should be investigated in the context of performance-related metrics, test
cases and scenarios, and may be categorized into three classes introduced in Section 3 as sum-
marized in Table I. Each category of performance testing presented in Table I requires the load
to be specified in more detail, including:

—Application Workload Mix of each system component - for example: 20% log-in, 40%
database-intensive, 30% CPU-intensive, 10% I/O-intensive.
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SUT components Test category Metrics
Load balancer,
Router,
Applic. Exec. Agent,
Service Node,
External Service,
Application Instance

Stress testing Latency,
Maximum throughput

Dynamicity testing Time to stabilize:
Response Time, Latency,
Throughput;

Change in:
Response Time, Latency,
Throughput;

Failover time
Stability testing Critical frequency,

Critical amplitude

Table I: The quantitative metrics related to SUT components

—System Workload Mix [Multiple workloads may be simulated in a single performance test]
for example: 30% Workload A, 20% Workload B, 50% Workload C.

The metrics introduced in Table I are defined as follows: Latency - The time which elapses
between initiation of request processing and receipt of the final result. This metric could be
measured from the client’s point of view, when application operations are performed, or from
the PaaS point of view, when the time between a system request and its fulfillment is of partic-
ular interest. Latency depends on many factors, such as the complexity of task dispatching, the
amount of time needed to start an execution engine, execution time, communication delays, etc.
Response time - When latency is measured from the client’s point of view, it is often referred
to as response time.
Throughput - The number of executed tasks performed per unit of time. In the context of
PaaS evaluation, system tasks such as dispatching of requests to the execution engine or starting
a new cloud node should be taken into account.
Maximum throughput - The maximum number of executed tasks that can be performed per
unit of time. This metric is directly related to latency if a single architectural component of PaaS
is considered. In such a case the maximum throughput may be calculated as follows: Maximum
throughput = 1/Latency; In the generalized case, when N architectural element instances perform
operations in parallel, the theoretical maximum throughput should be: Maximum throughput
= N/Latency. Actual (measured) maximum throughput may not follow the formulas presented
above due to scalability issues. Therefore, it is strongly recommended to measure the value of
this metric experimentally.
Time to stabilize - This metric describes the dynamicity of PaaS by defining the time it takes
the platform to transition from one steady state to another.
Response time change - The difference between response time in two different steady states
of the PaaS.
Failover time - The time required to restore proper functionality and performance following a
failure of an architectural element.
Latency change - The difference between latency time in two different steady states.
Throughput change - The difference between throughput value in two different steady states.
Critical frequency - the frequency of the stepped wave function which leads to instability (pe-
riodical changes of stable states) of the SUT.
Critical amplitude - the amplitude of the stepped wave function which leads to instability
(periodical changes of stable states) of the SUT.

5.2 Definition of test cases
To the best of our knowledge, no dedicated test cases for PaaS platforms currently exist. As
such, it is necessary to rely on application benchmarks. Because of the diversity of application
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frameworks supported by PaaS platforms, a separate benchmark should be proposed for each
of the frameworks. In addition, there are benchmarks that target validation of particular PaaS
features. While selecting test cases for the scenarios described in section 6, we took into account
multiple factors such as the ability to obtain objective results, simplicity of measurements and
interpretation of their results, as well as the scope of the measured performance characteristics.

5.2.1 Three-tier web applications – TC1. The benchmark can use many example applications
such as Spring Travel (Java Spring framework), Yet Another Blog Engine (Scala Play framework),
Pet Clinic (Grails framework) [Davis 2014] or Node.js [Wilson 2013] benchmarks (part of the
framework). These benchmarks rely on modularization of functionality by domain, reflecting the
best practices of software development. They are multi-layered applications that can be scaled
up and down in terms of web and database servers, thus enabling execution of sophisticated test
cases differing in terms of the scalability and efficiency of session and persistence management
services.

5.2.2 Session persistence policy – TC2. PaaS platforms support session affinity or sticky ses-
sions for managing applications’ users requests. The implementation of such behavior results in
all requests from a given client being routed to the same application instance. However, if a
particular AEA fails, PaaS might not persist or replicate session data. Session data that must be
available after an application crashes or stops, or data that needs to be shared by all instances
of an application, is stored by a PaaS internal service. The benchmark application should be
written in two modes: (i) with session persistence built into the container, and (ii) using PaaS
data services to maintain state. Besides High Availability (HA) aspects, comparison of perfor-
mance of the application executed in these two modes might yield hints regarding selection of
the appropriate mode for real-life applications.

5.2.3 Memory-intensive application – TC3. This case concerns a simple web application that,
for each request, stores a specified amount of randomly generated data in its runtime memory
over a specified period of time. The application works asynchronously. HTTP requests allocate
memory, schedule its release at some point in the future and send HTTP responses to the clients.
The goal of this benchmark is to test autoscaling as a response to memory shortages. When
the cloud runs out of memory the Cloud Management System should automatically increase the
amount of memory allocated for the underlying machines. The benchmark also provides for
detection of autoscaling latency.

5.2.4 CPU-intensive application – TC4. This is a simple web application that, for each re-
quest, executes a simple synthetic computation in a loop over a specified period of time. The
application works asynchronously. HTTP requests schedule execution of fake code and send
scheduling confirmations to the clients. This benchmark enables testing autoscaling based on
CPU load. It measures the time elapsed between a CPU usage increase and the assignment of
additional CPUs to the underlying virtual machine by the Cloud Management System.

5.2.5 Database-intensive application – TC5. This is a simple web application bundled with a
database schema and some sample test data. For each HTTP request it executes a complex query
on that data. The application works asynchronously. HTTP requests do not wait until a query
finishes. The query result is irrelevant, since the goal of querying is simply to generate fake load
in order to test autoscaling based on service node load. Heavy queries will also use a lot of CPU
and memory, triggering autoscaling actions. In addition, this test case can help verify how one
query affects the response time of concurrent ones, i.e., provide information about performance
isolation.

5.2.6 Static content server application – TC6. To be able to test routers/load balancers (layer-
7 switches) and auto scaling at the AEA level, a simple web application that serves static content
can be used. For example, it can respond to HTTP requests with some predefined text with-
International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.
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PaaS component Test category
Stress Dynamicity Stability

Load balancer TC6 TC1 TC6
Router TC1
AEA TC3, TC4 TC1,TC3, TC4 TC3, TC4
Health Manager TC6
Service Node TC5 TC1, TC5 TC5

Table II: Prefered assignment of test cases to specific PaaS components and aspect testing.

out interaction with databases or other external services where data is stored. Such tests could
provide metrics illustrating the utilization of the infrastructure elements responsible for layer-7
switching. In respective test scenarios only the efficiency of interaction between cluster of AEAs
and routers should be analysed. This test case covers most simple load balancing algorithms
(round-robin, weighted round-robin), but for others which depend on server load reports TC4
may also be considered. In the case of load balancers that rely on response time, the test case
can be slightly modified to use some simple ”sleep” function parameterized with random values.

Suggestions regarding the assignment of test cases to particular SUT components in specific
test categories are summarized in Table II. The presented test cases were used to assess the
quantitative metrics of PaaS platforms as elaborated in the following sections.

5.3 Tools assisting in the test procedure
Effective performance evaluation of PaaS can be automated with a Test Management System
(TMS) environment responsible for generation of synthetic load and acquisition of measurement
results. The proposed architecture is depicted in Fig. 4. In the TMS, preparation of automated
testing procedures consists of the following activities: (i) definition of testing scenarios based on
particular test cases, (ii) deployment of test cases to the PaaS, (iii) scheduling of test scenario
according to the number of Virtual Users (VUs), load distribution function, think time and
others, (iv) execution of test scenario with metrics collection process to support visualization
and comparison of results. The presented activities are defined with ”plugins” that can be
later reused in the form of libraries and implemented in accordance with TMS requirements.
If required, the TMS also provides tools for the white-box methodology evaluation exposing
advanced monitoring services for IaaS and PaaS layers to check the CPU, memory, network and
storage utilization, and isolate potential bottlenecks. The monitoring services exploit well-known
tools such as Ganglia[Ganglia 2014] and JMX/jmxtrans[JMX 2006]. The TMS also utilizes
the JMeter[Erinle 2013] framework which provides services for distributed load generation and
supports many protocols used by various types of test cases deployed over PaaS. The TMS can be
deployed on a remote site to facilitate remote testing, or locally when local testing is performed.

6. SELECTED TEST SCENARIOS
The performance tests described in Section 5 can be customized in order to test specific PaaS
elements. The proposed tests can be conducted either separately for particular elements of
the PaaS, or in compound scenarios. By testing separate SUT components, analysts can identify
performance bottlenecks. Compound test scenarios evaluate PaaS characteristics in an integrated
way and illustrate end-user experience. This approach was specifically chosen for the experimental
study presented in Section 7.

This section presents the test scenarios that were applied in the experimental study and dis-
cusses the expected (foreseen) results. As such, it facilitates interpretation of measured data
presented in the following section. The test scenarios of interest are oriented towards providing
answers to the following questions:

—is there any performance difference between operation of PaaS in public and private cloud
International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.
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Figure 4: Architecture of the TMS.

deployments?
—what is the expected maximum throughput and response time?
—are tenants properly isolated, i.e., is the performance of one tenant affected by others?
—what is the influence of message bus-based communications on PaaS behavior?
—how does scaling a single SUT component out or up affect performance metrics?
—what is the delay in effecting scaling decisions?

The system response patterns represent specification of expected PaaS behavior under different
load conditions. They can be used as conceptual reference points when real measured data is
analysed (as discussed below). Basic knowledge of control theory[Kosinski et al. 2012] has been
applied in this specification. The following subsections present the expected response patterns
with regard to distinct categories of tests outlined in Section 6.

6.1 Stress testing - TS1
In stress testing two key factors are taken into account: time and load. In order to observe
the reaction of a particular SUT component to increasing load, the suggested load pattern is as
simple as possible – it is an affine function of time (starting from a specified value and increasing
in a linear manner).

When observing changes in the SUT component behavior as a function of time given linear
load growth, a critical load value emerges where response time increases rapidly. This indicates
that the capacity of the SUT has been exhausted.

Figure 5 depicts the predicted response pattern for a constant number of application instances.
This test scenario could be performed for an increasing number of application instances. This

would produce the data that describes the performance impact of newly deployed instances and
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Figure 5: Affine load, used for stress testing, and the expected changes in response time.

Figure 6: Expected response pattern for stress tests of an auto-scalable SUT. Affine load definition function
assumed.

help determine to what extent it is possible to maintain the response time with autoscaling.

6.1.1 Stress testing with autoscaling - TS2. The autoscaling test scenario assumes that load
increases linearly, much as in the TS1 scenario. When response time reaches the scale-out thresh-
old, a new instance of the application is deployed. This increases the execution capacity of the
SUT and causes a decrease in the measured response time. However, because no SUT is able to
scale indefinitely, the limit of scalability is eventually reached and response time begins to grow
rapidly. These phenomena are presented in Fig. 6.

During scalability tests, time-stamped response times and numbers of SUT component in-
International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.
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Figure 7: Load definitions based on a generalized stepped function and Heaviside-like function used for dynamicity
testing.

stances are collected. Based on the obtained measurements, values of the following attributes
can be calculated:

—TTI: time elapsed between the response time exceeding a given threshold and instantiation of
a new instance of the SUT component under consideration,

—TIM: time elapsed between instantiation of a new instance of the SUT component and a drop
in response time below the the acceptability threshold,

—TTR=TTI+TIM: user-perceived system reaction time.

Additionally, the time (and load) at which the system can no longer maintain the specified
response time can be identified as the time when the scale-out threshold is exceeded, having
reaching the maximum number of SUT component instances. It is expected that once this
capacity is exceeded, system stability may also degrade.

6.2 Dynamicity testing – TS3
Dynamicity testing is essentially about observing SUT reaction to sudden changes in load. Ac-
cordingly, the load pattern used in dynamicity testing can be described as a stepped function.
However, because the effects of load changes are predictable only to a limited extent, it is advis-
able to use single-step functions (such as Heaviside’s function) – especially at the beginning of
the test.

The SUT response to changing load is delayed due to inertia, which is typical for every dynamic
system. It takes a SUT-specific time to observe the response. Therefore, the duration of specific
load conditions (the length of a single step in figure 7) must not be too short – otherwise the test
would be assessing SUT’s stability instead of dynamicity.

Figure 8 illustrates the predicted response for a system tested with a single-step load(time)
function. For the sake of clarity, the response time metric and the autoscaling scenario used in
the previous section were reapplied here.

In order to obtain useful data prior to conducting a dynamicity test, the analysts needs a
proper estimate of the lower and higher loads. The lower load value (L0) should result in a
stable response time; such condition can be checked by performing a stress test with constant
load, as described in section 6.1. The higher load value (L1) should result in overcoming the
scale-out threshold. Moreover, a consistent increase in response time should be observed prior to
the scale-out operation.

Based on the measurements, the following attributes can be calculated:

—TCT: time elapsed between a change in load conditions and crossing the scale-out threshold,
TCT, which depends on the difference between L0 and L1,

International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.



PaaS Performance Evaluation Methodology · 15

Figure 8: System response time changes in a dynamicity test.

—TTI: time elapsed between crossing the threshold and instantiation of a new instance of the
SUT component under consideration, TTI, which does not depend on the load values,

—TIM: time elapsed between instantiation of a new instance of the SUT component and the
response time again dropping below the scale-out threshold,

—RTmax: maximum response time, i.e., the time it takes to handle a request when the maximum
capacity of the request buffers is reached; RTmax can be measured when no scaling operation
is permitted or when the operation takes longer than filling up the request buffers and the
system starts dropping incoming requests. This vale indirectly illustrates the size of the queues
at the performance bottleneck (application instance, router, load balancer etc.)
The values listed above can form a basis for estimating several characteristics of the SUT, such

as:
—system usage/capacity ratio (based on L0, L1 and TCT),
—the size of buffers needed to handle rapid changes in system load (based on TTI and RTmax).

Moreover, one could determine whether the preconfigured auto-scaling operation was satisfac-
tory based on the response time decrease ratio, which can be measured once the operation is
completed.

Similar characteristics can be obtained when performing a scale-in test.

6.3 Stability testing – TS4
Oscillations of load in proximity to a decision threshold may reveal much about the stability
of SUTs. Applying oscillating load (whether sine-, square- or sawtooth-like) can result in fre-
quent changes in SUT configuration observed as a varying number of instances, response time,
throughput or other metrics (see Fig. 9).

In order to set the lower and upper load boundaries properly it is important to know the
decision thresholds (which should fall between the values) as otherwise the test would not yield
useful results. The oscillations should be handled by the request buffers and the variations in
response time should not exceed the acceptability thresholds.

The described, ideal SUT behavior patterns under test scenarios TS1-TS4 can only be observed
if the following conditions are met:
—the performance of each SUT component instance is independent from the performance of

others,
—load distribution between instances remains fair,
—there are no bottlenecks between the application clients and the tested SUT component.

The following section, which discusses experimental results, presents real-life characteristics
that illustrate cases in which the pointed conditions are not always met.
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Figure 9: Expected instance count response patterns under oscillating load conditions.

7. DISCUSSION OF PRELIMINARY RESULTS
The methodology introduced in this paper was evaluated in a scenario that included a comparison
of two cloud configurations – a public one and a private one. The clouds needed to be evaluated
in the context of their applicability for hosting a large-scale application. The basic characteristics
of the application were as follows:

—CPU power was the main resource requested,
—the application needed to scale out in cases of CPU usage exceeding a predefined threshold,
—the sessions between the application clients and servers were very short, typically consisting of

just a few requests and responses.

In order to offer a reasonable SLA to application clients we needed to estimate the average
response time (RT), maximum response time (RTmax) and the time it takes to scale out the
application in specific clouds. A CPU-intensive application conforming to TC4 (see 5.2) was
selected as the case study. The application performed a merge sort on a randomly generated
array of integers; it took the size of array as the sole argument specified in its clients’ requests.

Because conducting all the presented tests would be economically wasteful, we selected cases
which yielded the most information about the cloud installations and configurations in the context
of the specified test categories and application requirements. Based on the discussion presented
in Section 5 (see Table II), we decided to perform:

—a maximum throughput test (TS1) using a CPU-intensive application (TC4),
—a dynamicity test (TS2) using the same application (TC4).

7.1 Testing environment
Test cases were based on Java/Spring frameworks deployed into Tomcat containers (AEE) and
MySQL persistence services each running in an Ubuntu Linux instance. Evaluation was performed
for booth private and public PaaS solutions integrated with the SCALR cloud management
platform, facilitating single-access interfaces for both deployment options. The private PaaS was
based on the CloudFoundry platform while the public one utilized Amazon BeanStalk services.
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CloudFoundry was configured with a Router and AEE running on m1.medium (1 vCPU, 3.75
GB RAM) and m1.large (2 vCPUs, 7.5 GB RAM) profiles respectively. The AEE autoscaling
policies mandated “five to twenty” VM instances. Amazon BeanStalk was assigned an m1.large
profile with scaling policies set to “one to ten” VMs.
The TMS comprised four VMs with core services (GUI, metrics database, JMeter master) and
twenty VMs working as JMeter slaves ensuring that the framework can handle a large number
of virtual users. The TMS was deployed on a remote site for both private and public PaaS
evaluation scenarios.

7.2 Maximum throughput measurement analysis
In this section we focus on analyzing the output of the stress test scenario (TS1) using a CPU-
intensive application (TC4). Tests were conducted on two clouds (one of them public and one
private) from the client’s perspective. Conclusions were drawn without detailed knowledge of
the configuration of the test environment. Instead, conclusions relied on the conceptual model of
PaaS introduced in section 4 since its exact configuration – especially in the case of public PaaS
– was not known to the authors.

7.2.1 Public cloud assessment. Tests conducted in the public cloud assumed linear load growth.
The number of application instances was (respectively) 1,2,5 and 10. In the analysis we assumed
that load balancers and request routers shared the load evenly and that the application queues
were of equal length. Under such conditions application instance throughput was the only limit-
ing factor. Accordingly, once maximum throughput is reached the queues should begin to fill up
with requests and the response time should correlate to the square of the load throughput until
the queues are filled up and the system begins dropping requests.

Analysis of throughput and response time for one application instance reveals the maximum
theoretical throughput of a greater number (N) of instances (which should, in an ideal case, be
N times greater). Following the experiment illustrated in the top left-hand corner of Fig. 10 one
can observe that the maximum throughput of one instance can be estimated as a number between
38 and 40 requests per second (assuming that all requests before were processed successfully).
Starting at roughly 38 requests per second the response time begins growing rapidly and then
stabilizes at some level (RTmax).

The growth in the response time is due to the request queue filling up. Stabilization occurs
when the queue is completely full and the application instance begins to drop incoming requests.
It is worth noting that if instances are independent and there are no bottlenecks other than
application instance performance, the values of RTmax observed for one instance should be the
same for any number of instances. In the case of one instance, the observed RTmax was about
3.5 seconds.

As depicted in the top right-hand section of Fig. 10., for two instances running concurrently
the maximum throughput estimation range is 76-95. From the presented data one could theorize
that 76 requests per second (i.e. twice as much as in the single-instance scenario) is the maximum
throughput for the tested configuration.

Note, however, that RTmax stabilizes at about 12 seconds, which is rather unexpected because if
the throughput of application instances is the only limiting factor, RTmax should be independent
of the number of instances. Note also that the time between the onset of the rapid response time
growth and its stabilization should be longer than in the single-instance scenario (assuming the
same linear load function). Results indicate, however, that the length of this interval is about 5
times greater, which is quite unexpected.

The case of five instances is rather difficult to analyze because it does not reveal any obvious
RTmax value. Due to the variable hit(time) ratio it is also difficult to estimate the upper maximum
throughput boundary. A broad estimate of maximum throughput is between 175 and 220 requests
per second, with RTmax on the order of 6 seconds. The lack of a clear estimation for RTmax
suggests that although some requests are dropped, the volume of application queues was not
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Figure 10: Public cloud CPU-intensive stress test results.

the only limiting factor. In other words, an entity other than the application instance (e.g. the
request router, or the load balancer) also experienced trouble with handling requests.

The duration of rapid growth in response time is about two minutes, which is slightly more
than twice the value obtained in the single-instance case.

In comparison with the five-instance case, 10 instances behaved in a very predictable way. The
value of maximum throughput can be estimated as 350-400 requests per second range, i.e., 35-40
requests per second per instance. RTmax however, stabilized at about 1 second, which is much
lower than in any other case. One reason for that is that the overflow occurred not within the
application execution engines, but earlier on in the pipeline, e.g. in the request router or load
balancer and therefore those requests which were not dropped did not need to spend much time
in the application queue.

The duration of rapid growth in response time was about 3 minutes.
To sum up, even if the configuration details are unknown, the TS1 scenario proved to be a

useful tool in assessing the public PaaS platform. The overall throughput scaled linearly with
the number of application instances. For a linear load(time) function the system behaved as
predicted (i.e. the response time initially remained stable and below the throughput limit, and
then grew rapidly). Moreover, in the 5- and 10-instance cases, several effects were observed that
suggested the existence of performance bottlenecks other than in the application queues. These
phenomena could be explained only if a more detailed (white box) analysis is conducted.

Performance-wise, the public cloud scales almost perfectly. The differences between per-
instance capacities are negligible. The variations in RTmax suggest, however, that the volume of
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Application in-
stance count

RT [s] RTmax
[s]

Estimated
throughput
(total)

Estimated
throughput per
instance

One instance
throughput =
100%

1 0.2 3.5 38 38 100%
2 0.2 12 76 38 100%
5 0.2 6 175 35 92%
10 0.1 1 350 35 92%

Table III: Key measured characteristics of the public cloud.

PaaS element queues does not grow linearly with the number of instances.

7.2.2 Private cloud assessment. Similarly to the public cloud case, the tests conducted in a
private cloud applied a linear load(time) function. The application instance counts, however,
were 1, 10, 20 and 30 respectively.

Figure 11: Private cloud CPU-intensive stress test results.

From among the two PaaS configurations the private one was characterized by better single-
instance performance, but – on the other hand – the values presented in Table IV indicate that
its configuration was clearly suboptimal. Per-instance performance in a 10-instance configuration
was better than in the single-instance scenario. It therefore appears that in smaller deployments
the instance remains underutilized. Additionally, the sudden drop in performance separating
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Application in-
stance count

RT [s] RTmax
[s]

Estimated
throughput
(total)

Estimated
throughput per
instance

One instance
throughput =
100%

1 0.1 30 37 37 100%
10 0.25 9.5 425 42.5 115%
20 0.4 17 435 21.75 59%
30 0.45 22 660 22 60%

Table IV: Key measured characteristics of the private cloud

10-instance and 20-instance configurations suggests that the application instances are again un-
derutilized and the performance bottleneck is on the level of router(s) or load balancer(s).

7.3 Dynamicity and stability measurements
In this section we focus on analyzing the output of the dynamicity test scenario (TS2) using
a CPU-intensive application (TC4). Much like in the case of stress testing, public cloud tests
required us to draw conclusions without detailed knowledge of the configuration of the test
environment.

Figure 12: Dynamicity test results (public cloud). Figure 13: Dynamicity test results (private cloud).

In the test illustrated in Fig. 12 a Heaviside function based load pattern was applied to a system
that was preconfigured to scale out if the CPU load exceeded 80% over a period of 5 minutes,
while the load measurement was taken in one-minute intervals. By comparing the illustration
with the model described in section 6.2 one can deduce that the request queue was filled very
rapidly (perhaps the difference between the applied loads was too high) and then the system
began to drop requests until a new VM was ready to accept them. After about 480 seconds the
response time dropped back to the initial value. In the case of the private cloud configuration the
respective time was only about 150 seconds (see Fig. 13). Therefore the conclusion was that the
private setup scaled up faster and the instability period was significantly shorter. Similar tests
conducted for a larger number of instances resulted in no instability in either setup – the request
buffers were large enough to handle the increase in the number of requests without dropping any
of them; only a temporary, gradual increase of response time was observed.

The increase in response time which resulted from the request queue gradually filling up was
observed as a side effect in another test targeted at testing stability (Fig. 14).

Here, an oscillating load was applied with a constant average but high amplitude and – therefore
– high variance of requests per second. By observing the results of the test one can deduce that:

—the response time grew due to the request queues filling up,
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Figure 14: Gradual increase in response time resulting from request queuing.

—the variance in the response time was relatively low, so the system was well prepared to handle
oscillations (i.e. the size of the buffers was enough to dampen the oscillation effects).

Fluctuations in response time were similar in both clouds and no significant differences between
test setups could be observed in this experiment.

The stability tests revealed excessive sensitivity of the private cloud in terms of instantiating
and deistantiating application instances in response to load changes (see Fig. 15). The load
function was a sum of a linearly growing component and a randomly oscillating function (within
a pre-configured range). Evidently, the scale-out and scale-in thresholds were too close to each
other.

The PaaS dynamic behaviour is significantly influenced by:

—Organization of internal communication between PaaS components. The asynchronous nature
of this communication and the length of message queues have substantial impact on response
time and stability of the system under variable load conditions.

—Scalability of PaaS supported by IaaS works relatively well and the system scales out properly,
although substantial delays are observed in the scaling-down process.

The presented study leads to the following conclusions:

—The theoretical model presented in Section 6 has been validated.
—Real data has been obtained which can be used as a reference point for qualitative analyses.
—The influence of internal PaaS communications on its performance has been assessed.
—A PaaS configuration methodology has been proposed.

8. CONCLUSIONS
The presented research confirms that the PaaS performance evaluation procedure should address
many aspects such as stress, dynamicity and stability testing. The proposed testing scenarios

International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.



22 · Marcin Jarz et al.

Figure 15: Oscillations in VM count close to decision thresholds (private cloud).

are universal and could be applied to different categories of services such as web applications and
any memory-, CPU- or database-intensive components. PaaS performance is sensitive to a mul-
titude of parameters referring to the generic PaaS model such as router efficiency, load balancer
strategies, message queue length, internal communications etc. Their influence on qualitative
performance aspects could be predicted based on theoretical analysis but real-life data has to be
captured in experimental testing. Identification of performance limitations and system behavior
under extreme load provide useful information for defining SLAs. Performing the same experi-
ments in public and private clouds confirms similar behavior in both types of systems, although
the results are not identical. This justifies the conclusion that the proposed performance evalu-
ation procedure could be considered an obligatory step in validating deployment configurations.
The PaaS performance testing procedure is quite complex and, in order to be successful, requires
proper selection and assembly of tools. The proposed TMS system is composed of Ganglia, JMX
and JMeter, each satisfying the stated requirements in that respect. These tools have to be sup-
plemented with test scenario management modules and metrics visualization tools. Supporting
rapid definition and automation of test scenarios in cloud environments remains a challenge and
might require additional effort.
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Slawomir Zieliński is an Assistant Professor at the Department of Computer Science at
the AGH University of Science and Technology, Krakow, Poland. In 2009 he completed
PhD on dynamic, semantics based deployment of overlay networks in peer-to-peer envi-
ronments. His main areas of interest are cloud computing platforms, computer networking
and development of distributed systems. In addition, he is working as an instructor at
the Cisco Networking Academy.

Karol Grzegorczyk is a research assistant at the Department of Computer Science at
the AGH University of Science and Technology, Krakow, Poland. He received the MSc
degree in computer science from the Warsaw University of Technology, Poland, in 2006.
His interests focus on the large scale distributed systems as well as machine learning
algorithms and techniques.

Marek Piascik received MSc in Computer Science at the Warsaw University of Tech-
nology, he also holds a postgraduate diploma in cloud computing from Warsaw School
of Economics. Between 2004-2013 he worked as software engineer and software architect
in many commercial projects. Currently he held technical leadership positions in cloud
and big data related projects at Samsung Research Poland. His professional interests
include performance evaluation of cloud based services, application performance tuning
and software design patterns.

International Journal of Next-Generation Computing, Vol. 6, No. 1, March 2015.


