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Today’s computer systems face sophisticated attackers who combine multiple vulnerabilities to penetrate networks
with devastating impact. The overall security of a network cannot be determined by simply counting the number

of vulnerabilities. To accurately assess the security of networked systems, one must understand how vulnerabilities
can be combined to stage an attack. We model such composition of vulnerabilities through attack graphs. By

simulating incremental network penetration, and propagating attack likelihoods, we measure the overall security

of a networked system. From this, we score risk mitigation options in terms of maximizing security and minimizing
cost. We populate our attack graph models from live network scans and databases that have knowledge about

properties such as vulnerability likelihood, impact, severity, and ease of exploitation. Our flexible model can be

used to quantify overall security of networked systems, and to study cost/benefit tradeoffs for analyzing return on
security investment.
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1. INTRODUCTION

The traditional binary view of information security is that the system is either secure or not
secure. But such a simplistic view makes it difficult to answer important questions such as “are
we more secure than yesterday” or “how should we invest our limited security resources.” Decision
makers in other areas of business and engineering often use metrics for determining whether a
projected return on investment justifies its costs. Spending for new cyber-security measures is
such an investment.

By increasing security spending, an organization can decrease the risk associated with security
breaches. But such tradeoff analysis requires quantitative rather than qualitative models. Pre-
vious approaches to security metrics have focused on individual vulnerabilities. Metrics such as
percentage of patched systems ignore interactions among network vulnerabilities.

While useful, such metrics are limited, because vulnerabilities in isolation lack context. Attack-
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ers can combine related vulnerabilities to incrementally penetrate networks, potentially leading
to devastating consequences.

We meet this challenge by capturing vulnerability interdependencies, measuring security in the
exact way that real attackers could penetrate the network. We analyze all attack paths through
a network, providing a metric of overall system risk. Through this metric, we analyze tradeoffs
between security costs and security benefits. Decision makers can therefore avoid over investing in
security measures that do not pay off, or under investing and risk devastating consequences. Our
metric is consistent, unambiguous, makes underlying assumptions explicit, and provides context
for understanding security risk alternatives.

Good metrics can be measured consistently, are inexpensive to collect, are expressed numer-
ically, have units of measure, and have specific context [Jaquith et al. 2007]. Security metrics
have been suggested based on criteria compliance, intrusion detection, security policy, security
incidents, and actuarial modeling.

Statistical methods (Markov modeling, Bayesian networks, etc.) have been used in measuring
network security. Complementary to our approach, measurements of attack resistance [Wang
et al. 2007] and weakest successful adversary [Pamula et al. 2006] have been proposed. Early
standardization efforts in the defense community evolved into the system security engineering
capability maturity model [SSE-CMM], although it does not assign quantitative measures. The
National Institute of Standards and Technology (NIST) describes a security metrics implemen-
tation process [Swanson et al. 2003], and principles for establishing a security baseline [Stoneb-
urner et al. 2004]. There are also standardization efforts for vulnerability assessment, such as the
Common Vulnerability Scoring System [CVSS], although these treat vulnerabilities in isolation,
without considering attack interdependencies on target networks. In early work on attack graphs,
model checking was used to decide whether a given goal state is reachable from the initial state,
and to enumerate attack sequences linking the two states. Because the number of sequences can
increase exponentially, we use a quadratic representation that encodes them implicitly through
exploit interdependencies, with efficient high-level abstractions for groups of fully-connected hosts
[Noel et al. 2004]. Such graphs can be generated for tens of thousands of hosts within a few
seconds.

In our approach, causal relationships among exploits are based on a well-accepted attack graph
model. Attack graphs can be generated using readily available tools, such as the Topological
Vulnerability Analysis (TVA) system [Jajodia et al. 2009]. The existence of such powerful and
efficient tools justifies the practicality of our attack graph metrics. We adopt a straightforward
approach towards the logical relationships among exploits and their likelihoods. The information
our model needs already exists in various standards and commercial products, further supporting
the practicality of our approach.

The remainder of this paper is organized as follows. Section 2 reviews attack graphs, and
Section 3 describes how they can be used to measure likelihood of attack. Section 4 demonstrates
security risk analysis using attack graphs, and Section 5 extends this to analysis of return on
security investment. Section 6 shows how to quantify confidence in our analyses, and Section 7
summarizes the results.

2. ATTACK GRAPHS

The attack graphs model how multiple vulnerabilities may be combined for an attack. They
represent system states using a collection of security-related conditions, such as the existence
of vulnerability on a particular host or the connectivity between different hosts. Vulnerability
exploitation is modeled as a transition between system states.

As an example, consider Figure 1. The left side shows a network configuration, and the right
side shows the attack graph for compromise of the database server by a malicious workstation
user. In the network configuration, the firewall is intended to help protect the internal network.
The internal file server offers file transfer (ftp), secure shell (ssh), and remote shell (rsh) services.
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The internal database server offers ftp and rsh services. The firewall allows ftp, ssh, and rsh
traffic from a user workstation to both servers, and blocks all other traffic.

In the attack graph, attacker exploits are blue ovals, with edges for their preconditions and
postconditions. The numbers inside parentheses denote source and destination hosts. Yellow
boxes are initial network conditions, and the green triangle is the attacker’s initial capability.
Conditions induced by attacker exploits are plain text. The overall attack goal is a red octagon.
The figure also shows the direct impact of blocking ssh or rsh traffic (to the fileserver) through
the firewall, i.e., preventing certain exploits in the attack graph.

Figure. 1: Example network, attack graph, and network hardening choices

The attack graph includes these attack paths:

(1) sshd bof(0,1) Þ ftp rhosts(1,2) Þ rsh(1,2) Þ local bof(2)

(2) ftp rhosts(0,1) Þ rsh(0,1) Þ ftp rhosts(1,2) rsh(1,2) Þ local bof(2)

(3) ftp rhosts(0,2) Þ rsh(0,2) Þ local bof(2)

The first attack path starts with sshd bof(0,1). This indicates a buffer overflow exploit executed
from Machine 0 (the workstation) against Machine 1 (the file server), i.e., against its secure
shell service. In a buffer overflow attack, a program is made to erroneously store data beyond
a fixed-length buffer, overwriting adjacent memory that holds program flow data. The result
of the sshd bof(0,1) exploit is that the attacker can execute arbitrary code on the file server.
The ftp rhosts(1,2) exploit is now possible, meaning that the attacker exploits a particular ftp
vulnerability to anonymously upload a list of trusted hosts from Machine 1 (the file server) to
Machine 2 (the database server). The attacker can leverage this new trust to remotely execute
shell commands on the database server, without providing a password, i.e., the rsh(1,2) exploit.
This exploit establishes the attacker’s control over the database server as a user with regular
privileges. A local buffer overflow exploit is then possible on the database server, which runs
in the context of a privileged process. The result is that the attacker can execute code on the
database server with full privileges.
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3. MEASURING ATTACK LIKELIHOOD

In practice, vulnerabilities often remain in a network, even after they are discovered. Vendors
may be slow to release software patches, or deployment may be delayed because of excessive
cost or effort. Attackers often leverage even correctly functioning network services to gain new
capabilities. An organization will often trade security risk for availability of services.

Our attack graph metric quantifies this risk through measuring the likelihood that such residual
paths may eventually be realized by attackers. When a network is more secure, attack likelihood
is reduced. Preventing exploits (as in Figure 1) removes certain paths, in turn reducing attack
likelihood. When the attacker cannot reach the goal, our metric is zero. When the attacker is
completely assured of reaching the goal, the metric is unity.

An attack graph naturally encodes both conjunctive and disjunctive attack relationships. For
example, in Figure 1, the attacker cannot upload the list of trusted hosts if the ftp service does
not exist; neither can this happen if the attacker cannot use Machine 1 as a normal user. Such
a relationship is conjunctive. On the other hand, if a condition can be satisfied in more than
one way, it does not matter which path the attacker follows to satisfy it, making the relationship
disjunctive.

To compute our metric, we propagate exploit measures through the attack graph, from initial
conditions to goal, according to conjunctive and disjunctive dependencies. When one exploit must
follow another in a path, this means both are needed to eventually reach the goal (conjunction),
so their measures are multiplied, i.e., p(A and B) = p(A)p(B). When a choice of paths is possible,
either is sufficient for reaching the goal (disjunction), i.e., p(A or B) = p(A) + p(B) - p(A)p(B).
Paths coming into an exploit may form arbitrary logical expressions. In such cases, we propagate
exploit measures through corresponding conjunctive/disjunctive combinations. Also, we resolve
any attack graph cycles through their distance from the initial conditions, and remove any parts
of the graph that do not ultimately lead to the goal.

Our exploit measures could be Boolean variables, real numbers, or even probability distribu-
tions. Defining the actual measures (value or distribution) of each individual exploit is part of
the ongoing effort of keeping our database of modeled exploits current. A number of vendors and
open sources provide ongoing descriptions of reported vulnerabilities, which we can leverage for
our model population. A particularly rich resource of vulnerability data is Symantec’s DeepSight
Threat Management System [SYMANTEC], covering 18,000 distinct versions of 4,200 products
from 2,200 vendors, based on 150 authoritative sources, with numerical ratings in the areas of
urgency, severity, impact, and ease of exploitation.

4. RISK ANALYSIS USING ATTACK GRAPHS

In practice, vulnerabilities often remain in a network, even after they are discovered. Vendors
may be slow to release software patches, or deployment may be delayed because of excessive
cost or effort. Attackers often leverage even correctly functioning network services to gain new
capabilities. An organization will often trade security risk for availability of services.

Removing attack paths reduces options for an attacker, but at what cost to the organization?
For example, in Figure 1, blocking ssh or rsh traffic disables certain initial network conditions,
preventing exploits that depend on these vulnerable connections, thereby reducing the number of
attack paths. But what is lacking is a clear measure of exactly how security has been improved
in each case. For example, which is better, blocking ssh or blocking rsh? Are these significant
or only marginal improvements over the current configuration? These are the kinds of questions
that are answered though our attack graph metric.

For risk analysis, we simulate attack graphs through Monte Carlo methods. This allows us to
handle uncertain input values, by modeling their distributions through statistics such as numerical
ranges, mean values, etc. We then simulate attack graphs with inputs generated according to the
probability distribution model. This allows us to make optimal choices against complex cyber-
attack models that cannot otherwise be easily identified. Monte Carlo methods are ideal for such
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problems with highly complex logical (non-linear) relationships with many input variables. In
our case, the attack graph is computed once, and then evaluated for each Monte Carlo sample.

In Figure 1, the network hardening options are to block either ssh or rsh traffic (to the file
server) through the firewall. Here, we assume that no software patches or other forms of mitigation
are available for the ftp and buffer overflow vulnerabilities on the inner network. The remote
shell service is working correctly (even though it is being leveraged in the attack), and needs no
patching. Assume that the workstation needs access to the ftp services on the inner network,
i.e., we avoid blocking ftp traffic through the firewall. Further, we assume that the workstation
needs at least one type of shell access (either remote shell or secure shell) to each machine on the
inner network.

Figure 2 shows the attack graphs resulting from blocking ssh (left side) and rsh traffic (right
side) from the workstation to the file server. In other words, for each network hardening choice,
a particular set of attack paths still remains, from which we compute our metric. In the figure,
the cumulative likelihood of each exploit is shown, as propagated through the attack graph. For
example, the likelihood of rsh(0,2) occurring is the conjunctive combination (Boolean AND) of
ftp rhosts(0,2) and rsh(0,2), while the likelihood of local bof(2) is the disjunctive combination
(Boolean OR) of rsh(0,2) and rsh(1,2). Since local bof(2) yields the overall goal for this attack
scenario (compromise of the database server), the likelihood of local bof(2) occurring is the overall
attack graph metric.

Figure. 2: Residual attack graphs for network configuration choices

In Figure 2, the model inputs P(o) represent the inherent chance of each exploit occurring,
independent of other exploits. For example, these could be relative frequencies of events observed
on a network over a period of time. Or, they could be taken from a product such as Symantec
DeepSight. In this particular case, let us assume we have a minimum and maximum likelihood
value for each exploit. We model these likelihoods as uniformly distributed between their mini-
mum and maximum values, i.e., ftp rhosts and rsh between [0.5, 0.6], and sshd bof and local bof
between [0.1, 0.2]. We can interpret such input distributions as likelihoods of successful exploit
execution over a given period of time (month, year, etc.).

Figure 3 shows the result of Monte Carlo simulations of the attack graph model in Figure 2.
Each choice of network configuration (block ssh, block rsh, and no change) has a corresponding
residual attack graph. In the simulations, we generate inputs randomly according to the given
distributions, and combine inputs according to the logical relationships of the particular residual
graph.

The simulation output (bottom of Figure 3) is the overall attack graph metric, i.e., the like-
lihood of database compromise for each network configuration. This shows that blocking rsh
traffic provides the best protection, i.e., it is skewed toward lower likelihood of compromise. Sim-
ply comparing representative (e.g., mean) values gives an immediate determination of the best
choice. Or we could gain further insight by comparing such features as uncertainty spread.
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Figure. 3: Attack-graph metrics for each network configuration choice

5. ANALYZING RETURN ON INVESTMENT

Through attack graph simulations, we analyze risks in terms of attack likelihoods. We can extend
this risk analysis to include associated network operational costs, attack impact costs, etc. This
grounds our analysis in monetary reality, and supports informed decision making about return on
security investment. In other words, we can quantify whether expenditures on additional security
measures are justified by reduction in expected losses from security breaches.

Figure 4 shows a model for such return-on-investment analysis. We first compute the metric
for likelihood of attack compromise (Figure 3). This feeds a cost analysis, which combines
compromise likelihood with the projected costs of an actual compromise, along with the costs of
implementing network changes to mitigate the risk. In other words, each network configuration
has a particular implementation cost, and reduces risk (expected loss from breach) by a certain
amount. We seek the configuration that minimizes overall costs.

In this model, the estimated cost of recovering from a database breach (Incident) is $200,000
(standard deviation $20,000). Each network configuration has an associated likelihood of a breach
occurring, with a corresponding multiplicative reduction (from the full $200,000) in expected loss.
The estimated cost for implementing firewall changes (Firewall) is $1,000 (standard deviation
$100). So the question is whether the firewall implementation costs are justified in terms of
reduced risk (expected loss), versus simply making no change to the network.

Figure 5 shows the resulting probability distributions (density and cumulative) of overall costs
for each network configuration. In terms of overall cost, blocking ssh traffic is now seen to actually
cost more than simply making no change to the network. This is because the slight decrease in
breach likelihood (expected loss) is outweighed by the cost of implementing the firewall change.
On the other hand, blocking rsh traffic reduces breach likelihood more, making its overall costs
lower versus leaving the network unchanged. In our risk model (Figure 4), overall cost for each
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Figure. 4: Security return-on-investment model

Figure. 5: Cost of each network change based on attack-graph metrics

network configuration (Cost Per Change) is input to Savings Over No Change. This directly
compares the costs of blocking rsh and ssh (respectively) to the cost of no change, for each Monte
Carlo sample. These model comparisons are shown in Figure 6. We see that blocking rsh traffic
can provide almost $2,500 in reduced cost (maximum difference from no change), while blocking
ssh traffic can incur almost $1,000 additional cost (minimum difference from no change).

6. QUANTIFYING CONFIDENCE

To quantify the confidence in our analysis, we begin by measuring how strongly the model output
is correlated with each model input. This shows the relative importance of each input variable,
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i.e., how strongly its uncertainty translates to uncertainty in the output result. In our risk model
(Figure 4), this is Importance Of Inputs, which correlates Cost Per Change (Figure 5) with each
of the model inputs (indexed by Cost Inputs).

Figure 7 shows the resulting input/output correlations, for each network configuration (block
rsh, block ssh, or no change). For all configurations, the output uncertainty is dominated by
the likelihood of local bof, a critical exploit that is included in all attack paths. The next most
important input is the cost of a database compromise incident, followed by likelihoods of the
rsh and ftp rhosts exploits. Uncertainties in firewall costs and likelihood of sshd bof have little
impact on uncertainty of results.

Figure. 6: Comparative savings (versus no change)

Figure. 7: Relative importance of model inputs

We gain further confidence by testing how model input changes might potentially alter our
choice of the best network configuration. In particular, we calculate how overall costs (Cost Per
Change) vary as each model input changes. Figure 8 is the variation in Cost Per Change as a
function of each input individually, with all other inputs held at their nominal (mean) values. To
test robustness, we vary input values well outside their actual ranges in the model.
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The upper left of Figure 8 shows how model output depends on the likelihood of the local bof
exploit. If the likelihood of local bof were less than the breakpoint value of 0.09, then making
no change to the network would be the best solution. But in our model, the range of local bof
likelihood is actually between 0.1 and 0.2, for which blocking rsh traffic remains the best solution.
The upper right of Figure 8 shows how the model output depends on the cost of a database
compromise incident. In the model, the cost per incident is between about $130,000 to $275,000.
Except for a small portion of this range (up to about $135,000), blocking rsh traffic remains the
best solution.

Figure. 8: Cost dependency on individual inputs

Figure 8 also shows the model dependencies on the remaining input variables. For all these
variables, blocking rsh traffic is the best solution within the full range of actual model values.
Overall, we have a strong measure of confidence that blocking rsh traffic is the best choice for
providing return on security investment.

7. SUMMARY

This article introduces a model and a methodology for quantitative analysis of network security
risk using attack graphs. This model populates the attack graph with known vulnerabilities and
their likelihoods of exploitation. By propagating exploit likelihoods through the attack graph, a
metric is computed that quantifies the overall security and risk of a networked system. This metric
is applied to study the tradeoffs between cost and benefit for analyzing return on investment. In
the future, we plan to build a tool that supports decision making for network planning, security
monitoring, and attack prediction/response.
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