Energy Efficient Data Indexing and Query
Processing for Static and Mobile Wireless Sensor
Networks

MOHAMED M.ALI MOHAMED, ASHFAQ KHOKAR, GOCE TRAJCEVSKI
University of Illinois at Chicago, Northwerstern University

This work addresses the problem of efficiently balancing the use of network resources when processing both
spatially-constrained and (sensed) value based queries in Wireless Sensor Networks. To alleviate the drawbacks
inherent to centralized approaches e.g., overheads in energy consumption and latency due to the transmission of
the individual raw data/measurements to a dedicated sink, we propose in-network processing methodologies which
unify the management of physical and data-space based queries. Since sensed data typically represents values that
evolve over time, the distributed data management approaches need to be efficient in terms of communication
cost and storage requirements. Furthermore, if the query processing paradigm(s) allows approximate answers,
it may yield additional benefits if data abstractions based on higher-order statistics are integrated in the data
management. The related challenges are further compounded if the nodes are mobile, for the purpose of adapting
the quality of sensing/coverage to spatial changes in the data field. We present novel communication and storage
efficient physical and data-space abstractions to facilitate in-network indexing of sensed data and processing of
queries in WSNs consisting of mobile and static nodes. We also present novel algorithms to handle changes in
the abstractions due to mobility of the nodes. To trade-off (im)precision vs. energy consumption, the proposed
abstraction schemes combine rank order statistics, regular sampling, and bitmap representation. The proposed
abstractions are generic, in the sense that they can be utilized in any hierarchical indexing structure that is
based on binary space partitioning (BSP), such as k-d trees, Quadtrees and Octrees. Based on implementation
in SIDnet-SWANS simulator, our experimental results demonstrate the effectiveness of the proposed abstractions
under different mobility models, mobility speeds, and query streams.

Keywords: Distributed Algorithms, Mobility, Wireless Sensor Networks, Data Indexing, Query
Processing

1. INTRODUCTION

In the recent years, Wireless Sensor Networks (WSNs) have become a technology of choice in
an increasing number of application domains, spanning from environmental monitoring, health-
care, structural safety assurances and military battlefields [Zhao et al. 2004]. WSNs provide the
capability of monitoring and reporting up to date information for various physical phenomena,
and even provide the capabilities to perform actuation in response to detected values [Chen et
al. 2011] (and the references therein). Regardless of the application contexts, efficient use of the
battery power of sensor nodes (also referred to as motes) in WSNs remains one of the major con-
cerns [Zhao et al. 2004]. As WSNs may often operate in harsh environmental conditions and/or
inaccessible locations, supplying power to the motes after deployment becomes difficult. Thus,
smart exploitation of the energy reserves, which in many respects directly implies prolonging the
networks operational lifetime, is a challenge for almost every WSN application.

In addition to the basic capability of monitoring a phenomenon of interest, WSNs are also charged
with the task of responding to queries from network users. A brute force approach to query pro-
cessing is a centralized approach where the sensed values are transmitted to central node (referred
to as sink node), and then the sink node responds to all the queries. This approach has its inherent
limitations and drawbacks, including latency, single point of failure, and bottlenecks. WSN can
also operate by creating aggregated in-network organization and storage of sensed information.
Data indexing in WSN aims at creating an in-network communication and storage methodolo-

This research was supported in part by the National Science Foundation grants CNS 0910988, 0910952, III 1213038,
and ONR N00014-14-10215.

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 97

gies, which assist the objective of monitoring and responding to dispatched queries, hopefully
with smaller energy overheads [Akkaya et al. 2005]. Since the communication between nodes
consumes 2-3 orders of magnitude more energy than sampling/sensing and calculations, the cru-
cial aspect becomes sharing as much useful information with the least possible communication.
Given the complexity of the data indexing problem, existing methodologies [Ciancio et al. 2006;
Greenstein et al. 2003; Ganesan et al. 2005; Ouksel et al. 2007; Meliou et al. 2009; Liu et al.
2010] can be categorized along several dimensions. Some of them follow a centralized aggregation
method, where all information are pulled towards the sink node [Ciancio et al. 2006]; which is
the central node connected to the base station. The centralized approach entails a load balancing
problem, where the nodes closer to sink node experience higher communication traffic. Other
approaches [Greenstein et al. 2003; Ganesan et al. 2005; Ouksel et al. 2007; Meliou et al. 2009;
Liu et al. 2010] aim at creating in-network (logical) data structure among the sensor nodes. In
the distributed approach, each sensor node is logically connected to one —or more— node(s) of
that data structure, and accordingly reports its sensed information to this node(s). Some data
indexing algorithms perform further aggregation of the gathered information, thereby creating
hierarchical representation of the field information. When it comes to the particular reported
information, it can be categorized along the spectrum of values of the monitored phenomenon,
as well as the collection of possible locations at which the values were sensed. Each of these
categories, in turn, has an impact on the efficient management of the network resources.

The main motivation for this work is based on the observation that the existing works on data
indexing are not capable of creating a system that combines the aggregation of both the the
sensed values and their respective locations in an integrated manner. The aggregation techniques
applied are either trading-off between the precision sensed values and their respective locations,
or designed to better suit a specific data distribution of the sensed phenomenon. Moreover, the
existing data indexing approaches do not take mobility of sensor nodes into consideration, al-
though in many applications, WSN have (portion of) the nodes capable to change their locations
in the field, to adapt the coverage to the dynamic behavior of the sensed phenomena, or to track
objects in the sensed field. In such settings, if the indexing algorithm were not to adapt to mo-
bility, the network might incur significant increase in energy consumption.

In this paper we propose novel generic data abstraction techniques for both sensed values and
sensor nodes locations to facilitate in-network indexing of sensed data and processing of queries
in WSNs. The proposed techniques handle both types of information and aggregates them in an
energy efficient manner, providing a hierarchical in-network storage that is capable of answering
different queries with low latency, and further able to provide immediate answers to approximate
queries and some types of exact queries. The proposed abstraction techniques are independent
from the underlying phenomenon distribution, which renders them to be applicable to various
data distributions while preserving load balancing aspect. We also present an energy efficient
query traversal algorithm, that is capable of analyzing queries, directing them to the appropriate
indexing nodes, and efficiently aggregating their results. The proposed system is generic enough
to fit a wide variety of the commonly used spatial data structures. We show how it can adapt to
different spatial configurations of the sensor nodes under mobility, without incurring extra over-
head out of the areas experiencing mobility. The mobility algorithm applies to all data structures
based on binary space partitioning (BSP). Our experimental results show the efficiency of the
proposed algorithm, in terms of query latency, and maintenance cost.

Earlier versions of this work were published in [Mohamed et al. 2011; Mohamed et al. 2012;
Mohamed et al. 2013]. This article extends the previous results in the following aspects: (a) Op-
timized data-space abstraction for static networks; (d) Extended mobility experimental results;
(¢) More elaborate abstraction techniques analysis; (d) Query traversal algorithms.

The rest of this article is organized as follows: In Section 2, we discuss the preliminary assump-
tions and analyze the different aspects of the problem. We follow with presenting the proposed
data abstraction techniques in Section 3. Section 4 discusses the details of the proposed query

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

98 : MOHAMED M.ALI MOHAMED et al.

- . @ o . ® . .O.
)]) .
° . " e ot .O L
® @ .. e . , | o ¢
L . : . o, . ° LI } .
* . '.. :). o. . .
[..O: A @ .
.'O- LI 'O . . 2 O.u . E
.) : " 40
b) ll_.o . . . ™
. . L ® [R o
* . s ! 2 . . q .. .
o 0 Of : . . . e . .
»

Figure. 1: An OBT 160 node WSN with 16 local cluster heads (Green), 4 next level cluster heads (Blue), and
one yellow sink node.

processing methodology. In Section 5 we address the efficient management of the mobility in
WSN with combined mobile and static nodes. Experimental results are presented in Section
6. Section 7 discusses the related works and Section 8 concludes the paper and outlines the
directions for future work.

2. PRELIMINARIES

In this section we describe the general problem settings and the main aspects of the proposed
methodologies. We illustrate the required features in many data structures to which the proposed
abstraction methods are applicable . We then present the details of the notation used to describe
the queries to the indexing system followed by discussion of the different dimensions of the data
indexing problem, and the metrics to be used for the assessment of the proposed system.

2.1 Data Structure Assumptions

The proposed abstraction needs to work on top of a hierarchical spanning tree. The spanning tree
is to be rooted at the sink node. The tree has to conform to any spatial data structure that splits
the given space in multiple granulation levels by creating contiguous non-overlapping regions,
and without producing holes. A widely used group that holds these features is the Binary Space
Partitioning (BSP) data structures, which recursively subdivide the space into convex sets using
hyperplanes, e.g, KD-trees, Quad-trees, Octrees [Samet 1990]. We presume the existence of the
indexing tree in a balanced form before starting the data indexing system. Figure 1 depicts an
color-coded example of an orthogonal bisection based KD tree.

In the respective indexing data structure, each leaf node knows the borders of the spatial region
it covers. Additionally, each leaf node is considered responsible “managing” the sensor nodes
within its region. We will be using the name local cluster head interchangeably with the indexing
leaf node throughout this paper. Each sensor node will be logically connected to the local cluster
head (i.e, indexing leaf node). The local cluster heads are responsible for gathering information
from the nodes in their cluster, and applying the first phase of the proposed data abstraction
methodology.

2.2 Query Types

WSN queries may inquire values of the sensed phenomena, either in the whole field or in a
specific region. In addition, they may also inquire the location(s) from which a value, or a range
of values, were reported. Also, the reported values of sensor nodes are generally not accurate
due to imperfections and other physical aspects of the sensor nodes. Therefore, approximate
query processing paradigm is well-suited to WSN, where a query contains a field to specify the
accuracy level accepted for the answer. This applies more to the overall queries than the extreme
values queries. To capture these properties, queries are considered as predicates with attributes,

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 99

as follows:

Q(P,T, C, A), where:

—P denotes the sensed phenomenon (e.g., Temperature, Humidity)

—T denotes a type. We denote the sensed values with T' = v and locations type with T' = [.

—C denotes the type of search bounds for the query: geometric bounds within the sensed field
(G), and/or, either value range within the sensed values (R) or an extreme (M, where M =
min or M = max).

—A denotes the required level of accuracy for the query response.

An example of a physical-space query with range constraint would be:
Q(Temperature, v, [70°C, 80°CJ, {[0, 0],[30, 50]}, 80%)
Which can be straightforwardly translated to an SQL-like syntax:

SELECT TEMPRATURE_VALUES T=v
BETWEEN 70°C TO 80°C R=[70°C,80°C]
INSIDE RECTANGLE 0, 0],30, 50] G=[0, 0],[30, 50]
WITH ACCURACY = 80% A=80%

An example of a data-space query with range constraint is:
Q(Temperature, 1, [70°C, 80°C], {[5, 7],[30, 10]}, 65%)

2.3 Data Indexing Analysis

In this subsection we present an analysis of some metrics that an indexing system has to conform
to, in order to be efficient. We shall use these metrics throughout this paper to evaluate previous
contributions in solving the indexing problem as well as the proposed solution.

Metric 1: WSN Information Representation

The information in a WSN can be classified as: (1) sensed values, and (2) sensor nodes locations.
Each of these categories represent a different domain for which the network can be viewed. The
sensed values represent the readings of the sensed phenomenon across the whole spatial area of
the sensed field, or part(s) of it. The sensor nodes locations represent the locations of sensors that
are reading values of the whole possible range of values of the sensed phenomenon, or part(s) of it.
Different WSN applications have interest in both types of information. In order for a data index-
ing system to be generic enough to satisfy the various needs of WSN applications, it should not
have any correlation assumptions between the two categories. In other words, the sensed values
and sensor nodes locations have to be considered orthogonal, and hence treated independently
across the indexing system, in a way that enables it to respond to any type of query that involves
any permutation of constraints on both categories. Also, a data indexing system should not have
prior assumptions for the distribution of either the sensor nodes locations in the spatial domain,
or the sensed values in the data domain. It rather should be able to adapt to any distribution in
a way that enables it to function with the same efficiency.

Metric 2: Load Balancing

In order to prolong the network lifetime, the indexing system should equally distribute the work-
load over the indexing structure. This balance should be applied horizontally and vertically in a
hierarchical indexing structure. Horizontal load balancing means that at each level of an indexing
the amount of information shall be equally distributed among the indexing nodes, for the spatial
regions or data ranges they cover. Vertical load balancing refers to the consistency in the amount
of information transferred between the levels of the indexing tree. However upper level nodes
might be considered to cover a larger amount of indexing nodes, and hence are expected to receive
more information, the increase in information in this fashion creates traffic bottlenecks towards
the upper level nodes. These traffic bottlenecks along with the large data transfer consumes the
energy for the upper level nodes, and decrease the network lifetime.

A solution for the vertical load balancing problem that benefit from approximate querying and
creates a multi-resolution indexing by using modeling was first presented in [Meliou et al. 2009].

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

100 . MOHAMED M.ALI MOHAMED et al.

Data abstraction either through a specific model or using any similar abstraction technique
enables overcoming the vertical unbalance in the indexing tree. It also creates a hierarchical rep-
resentation of the field, where the upper level indexing nodes store granular information about
larger parts of the field, while the lower level indexing nodes store more detailed information
about smaller parts of the field.

Metric 3: Maintenance Cost

An efficient indexing system should have an energy efficient maintenance strategy to update the
network information. It should preserve the locality of updates, where a sensor node is not re-
quired to report its information to an indexing node that is spatially distant from its location.
This is because the multi-hop communication is costly in terms of scheduling and actual data
transmission. The information at each sensor node, which we call raw data, should not be re-
dundantly transmitted in the indexing structure. But rather, it should be reported once to an
indexing node, then abstraction shall take place to represent the raw data of multiple sensors at
different levels of the indexing structures.

Metric 4: Query Processing Time

The query processing time represents the time between the dispatching of a query to the net-
work, till the response is received. This includes the processing of the query, regardless of the
arrangement of information inside the network, or the presence/absence of an indexing structure.
The solution for the data indexing problem lies between two extremes: a centralized solution,
or a fully distributed solution. In a centralized solution the maintenance cost of the network is
quite expensive, as all information has to be gathered to one central node. This also increases the
traffic towards this central node, which accordingly decreases the network life time due to this
unbalance. In a fully distributed solution, each sensor node is considered an indexing node for
its own information. However this eliminates the cost of updating information across the system,
it requires for any query to be answered that the query gets flooded across the whole network.
In such way a significant cost is incurred to respond to each query. Looking at this dimension, a
good solution for the problem is the one that minimizes the maintenance (i.e, update) cost, and
becomes able to direct a query to the specific node(s) capable of providing a satisfying answer
for it.

3. DATA INDEXING AND QUERY PROCESSING

We now present the details of the proposed abstractions and their use for efficient query processing
— along with the protocol specifying the nodes’ behavior upon receiving requests and, in response,
processing the given queries.

To efficiently respond to different query types a given WSN needs both physical-space and data-
space abstractions, defined respectively as follows:

Physical-space Abstraction: Representing the sensed data in the field of interest at multiple
scales with respect to the geographical location of the sensing nodes.

Data-space Abstraction: Representing the sensor nodes’ locations in the field of interest at
multiple scales with respect to the range of the sensed data values.

These abstractions must be performed in a manner that enables seamless aggregation as well as
proper preservation of the heterogeneous the data types. Towards that, our main desideratum
is to minimize the size of the updating messages, thereby reducing the communication costs
and prolonging the overall networks lifetime [Dietrich et al. 2009]. Clearly, decreasing the
size of the messages while retaining the utility of the information content should be done in
an energy-efficient manner from the perspective of the local computations too. Hence, the data
flowing across a particular in-network hierarchical structure would have two forms: Raw data: The
location and sensed value of each individual sensor node. Progressively refined: The approximate
embodiment of the raw data for a geographic region or a data-space subset.

In the next subsections, we discuss the methods of processing and abstracting raw data and
present our novel representation constructs for progressive refinement.

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 101

Regular sampling 3 12\18 Local cluster

p/ I J head
Sorting gathered data ‘ 3 ‘ 3 ‘ 5 \&/||\9 12‘ 17‘ 18‘

Gathering data ‘ 9 ‘ 6 ‘ 5 ‘-'12:"}3 ‘1‘ s ‘ 17‘

Sensed Values ‘9“6”5”12”3”18“ ’
Sensornodeg........

Figure. 2: Sensor nodes (in red) transmit their readings to the leaf node (cluster-head), which sorts the received
values and creates the representation construct by regular sampling.

3.1 Physical-space Abstraction

When it comes to physical-space abstractions, the main objective is to provide a hierarchical
multi-resolution scheme enabling the generation of approximate answers to queries aimed at
any fixed region of the sensed field. To achieve this, the sensed data is gathered locally by a
representative node within each region, which then creates an abstract (coarse) representation
of the sensed values. The abstract representations from multiple regions are then merged in a
hierarchical fashion to represent larger regions in coarser forms. We formulate the physical-space
abstraction problem as follows:

Given: A hierarchical spanning tree T(V’,E’) of depth d, and (w.l.o.g.) a fixed fan-out f, in a
graph G(V,E), E/ CE, V/ CV, where Vi:

—Each leaf node "(/1,1 represents a cluster (a non-overlapping spatial region), and

—T1t is logically connected to nodes vij, where j =1,2,..,D, and Yvi; € V, D = (|V|/f), s.t

U{S’Dvij =V, and nodes vy; are geographically collocated.

Find: An abstract representatlon pvy , of the sensed values R = {r1,12,..,7D} in the region
associated with node v} ;, such that: average error, communication cost, and computation cost
are decreased. We “loosély assume existence of a spanning tree as the only “needed structure”
— our presented methods are independent from the selection of a particular hierarchical indexing
structure.

Each node vd ; in the spanning tree T(V’,E’) gathers the sensed values R = {ry,72,..,7p} from
its set of loglcally connected sensor nodes vij, in its vicinity, and stores them in an array. Upon
acquiring its population’s readings, each node v} ; rank-orders the sensed data and stores it in
an array along with their corresponding sensor nodes’ physical locations.

3.1.1 Physical-space Representation at the Leaf Nodes of the Indexing Structure. The abstract

representation py is introduced as an array of a fixed-size (k) and its values are chosen by
regularly samphng the sorted array of the population nodes with interval (D/k), including the
first and last elements of the sorted array. Figure 2 shows an example of the sensed values in
a group of sensor nodes in a small network. Leaf nodes of the spanning tree, acting as local
cluster-heads connected to their 1-hop neighbors, gather all the sensed values and create the
corresponding arrays.
The regularly sampled array p,, . captures the main features of its sensed values within each
cluster. It contains the lowest and highest readings for the phenomenon in its first and last
elements, respectively. The distribution of readings and the capability of interpolating other
values within acquainted error bound is determined by the size of the array. This approach
mimics a curve fitting process and is generic enough to capture different phenomena.

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

102 . MOHAMED M.ALI MOHAMED et al.

R Intermediate
Regular sampling BEEE . .7
Merge samp]es ‘ 3 | 4 ‘ 5(9*12)18| 21 ‘ 25 ‘
Decoding and Inverse W.T | 3 ‘ 5 ‘ 12‘ M ‘ 9 ‘ 21 ‘ 25 ‘

Gather samples

W.T and coding

Data sample

Intermediate
Level 7 node
Figure. 3: Physical-space merging process in an intermediate level of the spanning tree (f = 2). Lower level nodes
compress their samples and transmit them to their parent which decodes, merges them and samples again with

rate 1/f .
@/h 5 1] 18]25]35]58
‘3|4|/5/‘9|12|M21|25‘ ‘11‘171/3/5‘37|44[\§§‘72|85‘
\®
|3‘3‘5|5‘9‘12‘1T‘18‘ ‘4‘7|5‘13|15|21‘23‘25‘ |11|14‘17|24‘27‘35‘3e‘37‘ ‘44‘51|58‘EE|70|72‘81|85‘

Figure. 4: Physical-space abstraction across multiple levels of a hierarchy with f = 2. Each node keeps a sorted
array of sensed values within its region and sends a sample of it (yellow background) to its parent, which merges
all the samples from its children.

3.1.2 Physical-space Representation at the Non-Leaf Nodes of the Indexing Structure. To de-

velop abstract representations of larger regions represented by the non-leaf nodes of the spanning
tree, each leaf node vé,i can apply wavelet transformation [Chui et al. 1992] to its representa-
tion construct Pvy and transmit the compressed representation to its parent in the spanning
tree. Each non-leaf node receives from its children a set of f arrays, representing the physical-
phenomenon at spatially non-overlapping regions in the field. Sample arrays are merged into
a larger one representing the sensed phenomenon in the area enclosing the f regions. The new
physical-space abstraction of the larger region is created by regularly sampling the merged array
with a given sampling interval (f). Upon completion, the new construct is of the same size as
the received (input) arrays. It provides a regular sorted sample of the larger population, but in
a coarser form. Figure 3 illustrates the physical-space across one intermediate level. The process
of updating the data-payload throughout the participating nodes is performed by using fixed size
messages, keeping the communication workload equally distributed.
When a physical-space query is received by any of the indexing structure nodes, it can respond
within the level of accuracy it supports. The sorted data gives the capability of interpolating real
sensed values using the sample array elements. Using inexpensive linear interpolation a node can
determine the existence of a sensed data range, with a level of confidence relevant to its position
in the hierarchy. A data elaborative example for physical-space abstraction across multiple levels
of the indexing tree is shown in figure 4.

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 103

3.1.3 Error Bound Due to Hierarchical Sampling. A query response based on sampled values
at any intermediate node in the indexing structure will be approximate — however, the error will
be bounded. In our scheme it may be compounded due to the hierarchical nature of the sampling
procedure. In the following we demonstrate that this error is within a factor of ‘2’ compared to
a centralized sampling scheme where all the sensed values of a given region are available.

In centralized settings, at any level j of the hierarchical structure, the distance between two
samples is:
. fld=j+1)p
N]Centralized = ? (1)

Accordingly, the maximum interpolation error for a query will be:

. fld=i+1)p
E]Centralized = 2k (2)

In the presented hierarchical sampling the values can be skewed in position during the merging

steps, in comparison to a centralized solution. This results in a shift affecting the representative

sample values at each level of the hierarchy which, in turn, affects the representation accuracy.

A similar analysis for a more special case of this idea was presented in [Shi et al. 1992]. We

formally define skewing limit as the maximum shifting of position of a sampled value during the

hierarchical sampling process, compared to a centralized solution.

Lemma 1. The error introduced due to the skewing limit at any level j of abstraction for inter-
. . fla—i+1)p . .

mediate sample values is no more than ~—————=, (where k is the sample size).

Proof. Using mathematical induction:

1. Base case (j =d—1): f regular sample sets representing f x D population are merged and

sampled for a new sample set S’ of same size k. For each intermediate range between sampled

elements 1 and 1i—1in S/, where 1 < i < k, the number of elements less than S’[i— 1] is given by

b= (i—Z)% (3)

While the number of elements greater than S’[i] is given by

ub = (k—i)% (4)

Accordingly, from equations (3)and (4), the maximum number of elements between i and i — 1
is given by

_ fD fD
N dtributea = fD — b —ub = fD — ?(k —-2)= 2? (5)

Therefore, the maximum introduced error at this level is given by

fD
a—1
EDistributed = ? (6)

2. Inductive step: For abstraction at a lower level of the indexing structure, If the relationship
holds for j = m < d then at j = m —1: For each intermediate range between elements i and i—1
in the new sample S’, where 1 < i < k, the number of elements less than S’[i — 1] is given by

fk fdme fdfer] D

Wb=((1-2))——=0-2)— (7)

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

104 . MOHAMED M.ALI MOHAMED et al.

While the number of elements greater than S’[i]S is given by

d—m d—m+1
wb = (-7 P e TP (8)

Accordingly, from equations (7) and (8), the maximum number of elements between i and i — 1
is given by
fd7m+1 D fd7m+1 D

Nm71 :fd7m+1D_ k—-2)=2—~
a —(k—2) - 9)

Distribute

Therefore, the maximum introduced error at this level is given by

fdfm+1 D

Emf“l

Distributed — k (10)

3. Therefore, For any level of depth j in the indexing tree (1 <j < d), the maximum number of
elements between any two intermediate samples i and i — 1 is given by

X fd7j+1 D
Nbistributed = k (11)
And the error at such level is given by
X fd—j—H D
E%Distributed = k (12)

In conclusion, the error bound due to skewing in a distributed solution cannot exceed the size
of one sampling distance in an alternative centralized solution. The size of sample set and the
branching factor of the indexing tree are affecting parameters to this bound.

3.1.4 Data-Space Abstraction. We assume that the possible values of the sensed phenomenon
are delimited within a finite range [min, max] for the potentially queried data-space. Our ob-
jective is to provide a hierarchical multi-resolution abstraction scheme to obtain approximate
answers to queries that involve localizations of the related sensor nodes.

Hence, the data-space within each physical region is divided into q ranges and each one is assigned
to a representative node in the region. Each such node creates an abstracted representation de-
picting the locations of all the sensor nodes within a particular data range — e.g., locations of
all the nodes within the region that have sensed temperature above 110 degrees and below 150
degrees. This data-space abstraction is performed by the nodes at different levels of the spanning
tree corresponding to the regions represented by the nodes. Using the same definition of the
spanning tree T(V’,E’) within the graph G(V,E) from the previous subsection, the data-space
abstraction aims to:

Find: A representation construction Ly. of the sensor nodes location distribution w.r.t its
sensed value for each leaf node vé’i, such that each of the average error, communication cost,
and computation cost are decreased.

Similar to the physical-space abstraction, the data-space abstraction starts by leaf nodes v} ;
collecting their population’s sensed values — along with the corresponding location where a pa{r—
ticular value was sensed. Each leaf node sorts the gathered information according to sensed
values, and stores them in an array.

Each set Gy of f sibling leaf nodes represents a group of neighboring clusters within region 1,
where 1 = 1,2, .., f472. The data-space in each region 1 is split into q data ranges, where q > f.
The responsibility of the data-space in each region 1 gets distributed among the f leaf nodes of the
group G;. Each cluster head node (i.e: leaf node Vé,i) is assigned the duty of keeping the position

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 105

1
1 11
RN .
44 65 79 1 I 11 .
71 43 41 42 65 80 EEEEEN B 1
23 1 1 1
39 85 () (ii)
37| |21 2830 |71 1 1
— 1 1] | | | 1
36 11 | | 1
76| | 43 40 1
58 61 91_ _ 37 1l I : 1
42 42 |41 82 (i) (V)

(a) Sensed values in {1, 100} range, reported withina (b) Four bitmaps : In (i), all locations that reported val-

region(blank areas indicate absence of sensor nodes). ues in the range {1, 25} are set to 1 Similarly in (ii), (iii)
and (iv) for data ranges {26, 50}, {51, 75}, {76, 100},
respectively.

Figue. 5: Illustrative example of the bitmap creation.

of any sensor, within its region 1, that reads a value within its data range(s) of responsibility.
Assuming, for simplicity, that each leaf node is responsible only for one data range (q = f), the
ranges of the data space for a group Gy, can be expressed as:

RG = {RGy0, RG11, ..., RGyf} (13)

RG; = {[min, V11, [V1 + ¢, VoI, [V2 + ¢, V3], ..., [V; + ¢, max]} (14)

Where Vi, Vs,.., V¢ denote the values in the data-space that split it into data ranges, and €
denotes the smallest sensing precision. For example, for a sensed phenomenon whose possible
range of values is [1-100], RGy =[1,25], [26,50], [51,75], [76,100]. Thus, each leaf node needs to
report to its f—1 siblings, the positions of the nodes of its population conforming to their assigned
data range. This can be easily performed at each leaf node by a single scan on the array that is
sorted according to sensed values.

3.1.5 Data-space Representation at the Leaf Nodes of the Indexing Structure. Thus far, each

of the leaf nodes got hold of the positions of all nodes that are sensing values within its data
range(s) of responsibility. In order to create the representation construct L\,:1 . of nodes positions
for each leaf node thi,iv a bit-map is created. A bit-map is a is a 2D array of a size that maps
to the physical region it represents, where each entry represents an area that can be occupied by
no more than a single sensor node. Similar to a chess board, a square can be filled no more than
one piece at a time. The resolution of the map (i.e. size of each cell) is application dependent.
For example, in applications that seek the coverage of a large field, a cell size could be the sensor
node communication range.
The map entries/cells are initialized to zero. A leaf node, then, sets the cells occupied by sensor
nodes that reported values within its data range. The resulting map can be viewed as a highly
sparse 2D array of zeroes and ones, which is then compressed using Run-length coding technique.
Figure 5 depicts an example of bit-map construction for the sensed values within one region.

3.1.6 Data-space Representation at the Non-Leaf Nodes of the Indexing Structure. In the
indexing spanning tree, every two subsequent levels i and j contain, respectively, G¢, and Gc;
sets of f sibling nodes, where each set represents a group of neighboring clusters within one region
G=1i+1,Ci=1,2,..,f 2 and C; = 1,2,.,f4772). On both levels i and j, the data-space
of a region is distributed among a group of f sibling nodes.

For each data range Rg,, the corresponding responsible nodes (f in total) at level 1 compress

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

106 . MOHAMED M.ALI MOHAMED et al.

Map creation * ‘ 1:4 Scale *
446579 L | | 1 BEE 1 1] 1
| 7143 41426580 1] [1]1 2 11
39 | .2'3. | 85. 1 | 11 21 1 1 :
37 121 pg3g |71 1 11 _ =)
36 | EEERIE 2
76 4340 | EEENONEEEE 3|4 o
58 61 | 91 |37 1

Figure. 6: Illustration example for map creation for data range [26-50], and zooming out twice with 1:4 factors.

e il 3 2

-Nan
aano

YTy
o an

H___.
” e
N an
ano e

anoN
s aa0

N
oN=®
N
N

s wa

aoaa

1 1 1 1 1 1
1 1 1 1 11 1
1 1 1 1 1 1 1 1

Figure. 7: Data-space (d = 2, f = 2) is split into two ranges. Leaf nodes create maps for their data ranges, and
transmit them to the upper level nodes responsible for the same data range. Upper level nodes zoom-out the maps
and recursively apply the same process till sink node.

their maps using run-length encoding and send them to the node in level j responsible for the
same data range in the containing region. Upon receiving the f maps for the data range, the
recipient node concatenates them according to their geographic locations, which generates one
larger map for the data range of responsibility in the whole region.

In order to provide approximate representation and keep message size fixed across the indexing
structure, the concatenation of the set of f maps has to be embodied in a coarser map whose size
does not exceed the size of the largest of the f maps. The concatenated map needs to be zoomed
out with a scale that reduces its size with a 1/f factor on average.

For example, if we have a geometric area represented in a map of 64 single bit cells, it can
determine the presence of up to 64 sensors. At the next level of abstraction, if the scaling factor
is 4, this region will be represented with 16 cells, each using 2 bits to specify the number of
Sensors.

In this fashion, nodes keep approximating maps of different data ranges as they elevate through
the indexing structure, providing the ability to supply proper approximations for the data-space.
Figure 6 depicts a detailed map construction example and a set of its coarser versions.

This data-space abstraction method provides an energy efficient, load balanced, multi-resolution
localization tool across the data indexing hierarchy. When an approximate data-space query is
received at one of the indexing structure nodes, it can provide an answer identifying the locations
of the nodes within its data range of responsibility with a specific level of confidence. A full
example for a hierarchical representation of the data-space is shown in figure 7.

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 107

a 1 1)1
1 1 1
446579 1 1 |11 | 1
71/43] 141/42]65/80 11
39 23 85 4416579 71|43141 1[1]1]1
37 121 Ppslzd |71 42/165/80[39[2385 11 1 1l 1 h
38 | |.[372128B071 36 < 6 i)
76 |43140 7643110 [58]6191
58 161 91 37 37142|42] 4182558 1 |1 1
421 42 [41] 82 15| 4[27/20144 B8 1 1 1
58 15 | 4 !
27 2014438 11 1 1
1 1
g

(iii) (iv)
Figure. 8: Illustration example for condensed field representation and its corresponding maps for four data ranges
[1-25], [26-50], [51-75], [76-100] respectively.

3.1.7 Space Optimized Data-space Abstraction. In the some sensed fields, there are areas
within the field that are not covered with sensors because of physical conditions/limitations,
or even as part of the coverage plan. In such cases, the representation of these locations within
the bitmap becomes an overhead. The elimination of such overhead can significantly reduce the
communication cost of maintaining the data-space abstraction, and hence prolong the network
lifetime. Moreover, if the sensor nodes are static within the field, this means that all the lo-
cations that do not have sensor nodes can be considered as an overhead. In other words, the
sparse bitmaps can be condensed by constructing a map that only represents the locations of
existing sensor nodes. Accordingly, this condensed version can be communicated between the
data-space indexing nodes, from which the exact map can be reconstructed at the receiving node
side. In order for this to be achieved, the receiving nodes need to know the initial distribution
of the sensor nodes, regardless of their sensed values. Once this is known, a full map can be
simply reconstructed from any condensed version by simply reversing the condensing method.
For example, figure 8 depicts the construction of a condensed version of a region by horizontally
scanning the sensor nodes locations and condensing them into a smaller —logical- region, and
the corresponding binary representations for its different data ranges. We note that once the
condensing step is performed, the data does not need to be represented in a two dimensional
form. It can be represented as a single stream of bits marking the locations of corresponding
sensor nodes for each map.

4. QUERY TRAVERSAL

We note that the higher a given node is in a particular hierarchy, the wider the area for which it is
responsible, and the coarser the representation it keeps. When traversing towards the lower levels
(at extreme, the terminal/leaf nodes), finer detailed representations are found, albeit for smaller
collection for clusters. That is, for a particular node in the hierarchy, detailed constructs of its
physical-space representation are found in its child nodes, while detailed/zoomed-in data-space
versions are attained at the node’s child and nephew(s) which cover the same data range that
this node covers. Each leaf node of the tree represents a cluster which contains the exact data of
the group of sensors nodes logically connected to the spanning tree through this leaf node.

Queries originate at a sink, which we assume is connected to a base station. Upon receiving a
query, the root node first checks the query type to decide which representation is inquired. It
then analyzes the bounding constraints if any exists for range queries, where through the bound-
ing region and bounding data range constraints the node can determine which nodes need to

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

108 . MOHAMED M.ALI MOHAMED et al.

participate in the processing. The solution path is determined step by step, where each node
that receives the query checks the intersection of the query’s geometric and data range bounds
with the geometric area and data range(s) that it covers. The decision of being able to answer
the query at each node is taken according to the accuracy requirement of the query. The behavior
of each node is formally specified in Algorithm 1.

Algorithm 1 Query Traversal
Part 1: Query-Forward
Input: Query Q(V, T, C, A)
Output: Immediate Query Response OR A saved memory record to wait for the reception of
query response from other nodes
1: Receive query(Q(T,C,A));
2: for all constraints C; in C do
3: if the constraint cannot be satisfied at this level or by any subtree then

4: Send back response ‘No data available for this query’;

5. else

6: if accuracy A can be satisfied at this level then

7 Prepare response and send back;

8: else

9: Forward the query to the appropriate node(s) (for physical-space and data-space cov-
erage) in the next level (of depth =d + 1);

10: Keep a record of the query and the number of nodes it was forwarded to, until the
response(s) come back from the lower level node(s);

11: end if

12: end if

13: end for

Part 2: Backtrack-response
Input: R(T,Attr[],A, Datal])
Output: Collect all the query responses expected to be received, augment, and forward the
result to the node that has sent this query.
1: Receive all n expected query responses (R(T,C,A)); //Known from the record saved in Query
Forward

2: for all attribute i in the Attr[] do

3: for all response R; in the received responses do
4 if T = p then

5: //Physical-space query

6: Response; += Merge Data[R;];

7 else

8: //Data-space query

9: Response; = Intersection (Data[R;]);
10: end if

11: end for

12: end for

13: Send back the responses to the node that forwarded this query;

Once the query reaches the node(s) capable of answering it with satisfactory accuracy, the re-
sponse is backtracked through the same path it took from the root node. Each intermediate
node waits to receive the response from all the nodes it forwarded the query to. Once received,
it combines data-space query responses. The query results are obtained by concatenation of the
response maps, while physical-space range queries merge the arrays of sensed values. In the case

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 109

’
' & .0 " ' A . DL]
L L I . . ' " Lo] R
.] . . "

' N] » . » .

’ " L ' ! ", . J LI ,'*‘l]
. L ™
PRLE] [} (]] L] L] L N i L]] L] o
» . . . 'l 'I

Figure. 9: Left Side - a set of sensor nodes randomly deployed. Right Side — nodes distribution after occurrence
of an event of interest in the southeast corner.

of extreme values (min or max) the merging trivially preserves the smallest or largest values. See
Algorithm 1 - Part 2 for additional details.

5. MOBILITY MANAGEMENT
5.1 Introduction

Mobile sensor nodes [Ekici et al. 2006; Pileggi et al. 2011] greatly increase the adaptability of the
WSNs from different perspectives: (1) ensuring a level of Quality of Service (QoS) in response
to phenomena fluctuation, in the sense of providing better spatial resolution of sampling in
desired/targeted areas; (2) enabling a control over (balancing) the levels of connectivity and
coverage. We note that the motion of the nodes may vary in different applications but, from a
general perspective, it can be predictable [Shah et al. 2003], random [Chakrabarti et al. 2003],
or controlled [Somasundara et al. 2004]. For example, in the data coverage problem in WSN
[Mulligan et al. 2010], controlled mobility of the sensor nodes is utilized in different applications
to achieve more efficacious coverage.

An illustrating example of the motivation for mobility handling is shown in figure 9. The left
side of figure 9, a sensed field with randomly deployed sensor nodes is shown. The right side of
the same figure shows the nodes location distribution after the occurrence of an event of interest
in the southeast corner of the field. In this case, the application or mobility control algorithm
(as [Caicedo-Nuez et al. 2008)]) steered more sensor nodes towards that corner, in order to collect
more precise information, while still maintaining coverage and network connectivity across the
region. Due to this mobility of the nodes required by the application, the underlying distributed
indexing structure may become highly skewed, unless it is adjusted to reflect the new distribution
of the nodes in a balanced way.

The main question addressed in this work is how to efficiently adapt the indexing structures that
manage in-network query processing and aggregation in such mobility scenarios, in response to the
change of nodes distribution, such that the overall maintenance cost is minimized. We emphasize
that the actual mobility information as to which nodes should move in what direction is given by
the application. Also, it is the application responsibility to guarantee minimum number of nodes
needed to provide connectivity and coverage. In order to show our work, we use [Caicedo-Nuez
et al. 2008] as the dictating application for mobility.

5.2 Initial Configuration

Assume that logically there are two types of nodes, senor nodes that sense the field and indexing
structure nodes that contain the keys to help maintain the indexing structure. Physically, a
node can be a sensor node as well as a node in the indexing structure. Further assume that the
number of nodes in the indexing structure is n, and the fan-out of each inner node is k, such that
the height of the indexing structure is O(logxn). The initial setup of the protocol assigns an
integer rank for each border/hyperplane corresponding to a node in the indexing BSP tree, equal

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

110 . MOHAMED M.ALI MOHAMED et al.

o8 B LA e L g e
ﬁ FI) .O i .
¢ =
. ﬁ@l I
o - ® » , ' @ o
* %_l. Ei . 0
- . T AT
I ® ,»
— — — — Y]
. ® ' e ’ .. 2
@ o ! = ! * ®
L] .:..y E. ﬁ
A "
.ﬁ ".“‘ e ° .
. [} y ® a
[] ' L]
..Ol..i . [} Eo b : [}
LA H

Figure. 10: A field with randomly deployed sensor nodes, where the corresponding borders rank are assigned.

to the depth of the node in the tree (i.e., its level-distance from the root). Figure 10 illustrates
the borders rank for a sensed field (color-coded with the same colors according to the splitting
order). Each leaf node is responsible for (the sensed values of) a group of m sensor nodes within
its vicinity. Sensor nodes periodically (with fixed cycle length) report their sensed values and
locations to their respective cluster head.

We reiterate that the motion/displacement of the nodes occurs due to a specific objective (e.g.,
better coverage due to an observed event in a given geographic region) and, as a result, some
leaf node(s) in the indexing structure may find more sensor nodes entering to its vicinity and
requesting to join. For example, an event of interest may require more sensor nodes to be
moved towards, in order to monitor and report more precise data, as depicted in figure 11, which
shows a field containing n = 103 randomly deployed (small size/red color) sensor nodes. The
indexing structure is based on orthogonal bisection [Samet 1990], performed recursively, such
that 16 (thin solid line/green color) local cluster heads are at the first level. Second level of
the indexing structure consists of four (thicker dashed line/blue color) intermediate level cluster
heads. Last is the (thickest dotted line/yellow color) sink node. Border line shapes follow same
nodes drawing/color. In this (initial) configuration, an event of interest is observed in the South-
East corner. Also, note that sibling or child/parent node may not be within single hop of each
other. In such case, multihop routing of message will be assumed.

5.3 Processing a Request to Incorporate new Mobile Node

Each leaf node has a specified capacity m’ > m. A leaf node will accept the joining of new sensor
nodes coming into its vicinity until reaching the threshold m’. Congestion happens when a new
join request is received at leaf node that has reached its maximum capacity m’. The leaf node
then initiates a request to reduce the size of its space of responsibility by changing the position
of one of its surrounding borders/hyperplanes.

The process of border change starts with a communication aiming at changing the spatial splitting
locally. The leaf node in the indexing structure experiencing congestion starts by locating the
border of its surrounding sides corresponding to the lowest rank convex region. It sends to its
sibling node(s) on the other side of the lowest rank border, a change border_request. When
sibling leaf node receives the change_border_request message, it starts assessing if it can change
the specified border in order to accommodate some of the sensor nodes currently managed by
the requesting sibling. The calculation in this case is based on the capacity of the leaf node that
received the request. A response is sent back to the requesting node after the calculation. If all
the involved leaf nodes have large populations, then they cannot accommodate more incoming

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 111

T | T
g s " O g " E. o’ * E * 5 5 : E e * : :
al 1o O . E . ® ? - O_
) . N L * = g | . 7 °
® ° 0 ; 1 e -, % ; * e
® . :% . [] " u . ® . i : L @, ¢
TR . e i e
® . E . ' u . E 1
§ e . e Q ‘e @)
B e e . ’
. . @ o E . . . ® . ® E : 4 X :l % 02{ [
e L]
'. - c. '.f/.’} i' x E . I]
. g. ... 4 O - o° H @ 9
® : U . 0 Ne : . ‘*’
L T . — ° ' ° . .
e ¢ @0 : . ° = . ! . .
* -]

Figure. 11: An event of interest in the South-East corner of the sensed field.

sensor nodes, causing them to reject the request. In such case, since the change cannot be
handled locally, a new request for changing borders is propagated in the hierarchy to the node
corresponding to the next higher rank — i.e., the requesting leaf node sends the request message
to its parent node. Upon receiving the request, the parent node checks if the total number of
sensor nodes covered by its children is at the capacity limits. If not, it initiates a request to its
sibling on the other side of the smallest rank border of its region. The same assessment algorithm
runs at the sibling node, which consequently sends the response back. In case of rejection, the
same process is recursively applied — in the worst case, reaching the root of the hierarchy (the
sink). The algorithm executed locally by the participating node is formalized in Algorithm 2.
Algorithm 3 formalizes the local behavior of the nodes participating in the border-adjustment.
Complexity: In the worst-case scenario, the request needs to be propagated all the way to the
sink node. For a BSP indexing tree consisting of n nodes, with a fan-out factor k, at each level,
at most k — 1 request message(s) will be transmitted to change the lowest rank border, and k—1
rejection message(s) will be received. In the 2D planar case, k = 2 for K-D trees and k = 4 if
quadtrees are used. Since, by construction, the height of the BSP with n nodes and fan-out factor
k is loggn, the number of messages required 2 x (k — 1) x (logxn — 1), bounding the message
complexity of the forwarding stage to O(logxn). We note that the overall network-wide running
time complexity is the same, since each participating node is executing constant operations to
check its current capacity.

5.4 Response Propagation

When a border change decision is taken in non-leaf nodes, all their affected child-nodes are noti-
fied, recursively propagating the changes until the affected leaf nodes. Leaf nodes, in turn, inform
the affected sensor nodes to change their reporting destination. While this border change infor-
mation message is flowing through the structure, each recipient node recalculates its population
according to the new change to ensure that it is within its capacity. If not, the node finding
congestion in its region initiates a new change_border_request message and sends it to its sibling
node. The important observation is that this particular message is guaranteed to affect borders
that are in the sub-tree of the originally changed border, which caused this new congestion, be-
cause the capacity has already been checked/verified at the parent or ancestor node.

The determining of the new border location is based on the population size of the requesting
(congested) and responding nodes. For that, we rely on the structural properties of the tree’s
boundary between the nodes at the same level. Namely, we move the border of the node that
has a capacity to incorporate new sensors in a direction perpendicular to the current border’s

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

112 . MOHAMED M.ALI MOHAMED et al.

Algorithm 2 Forward Mobility Request

Input: Rank of the border required to change, The count of sensor nodes associated to the
requesting indexing node (or its subtree for non-leaf nodes)

Output: A border_change response OR, in case the whole region is congested, it issues a new
border_change request (if request is received from a child node).

Receive border_change_request (Receiver, Sender. Rank, Sender.nodesCount)

—_

if Sender.depth == Receiver.depth then

2: extraNodesCount = Sender.nodesCount - Receiver.optimalNodesCountForCluster;

3: if Receiver.nodesCount + extraNodesCount <Receiver.maximumNodesCountForCluster
then

4: newBorderLocation = calculateNewBorderLocation(Sender.Rank,

extraNodesCount);

5: send border_change response(Sender, accepted, Rank, newBorderLocation);

6: apply border_change_inform(this, Rank, newBorderLocation);

7. else

8: send border_change response(Sender, rejected, Rank, Receiver.nodeCount);

9: end if

10: else

11: Receiver.UpdateNodesCount(Sender, Sender.nodesCount);
12: if Receiver.nodeCount <Receiver.maximumNodesCountForCluster then

13: newBorderLocation = calculateNewBorderLocation(Sender.Rank);
14: send border_change response(Sender, accepted, Rank, newBorderLocation);
15: for all childNodes other than Sender do

16: send border_change_inform(childNode, Rank, newBorderLocation);
17: end for

18: else

19: Rank = Sender.Rank + T1;

20: send border_change_request (Sibling, Rank, Receiver.nodesCount);
21: requestingBorderChange = TRUE;

22: end if

23: end if

Algorithm 3 Receive Mobility Response

Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)

Output: Applies the border change for the node, in case of acceptance, Or initiate new request
in case of rejection.

Receive border_change_response (Receiver, response, Rank, newBorderLoca-
tion)

1: if response == accepted then

2: apply border_change_inform(this, Rank, newBorderLocation);

3: requestingBorderChange = FALSE:

4: else

5: Rank = Sender.Rank + 1;

6: mnodeCount = Sender.nodeCount + Receiver.nodesCount;

7. send border_change request (Parent, Rank, nodesCount);

8 end if

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 113

° ° ° H H : .
. . ! ° = e o, o ®
® * e «© B, el .
R R
e » L %: 1 =oolo % o
. . ® ° o A
. 2 z : . . @t .
i : : . !
] n [1
i ! 4 E %. * Eoﬁ.oio o
H o : *
i s o m g |
. : » Ois; o =o-'io . o
ML ‘B 3 e
. .. 2 ° 5. . ” : C o :
o ¢ Qo * " : = . . ‘e E’o :
[] u]

Figure. 12: Borders reconfiguration after sensor nodes are moved towards an event of interest in the southeast
corner of the field.

position towards the requesting node position, resulting in shrinking the requesting node’s area,
and accordingly getting more sensor nodes out of its region towards the accepting node’s region.
The new border location in the low level requests (i.e, requests between leaf nodes) is determined
by the requesting node, which knows exactly the location of all its sensor nodes. In higher level
requests, the border location change is proportional to the desired new population size of the
congested region. After the change takes place, the node that asked for the border change recal-
culates its new population to ensure it is within its capacity limits. If not, the node reissues a
new border_change_request, accordingly. Figure 12 shows the reconfiguration of the borders after
sensor nodes have moved towards an event of interest in the southeast corner of the field.

The last step of the protocol involves notifying the mobile motes about the new borders of the
tree, so that they know which node-ID to use when reporting the sensed values. This is formalized
in Algorithm 4.

Algorithm 4 Apply and Propagate Mobility Response

Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)
Output: Applies the border change for the node, in case of acceptance, Or initiate new request
in case of rejection.
Receive border_change_inform (Receiver, Rank, newBorderLocation)

1: Receiver.border[Rank] = newBorderLocation;

2: if Receiver.depth == MaximumDepth then

3: for all sensorNodes do

4 if sensorNode.Location is out of leaf node new region then

5 send detach_sensor(sensorNode);

6: end if

7 end for

8: else

9 for all childNodes other than Sender do

10: send border_change_inform(childNode, Rank, newBorderLocation);
11: end for

12: end if

Complexity: Algorithm 4 executes when Algorithms 2 and 3 have terminated, and is applied to

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

114 . MOHAMED M.ALI MOHAMED et al.

all the children of the subtree rooted at the node at which Algorithm 3 has terminated. In the
worst-case scenario, the execution of Algorthms 2 and 3, will cause the request to be forwarded
all the way to the sink node. This, in turn, means that each of the n nodes in the tree will have
to be notified about borders change (and, eventually, decide upon the new border’s location).
Assuming an average of h hops communication between the nodes participating in the tree, the
total message-complexity of Algorithm 4 is O(hn). On the other hand, the computation com-
plexity is bounded by O(log m) — the capacity of each node. Namely, in the worst case, the
neighboring nodes (siblings) will have a difference of m — 1 motes (assuming at least one mote
for a minimal occupancy). Sorting the nodes according to the common-boundary coordinate will
take O(log m), plus the constant time for placing the new boundary.

We note that the mobility scenario that would make the protocol for adjusting the tree incur
its maximum cost, is having sensor nodes oscillating around the highest rank border. This case
makes the majority of nodes move towards one side of the border within one update cycle, which
causes the indexing nodes to discover congestion and issue border_change_request(s). In the next
update cycle, the sensor nodes return back to the other side of the border. In such a scenario,
starting from a balanced state, the algorithm behavior would start by a first request at the node(s)
adjacent to the highest rank border to change their lowest rank border, which gets accepted at
the same level. After the accepting node(s) reach their capacity, while sensor nodes are still
crossing the highest rank border towards the adjacent cluster(s), the next request will need to
be elevated on level in the indexing tree. On the higher level, the same operation will take place
until the managed region is congested.

5.5 Data Indexing Under Mobility

The aim of a in-network data indexing system is to arrange and store the sensed data in a
distributed fashion. Indexing tree manages the sensor nodes where each group of sensors report
their sensed values and positions to a node of the indexing tree. The recipient indexing nodes store
the received information, process them, and elevate approximate constructs across the indexing
hierarchy. Mobility causes some of the sensor nodes to move apart from their reporting node(s)
of the indexing structure, and hence, get into other node(s) vicinity. This causes unbalance in
number of senor nodes reporting to the nodes of the indexing structure. Such unbalance results
in the reported data across the indexing structure.

In physical-space abstraction, two approaches can be followed. The first approach is to increase
the size of the update message according to the count of the sensor nodes population attached to
each node of the indexing structure, in order to keep same sampling distance between the update
message values. This would not increase the overall size of physical-space update messages
traversed, because the total number of sensor nodes in the field is the same. However, it will
create a skew in the size flowing in each branch of the indexing tree, where the larger population
branches will have larger size update messages than the other branches. The second approach
is keeping the update messages size unchanged, at the expense of increase in the accuracy loss
across the indexing hierarchy. In other words, upon receiving a physical-space query, there might
be a bigger chance of not being able to satisfy its accuracy requirements from the higher level
nodes of the indexing tree, and having to forward the query to next level(s) for achieving the
required accuracy. The advantage for physical-space abstraction because of the mobility handling
algorithm is that the change in number of nodes is bounded by the capacity of each leaf node in
the indexing tree, m’.

In data-space abstraction, the change occurring is not because of the motion of sensor nodes, but
rather because of the modification of borders location to balance the indexing tree. Due to this
change, the bitmap constructs used to represent each data-space are increased/decreased in size,
in order to represent the new cluster space. Contrary to the physical-space abstraction, which
has its skew factor bounded by the capacity of the indexing structure leaf nodes m’, the area of
a single cluster can increase to approach the size of the whole field. This can only be bounded
with the logic of the mobility algorithm, physical constraints of the sensors (i.e., robots moving

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 115

them), and the field physical barriers. In such extreme case, the large regions can be represented
with lower granularity, so the cell size would be coarser than the same level other nodes. This
would require high accuracy queries for this region to be forwarded all the way to the leaf nodes.
The other solution is to forward the update of such lower level large size cluster(s) as an array
of positions rather than a bitmap, and insert them into the bitmap in the higher level node(s) of
the indexing tree.

6. EXPERIMENTAL RESULTS

The proposed abstraction system was simulated using the SIDnet-SWANS WSN simulator [Ghica
et al. 2008] based on Jist-SWANS discrete event simulation engine [Jist 2004], as a 500 nodes
network randomly deployed in a square field of 300 meters length The simulated nodes apply
MACS802.15.4 protocol for MAC layer, and Shortest Geographical Path Routing for routing layer.
The power consumption characteristics are based on Mica2 Motes specifications, MPR500CA.
Each sensor node has a GPS to obtain the location information. The Different types of data
distributions were considered to simulate sensing fields of different phenomena.

6.1 Indexing Structure Implementation

The presented abstractions methods are generic enough to suit a wide range of data structures.
In order to show its applicability and experimental results, we have implemented the proposed
abstraction system as an overlay on a well known hierarchical indexing structure K-D tree [Samet
et al. 1990]. A detailed discussion of the performance of different data structures with these
abstraction methods can be considered for future work.

Given a set of N sensor nodes, randomly distributed in a 2D plane, at each level of the tree,
splits are performed one axis at a time, such that every partition has equal number of nodes.
The partitioning process is recursively applied, alternating dimensions, till a predefined constant
number of sensor nodes is left in every subspace, and that we will call a cluster. The number
of recursive partitions to reach this cluster forming is denoted as d. Accordingly, f x d clusters
will be created, each of which, having a number of sensor nodes no more than a fixed number,
denoted by D.

Within each cluster, one sensor node is elected as a cluster head, named as a local cluster head.
Similarly, elevating in the partitioning hierarchy, among each set of f neighboring clusters, one
sensor node is elected to be the head of this set of clusters, denoted as level i cluster head,
according to the level of partitioning. This process is applied, till reaching the single sink node
which heads the hierarchy of cluster heads.

A spanning tree for the indexing structure is formed as a virtual tree rooted at the sink node.
The children of the sink node in the tree are the next level cluster heads. This continues till
reaching the local cluster heads which are logically connected to the sensor nodes population.
This branching reflects the spatial distribution of cluster heads and the physical sensor nodes.
Figure 13 depicts the communication in data-space abstraction for the first data range of the
data-space.

6.2 Simulation Results

This section starts with a comparative evaluation for the abstraction methods against the current
state of the art, followed by presenting the energy cost and query latency for the indexing system
in a static WSN. We compare the physical-space abstraction method to the Gaussian models
approximation method presented by Meliou et al. [Meliou et al. 2009]. For the data-space
abstraction however, to our best of knowledge, there are no available representation models to
compare experimental results to in the WSN literature. We execute three types of queries on the
simulated network:

(1) Physical-space queries — asking about the sensed data of a specific geographic area (i.e: Q (v,

G, A)).

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

116 . MOHAMED M.ALI MOHAMED et al.

: s .] L * o et
) ¢ ® @ '
. o
. v 0-25% : L
o . e . O LI} °
¢ ® ., , ‘0. ¢
J o 2 [[)
[P .
p ‘e Q@ .
025%| ¢, .
L ° 8: i O e e
0-25% |, ® & @
» .
. . o —:O . ° O. =
: [.. = s ! = ’ [} . e 7 [
[[} O. 5 . [] [] i [] . . [] L]
.

Figure. 13: Data-space communication example. For the local cluster heads (in green) responsible for the lowest
data range (i.e: 0-25%), maps are transmitted to the upper level cluster head (in blue) responsible for the same
data range.

(2) Data-space queries — asking about the position of nodes sensing some specific data range (i.e:
Q(, R, A)).

(3) Hybrid queries — merging the first two types together by creating a physical space query over
a bounded data range (i.e: Q(v, G, R, A) or Q(l, G, R, A)).

The approximation error calculated for the proposed method, and the Gaussian approximation
method by [Meliou et al. 2009] is based on normalized root mean square error (NRMSE), In the
case of [Meliou et al. 2009] we report the average error and for the case of regular sampling in
our method we report the interpolation error of the estimated values.

In figure 14, the results for the normal distribution show that the Gaussian method starts with
less accuracy than the presented sampling method, but ends up achieving a better precision on
the highest level. This is intuitively reasonable, as the global data distribution of the underlying
field tends to follow a normal distribution, fitting well with the abstraction method of [Meliou
et al. 2009]. Nonetheless, because the data in different regions of the fields may follow different
distribution functions (cf. [Hosking et al. 1984; Keshner et al. 1982; Willinger et al. 1997]),
the method used in [Meliou et al. 2009] fails to capture the data with the same efficiency as our
presented method.

The results of the other distributions in figure 14 show that the sampling method achieves better
accuracy, ranging from 10% to 90%. It is also important to mention that the average error
comparison does not capture an important feature many sensor networks applications require,
i.e. querying maximum and minimum values.

Figure 15 depicts the effect of changing the sample size on the abstraction error. The results show
clearly that the increase of the sample size reduces the average abstraction error. This reduction
varies with the different data distributions. For example, in the normal distribution, the results
show that the increase of sample size with more than three sample elements would not result in
any further reduction of the abstraction error. On the other side, the increase of sample size for
random and exponential distributions reduces the abstraction error.

6.2.1 Proposed Method Results. The presented system has shown good performance in terms
of communication cost and latency for a wide variety of queries. Physical-space, data-space,
and hybrid queries were applied to the system with different levels of accuracy, and bounding
constraints on geometric field, and data ranges.

The single-attribute-query results, depicted in figure 16 and figure 17, show the change in the
latency of query response with the change of desired accuracy, and geometric bounds (represented

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 117

120.00 nAccuracv Performance Comparison
100.00%
80.00% -
60.00% od]
o —%— Normal Distribution [Proposed]
40.00% - Jr=Random Bistribution fGassiamMethod]
.
"-,- ¥ = Random Distribution [Proposed]
Ll l-‘ﬁﬁ Exponential Distribution[Gaussian Method
."* Exponential Distribution [Proposed)]
0.00% . 1 . e
1 5 Abstraction
Level

Figure. 14: Approximation error comparison (Gaussian vs. sampling) for normal, uniform, and exponential
distributions.

as percentile of the field size). In figure 18, the communication cost is shown for the cases in
figure 16 and figure 17.

The results of queries involving single attribute constraint show linear reduction in the number
of messages required for response, according to the specified coverage and accuracy. Such linear
reduction reflects the reduction in communication cost for querying. Query latency also varies
from immediate (zero sec. latency) approximate response at sink node up to about one second
to provide an exact answer (i.e. accuracy = 100%) for a query inquiring data about the whole
field. This maximum latency (one sec) is the baseline to which the analysis of the abstraction
method’s latency results has been compared.

The query latency results for the three types of queries in figure 16 and figure 17 show that
the data-space queries have higher latency than the physical space queries when there is no full
query coverage. This is due to the nature of locality of the indexing structure nodes for the
physical-space abstraction compared to the data-space abstraction. For a physical-space query
if a node doesn’t satisfy the desired accuracy, it forwards the query to its child node(s), while
for a data-space query the node may send the query —according to the data range— to either its
child node or to its nephew(s) which is intuitively farther than all its child nodes because of the
spatial partitioning.

In figure 19, simulation results are shown for queries containing query coverage constraints on
multiple attributes which represent four simulated phenomena. The first parts ((a), (b), and (c))
show the case of identical constraints for all queries, which means that it is similar to a replica
of multiple single attribute queries. In this case we see a latency increase of 200ms for all the
query types that is consistent over different levels of regional coverage (50%, 75%, and 100%).
This shows that using a unified organized information system achieves communication efficiency
without increasing latency overhead.

The second part of figure 19 ((d) and (e)) depicts the results for the type of queries that involves
different coverage constraints on the queried attributes. The query latency in such queries is
governed by the highest query coverage required, as this would more likely be the one involving
the furthest queried node in the data structure. However, because of the distributed nature of
the query forwarding and augmentation, the results show that this latency increases linearly as
a function of the size of the queried region.

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

118 . MOHAMED M.ALI MOHAMED et al.

Normal Distribution

il —— Gaussian Method
0.35 ' —+=Regular Sample Size =2
0.30 Regular Sample Size = 3
5 05 —*—Reguar Sample Size = 4
w
E 0.20
m 015
E
S 010

0.05

0.00
1 2 3
Abstraction Level
(a) Normal Distribution
120 Random Distribution
3 —i— Gaussian Method
100 —O—RegularSampleSiLze— 2 =
5 0.80 - —#—Regular s
w
B 0.60
£ 0.40
=
0.20
0.00 g
1 2 3
Pbstraction Level
(b) Random Distribution
- Exponential Distribution
3 —— Gaussian Method
100 —*—Regular Sample Sze- 2 0
E 0.80 —a—Regular S
w
L=
& 0.60
£ 0.40
(=]
=
0.20 —
0.00 ¢
1 3

2
Abstraction Level
(¢) Exponential Distribution

Figure. 15: Approximation error comparison (Gaussian vs. sampling) for different distributions with varying the
sample size.

6.3 Mobility Results

The proposed mobility management protocol was implemented on SIDnet-SWANS simulator for
WSN [Ghica et al. 2008]. The nodes’ mobility was assumed under two different mobility mod-
els: random and controlled. The controlled mobility refers to a scenario where sensor nodes
are moved based on an underlying application requirement. For our simulations we used the
algorithm presented in [Caicedo-Nuez et al. 2008] to compute the coordinates of mobile nodes
at each step. In the case of random mobility the new location of each node is computed using a
random direction. In addition, we also tested the mobility management protocol under different
speeds, ranging from 0.5 m/s to 2 m/s, which is practically used in several WSN systems [Pon
et al. 2005; Dantu et al. 2005]. In our future work we plan to simulate higher speed nodes as

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 119

Solgténcv(MSJ Geometric Coverage = 50% of field size Latency(ms) Geometric Coverage = 75% of field size
450 -+ Sl ey] ‘ —&—Data Space Latency (ms) /
400 - Physical Space Latency (ms) /A' 600

i ‘ =—Physical Space Latency (ms)
== Hybrid Query Latency (ms) 500 -

350
300 / 400
250

200 + 0 /
150 / 200

100
/ 100
p ./
0 e 0 :

!
Accuracy

‘ == Hybrid Query Latency (ms)

Accuracy

80% 90% 100% 80% 90%
(a) (b)
Latency(ms) Geometric Coverage = Whole of field size (100%)
1200
—4—Data Space Latency (ms)
1000
= Physical Space Latency (ms)
00 —&— Hybrid Query Latency (ms) /
600 //"A
400
200
0 T 1
Accuracy
80% 90% 100%
(c)

Figure. 16: Latency Vs. Accuracy corresponding to the geometric coverage of query as percentile of the area of
the sensed field.

Latency(ms) Accuracy = [80%-90%] mlbﬂencv {ms) Accuracy > 90%
300 == Data Space Latency (ms|

=+=DataSpace Latency ms})
" =8 PhysicalSpace Latency [ms) % 1000 ~f=Physical Space Latency (ms) /

w4 Hybrid Query Latency (ms) == Hybrid Query Latency {ms)

600 4

150
100 400
200
0 1 0 T
Geometric Geometrl
9 Y Y ‘ 25% 50% 75% 1004 eometric
25% 50% 5% 100% Coverage [%)) Coverage (%)
(a) (b)

Figure. 17: Latency Vs. Query Coverage plot for accuracy = [80%-90%] & [90%-100%].

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

120 . MOHAMED M.ALI MOHAMED et al.

Ilessage Count Message Count
&0 60

B Geometric Coverage (50%) i Accuracy = [80%-90%

50 50 =
W Geometric Coverage (75%) W Accuracy > 90%)

il Geometric Coverage (100%)

30
20

10 —

, . S
Accuracy Geometric

0% 100% 25% 50% 75% 100% Coverage (%)

(a) (b)

Figure. 18: Number of messages communicated for different accuracies and geometric coverages.

well. For our experiments, we have constructed a K-D tree based hierarchical indexing structure
over the sensed field. The index nodes are considered to be static, but would rather be moved
according to the borders change, to maintain connectivity with the other nodes in their region.
The cycle time in our simulations is 5 seconds, i.e., every 5 seconds, nodes inform their value as
well positions to their immediate cluster heads (indexing tree leaf nodes).

We measure the performance of the protocol in terms of following parameters: mobility request
latency, mobility resolution factor, and query latency. Mobility request latency refers to the time
it takes for the protocol to adjust the structure to reflect the nodes new positions. Mobility res-
olution factor (MRF) reflects the percentage of requests that required changes beyond the first
level of the indexing hierarchy.

Figure 20 plots the average mobility request latency under different mobility speeds. The per-
formance of both mobility cases is quite stable, where the latency is almost consistent with the
change of sensor nodes velocity. The mobility request latency for the controlled mobility sce-
nario (i.e. nodes move towards an events of interest while maintaining coverage [Caicedo-Nuez
et al. 2008]) is around 15% higher than the random mobility request latency. This is because
the number of mobility request received by the cluster heads in the case of controlled mobility
is higher, compared to the random mobility. Note that in the case of random mobility, overall
more sensor nodes maybe moving. However, a significant number of consecutive mobility steps
may cancel each other, thus keeping the sensor nodes within the same local region. On the other
side, in the controlled mobility scenario each sensor node is moving on a specific path towards
the target point. Accordingly, with each time step, a node progresses towards moving into or
outside of a specific local region, thus requiring mobility adjustment in the indexing structure.
The effect of mobility occurring simultaneously in multiple parts in the sensed field on the av-
erage mobility request latency is depicted in Figures 20 and 21. Figure 20 shows the result of
mobility occurring in a set of non-neighboring, i.e, disconnected, clusters. In such scenario, only
the nodes within these selected clusters are allowed to move according to the designated mobility
model. Accordingly, some of these nodes will eventually exit their cluster, and join neighboring
cluster(s). Once any of the neighboring clusters suffer from congestion it will request changing
the border. The average mobility request latency intuitively increases with the increase in the
number of clusters that have mobile sensor nodes. Fig. 20. Average Mobility Request Latency
for Simultaneous Disconnected Clusters. In Figure 21, the mobility allowance is not given to
specific clusters, but rather to a set of square size regions inside the field. A region can overlap
with more than once cluster. Hence, congestion can occur in any cluster in the field. The average
mobility request latency in the regions mobility setup is slightly lower than the cluster mobility
setup, because nodes exiting a region do not necessarily exit a cluster, which does not make a
difference from a nodes management perspective for the indexing structure. In both setups the

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 121

mluat!"c‘llmsl Geometric Coverage Constraints = {50%, 50%, 50%, 50%} 10013“““"‘5) Geometric Coverage Constraints = {75%, 75%, 75%, 75%}
== Data Space Latency {ms)) 500 —@— Data Space Latency (ms)
600 =W~ Physical Space Latency (ms) ~l—Physical Space Latency (ms)

800
700 == Hybrid Query Latency (ms)

400 // - £00 /
500
300 ' o 400 /
200 300 f
200

100
0

500 1

100

0

Accl:uracy Ac{l:uracy

80% 90% 100% 80% 90% 100%
(a) (b)
14[]'-(31‘9“‘3\!(’"5) Geometric Coverage Constraints = {100%,100%, 100%, 100%}
~4&—Data Space Latency (ms) 140‘3‘““ (ms) Geometric Coverage Constraints = {25%,50%, 75%, 100%}

—4&— Data Space Latency (ms)

1200 =W~ Physical Space Latency (ms)
[1200 |~—@="Physical Space Latency (ms)

1000

P wmeet
o 4
T -

400
FL_/ 100 #

200 200

0 0 r v .
Accuracy Ac
80% 90% 100% 80% 90% 100% e

(c) (d)

120|-0=l=m=v (ms) Geometric Coverage Constraints ={25%,25%, 50%, 50%}

= Data Space Latency (ms)
1000 __—fl— Physical Space Latency (ms)

=== Hybrid Query Latency (ms) /
800 /,A
600 /
400 /.

Accuracy
80% 90% 100%

(e)

Figure. 19: Simulation Results for Queries Containing Different Query Coverage Constraints on Multiple At-
tributes.

random mobility model tends to have lower average mobility request latency. This is because of
the random mobility nature which has less effect than the controlled motion, in the sense that a
node can do at each step a motion decision that cancels the effect of previous steps. Therefore
the overall mobility becomes less effective than the controlled mobility model, for which each
motion step builds up towards a specified target. Fig. 21. Average Mobility Request Latency for
Simultaneous Disconnected Regions.

In figure 21, MRF is shown for different mobility scenarios. The general trend of the MRF is
larger for the controlled mobility algorithm, as the nodes following a specific path are able to
cause more disturbance in all the regions they pass by, which creates unbalance in multiple local
regions. Because of this unbalance, adjustment to mobility may require adjustment at more than
one of the hierarchy. The maximum MRF shown for all cases is less than 17%. Which means
that the mobility management protocol is able to resolve successfully over 83% of the mobility
requests at the lowest level of the indexing tree, without the need of having this mobility infor-

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

122 . MOHAMED M.ALI MOHAMED et al.

Mobility Request Latency

120
100 /
80 /
w /___7 L —
£ ®
§ —— Random Mobility
ﬁ 40 ——— Controlled Mohbility
20
0
0.5 0.75 1 1.25 1.5 1575 2

Speed (m/s)
Figure. 20: Average latency of incorporating mobile node in the indexing structure Vs. sensor node speed.

Mobility Resolution Factor

18.00%
16.00% -

—~ 14.00% B Random Mobility
R S = Controlled Mobility
v 12.00%
o
5 10.00%
[=]
2 8.00%
o
® 6.00%
42 4.00%
Z 200%

0.00%

0.5 075 1 125 15 175 -

Speed (m/s)
Figure. 21: Mobility Resolution Factor (MRF): The percentage of mobility requests that the mobility protocol
is unable to resolve at the lowest level of the indexing structure.

mation traverse the whole indexing structure.

Figure 22 compares the latency of different data queries to the mobility managed structure (un-
der random and controlled mobility) and the static structure where the indexing structure does
not change itself to accommodate mobility and thus becomes relatively unbalanced. We present
results for three different types of queries.

Figure 077 shows the difference in data-space query latency for static as well mobility manages
structures under different mobility scenarios. The static case shows higher costs for achieving
more accurate results. This is because on the lower level of the indexing structure, the static
scenario would have a higher memory footprint for the congested regions, which requires more
processing and communication time. In figure 077, physical space query latency of the static
indexing structure almost matches the mobility managed structure under the random mobility
scenario for lower accuracy levels, which is slightly higher than the controlled mobility scenario.
However for exact queries (i.e., 100% accuracy), which require the indexing structure to get the
data from its leaf nodes, static scenario incurs higher query latency costs.

In figure 07?7, the hybrid query latency can be viewed as a combination of latencies of both

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks
Data-space Query Latency Physical-space Query Latency
600 1000
500 Static 33 —— Static
iy cntledMekity = —— Contrlled Moty
= Random Mobility S e Random Mobility
£ a0 S
2 § 40
5, A0 5 a0
100 = 20
0 e L
0 0
80.00% 90.00% 100.00% 80.00% 90.00% 100.00%
Query Accuracy (%) QueryAccuracy (%)
(a) (b)
Hybrid Query Latency
600
500 Static
400 —— Controlled Mobility
= Random Mobility
£ =00
8 200
—
100
0
80.00% 90.00% 100.00%

Query Accuracy (%)
(c)

Figure. 22: Query latency for (a) data-space, (b) physical-space and (c) hybrid queries Vs. required query
response accuracy.

physical-space and data-space queries, where it is clear that the incurred latency is higher for
the static case when requiring higher accuracy level. These results show the efficiency of appro-
priately handling mobility, and its effect on query latency for most cases of mobility scenario,
where the static indexing would not be able to provide same latency for queries inquiring higher
accuracy, especially for the queries inquiring exact responses.

7. RELATED WORK

Data indexing in WSN has been studied over the past decade, and several algorithms with
different perspectives were presented to solve it. Many of these algorithms did not consider the
mobility of sensor nodes. Centralized solutions, as in [Ciancio et al. 2006], proposed transmitting
data across paths in the network using lifting technique and wavelet based compression. In
such methods the network usually suffers from congestion around the sink node, which creates a
communication bottleneck, and decreases the lifetime of the nodes in the area around the sink
node.

Several distributed data indexing algorithms were proposed [Greenstein et al. 2003; Ganesan et
al. 2005; Ouksel et al. 2007; Meliou et al. 2009; Zhang et al. 2003]. In [Greenstein et al. 2003],
a hierarchical data structure is constructed and data is mapped to the indexing structure using
geographic hash tables (GHT). This algorithm creates redundancy in data transmission, where
the same raw data is reported to multiple nodes in the indexing structure. In [Greenstein et
al. 2003; Ganesan et al. 2005], DIMENSIONS, a three level spatio-temporal indexing algorithm
is proposed, where it starts by local temporal summarization of sensed values in each node,
then locally gathering this data in a grid-based overlay structure. The spatial summaries are
then created using Wavelet compression, and forwarded to the sink node. However this multi-
layer hierarchical solution provides a good localization that reflects efficient maintenance cost, it
lacks representing the data-space information, which makes the system unable to support queries

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

123

124 . MOHAMED M.ALI MOHAMED et al.

involving data ranges. Also, with increasing data rate, the lossy summarization with no model
wont be able to capture the spatial distribution of the sensed data, which results in higher error
rates for representing the sensed information.

In [Meliou et al. 2009] an algorithm is proposed with a novel idea for data indexing of sensed values
in a hierarchical data structure using approximate modeling. Gaussian models were used in this
system to abstract large amount of sensed values and elevate them across the hierarchy, leading
to more efficient reporting at the cost of accuracy loss across the hierarchy. Such system lacks the
representation of sensor nodes positions, and assumes that Gaussian models are suitable for all
types of sensed phenomena, which is not generic enough for a wide range of sensed phenomena
not of Gaussian distribution nature. Also, Gaussian models are successful in representing the
average behavior of a region, but they lose the information about the extreme (maximum and
minimum) sensed values, which are of high interest for many WSN applications.

An approach for constructing approximate spatial summaries and determining boundaries of
regions with same sensed values was presented in [Gandhi et al. 2007]. Although the work
addresses the issues of different precision, the results cannot be straightforwardly extended to
handle multiple queries with awareness of both physical and data spaces. Another distributed
algorithm proposed by Ouksel and Hauswirth [Ouksel et al. 2007] indexes the WSN data across
a spanning tree according to a key for each node of the spanning tree. Each sensor node identifies
its indexing node through a key, which is formed by shuffling the position of the node, along with
the values of the different phenomenon being sensed. However this algorithm supports mobility
of sensor nodes, it falls short in the maintenance cost of the data updates, as a sensor node
may have to update its information at an indexing node that is far from its location. On the
other side, if the key is arranged in a way that favors position of sensor node for local region
reporting, the system doesn’t support data-space indexing efficiently. Monitoring the WSN for
events have been studied in [Liu et al. 2010], where an algorithm is proposed to use an optimal
number of monitoring nodes and minimize false alarms. Such algorithms are useful for event
based monitoring applications, which do not consider aggregating the network data as much as
answering specific predicates.

In [Zhang et al. 2003], a data dissemination scheme was proposed to address the problem. With
this scheme, sensing data are collected, processed and stored at the nodes close to the detecting
nodes, and the location information of these storing nodes is pushed to some index nodes, which
act as the rendezvous points for sinks and sources. To address the issues of fault tolerance and
load balance, the scheme is extended with an adaptive ring-based index (ARI) technique, in which
the index nodes for one event type form a ring surrounding the location which is determined by
the event type, and the ring can be dynamically reconfigured. In this work, it is presumed that
the querying is not going to be for all the data, but rather specific events, which creates an initial
analysis phase to decide the existence of events, categorize according to them, and index only
the events. This type of algorithms is optimized for some specific applications that are interested
in event detection, but not general enough to cover different query forms. It also addresses the
issues of false alarms and fault tolerance.

Optimal rate allocation for data aggregation has been studied in [Su et al. 2011]. In [Liu et al.
2010], a study for the tradeoff between the number of monitoring nodes and the false alarm rate in
the wireless sensor networks is presented. It proposes fully distributed monitoring algorithms, to
build up a poller-pollee based architecture with the objective to minimize the number of overall
pollers while bounding the false alarm rate. The architecture is build upon the poller-pollee
structure, where sensors self-organize themselves into two tiers, with pollees in the lower tier and
pollers in the upper tier. The pollees send status reports to the pollers along multihop paths,
during which the intermediate nodes do the aggregation to reduce the message overhead. Each
poller makes local decisions based on the received aggregated packets, and forwards its decision
towards the sink. Another monitoring algorithm that sends the status reports to different pollers
in a round robin manner is presented in [Liu et al. 2009], where status reports from different

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 125

pollers are combined to reduce false alarm.

Mobile WSN sink node idea in has taken good consideration in recent research. Controlled
mobility have been exploited in several works [Gandham et al. 2003; Luo et al. 2005; Wang et al.
2005; Hanoun et al. 2008; Xing et al. 2012], in which the —one or multiple— sink node(s) moves in
the field and gathers the sensed data. Non-hierarchical solutions, as [Gandham et al. 2003; Luo
et al. 2005; Wang et al. 2005; Hanoun et al. 2008], study the optimal path to move across the
field, in order to minimize latency. In [Xing et al. 2012], at two tier system of mobile sink node is
proposed, which collects data from static rendezvous points that collect sensed data locally within
their vicinity. This clustered data gathering approach increases the efficiency of data gathering
and scheduling for sink node mobility, however it doesn’t provide a full hierarchical approach for
data indexing.

8. CONCLUSION AND FUTURE WORK

In this paper we presented novel methods of data and physical space abstractions for data index-
ing in wireless sensor networks. The physical-space abstraction based on rank order sampling is
applicable to a wide range of applications because of its generic nature. The data-space abstrac-
tion based on bit maps is first of its kind in indexing in wireless sensor networks.

The proposed system is liberated from organization of data to suit specific query types, or specific
data distributions. It rather gives a generic way to answer different queries of various phenom-
ena with high efficiency. It provides a unified information system for multi-attribute sensed
fields, which optimizes the in-network storage of sensed data using the proposed data abstraction
schemes. This facilitates more optimal query processing that is although distributed in its nature,
yet capable of being communication efficient.

Fixed size update messages ensure load balancing across the network, reflecting longer network
life time. Gathering raw data within geometrically bounded clusters minimizes the communica-
tion overhead. Regular sampling of data values gives a suitable generic method for abstraction
which provides the network with the capability of estimating sensed values within reasonable
error bounds.

An efficient protocol is presented to manage and maintain in-network indexing structures in WSN
under the constraint of mobile nodes. The protocol is applicable to BSP tree structures, where
it is based on assigning incrementing values for space splitting borders of the BSP tree. The
protocol is based on shrinking and expanding the indexed regions according to the residing num-
ber of nodes, in order to keep a balanced load for the indexing structure. The complexity of the
proposed solution does not exceed a linear order in the size of the indexing structure. Our results
show the capability of handling over 83% of mobility within their local regions of occurrence,
without the need of communicating this information across the network. The average latency of
balancing the structure in the presence of mobility is in reasonable range. The results also show
improvement for query latency results, especially for the higher accuracy queries.

In our future work we plan to incorporate temporal dimension in the indexing framework to sup-
port spatio-temporal queries. We also plan to incorporate mobility models that involve higher
mobility speed and uniform direction. In addition, we will study mobility management under
higher dimensional indexing structures that do no involve orthogonal bisections. An extension
of our work is to consider the mobility of the nodes participating in the indexing structure itself.
Another extension is to incorporate the aspect of optimizing the coverage for multiple-events
monitoring.

REFERENCES
AKKAYA, K., AND YOUNIS, M. 2005. A survey on routing protocols for wireless sensor networks. In Ad hoc
networks, 2005. 3(3), 825-349

ALl MOHAMED, M., KHOKHAR, A., TRAJCEVSKI, G., ANSARI, R., AND OUKSEL, A. 2012. Approximate hybrid
query processing in wireless sensor networks In Proceedings of the 20th International Conference on Advances
in Geographic Information Systems. ACM 2012 542-545

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

126 . MOHAMED M.ALI MOHAMED et al.

CAICEDO-NUEZ, C.H., AND ZEFRAN, M. 2008. A coverage algorithm for a class of non-convex regions. In Decision
and Control, 2008. 4244-4249

CHAKRABARTI, A., SABHARWAL, A., AND AAZHANG, B. 2003. Using predictable observer mobility for power efficient
design of sensor networks. In Information Processing in Sensor Networks. Springer Berlin Heidelberg 129-145.

CHEN, J., Jonansson, K. H., OLaArivu, S., PAscHALIDIS, I. C. AND STOJMENOVIC, I. 2011. Guest editorial special
issue on wireless sensor and actuator networks. In IEEE Transactions 2011. 56(10), 2244-2246.

CHul, C. K. 1992. An introduction to wavelets. In Academic press.

CIANCIO, A., PATTEM, S., ORTEGA, A., AND KRISHNAMACHARI, B. 2006. Energy-efficient data representation and
routing for wireless sensor networks based on a distributed wavelet compression algorithm. In Proceedings of
the 5th international conference on Information processing in sensor networks. 309-316.

Dantu, K., RaHMI, M., SHAH, H., BABEL, S., DHARIWAL, A., AND SUKHATME, G. S. 2005. Robomote: enabling
mobility in sensor networks. In Proceedings of the 4th international symposium on Information processing in
sensor networks. IEEE Press 55.

DIETRICH, I., AND DRESSLER, F. 2009. On the lifetime of wireless sensor networks. In ACM Transactions on
Sensor Networks (TOSN), 5(1) 5.

Exicr, E., Gu, Y., AND BozDAG, D. 2006. Mobility-based communication in wireless sensor networks. In IEEE
Communications Magazine, 44(7), 56.

GANDHAM, S. R., DAWANDE, M., PRAKASH, R. AND VENKATESAN, S 2003. Energy efficient schemes for wireless
sensor networks with multiple mobile base stations. In Global telecommunications conference, 2003. GLOBE-
COM’03. IEEE (Vol. 1, pp. 377-381).

GANDHI, S., HERSHBERGER, J., AND SURI, S. 2007. Approximate isocontours and spatial summaries for sensor
networks. In Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International Symposium on
(pp. 400-409).

GANESAN, D., GREENSTEIN, B., ESTRIN, D., HEIDEMANN, J., AND GOVINDAN, R. 2005. Multiresolution storage
and search in sensor networks. In ACM Transactions on Storage (TOS), 1(3), 277-315.

GHica, O. C., TRAJCEVSKI, G., SCHEUERMANN, P., BISCHOF, Z., AND VALTCHANOV, N. 2008. Sidnet-swans: A
simulator and integrated development platform for sensor networks applications. In Proceedings of the 6th ACM
conference on Embedded network sensor systems (pp. 385-386).

GREENSTEIN, B., RATNASAMY, S., SHENKER, S., GOVINDAN, R., AND ESTRIN, D. 2003. DIFS: A distributed index
for features in sensor networks. In Ad Hoc Networks, 1(2), 333-349.

HANOUN, S., CREIGHTON, D., AND NAHAVANDI, S. 2008. Decentralized mobility models for data collection in
wireless sensor networks. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on
(pp. 1030-1035).

Hosking, J. R. 1984. Modeling persistence in hydrological time series using fractional differencing. In Water
resources research, 20(12), 1898-1908.

KESHNER, M. S. 1982. 1/f noise. In Proceedings of the IEEE, 70(3), 212-218.

Liu, C AND CAO, G. 2010. Distributed monitoring and aggregation in wireless sensor networks. In INFOCOM,
2010 Proceedings IEEE (pp. 1-9).

Lou, J., AND HuBAUx, J. P. 2005. Joint mobility and routing for lifetime elongation in wireless sensor net-
works. In INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies.
Proceedings IEEE (Vol. 8, pp. 1735-1746).

MELIOU, A., GUESTRIN, C., AND HELLERSTEIN, J. M. 2009. Approximating sensor network queries using in-network
summaries. In Information Processing in Sensor Networks, 2009. IPSN 2009. International Conference on (pp.
229-240).

MoHAMED, M.M.A, AND KHOKHAR, A.A 2011. Dynamic indexing system for spatio-temporal queries in wireless
sensor networks. In Mobile Data Management (MDM), 2011 12th IEEE International Conference on (Vol. 2,
pp. 85-37).

MoOHAMED, M.M.A, KHOKHAR, A.A, AND TRAJCEVSKI, G. 2013. Energy efficient in-network data indexing for
mobile wireless sensor networks. In Advances in Spatial and Temporal Databases (pp. 165-182). Springer Berlin
Heidelberg.

MULLIGAN, R., AND AMMARI, H. M. 2010. Coverage in wireless sensor networks: a survey. In Network Protocols
and Algorithms, 2(2), 27-53.

OUKSEL, A., X1a0, L., AND HAUSWIRTH, M. 2007. Dynamically Self-Organizing Sensors as Virtual In-Network
Aggregators and Query Processors in Mobile Ad-Hoc Sensor Databases. In 2007 IEEE 23rd International
Conference on Data Engineering (ICDE 2007).

PiLeGal, S. F., FERNANDEZ-LLATAS, C., AND MENEU, T. 2011. Evaluating mobility impact on wireless sensor
network. In Computer Modelling and Simulation (UKSim), 2011 UkSim 13th International Conference on
(pp. 461-466).

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

Energy Efficient Data Indexing and Query Processing for Static and Mobile Wireless Sensor Networks . 127

Pon, R., BATALIN, M. A., GORDON, J., KAaNsaL, A., Liu, D., Raumvi, M., AND ESTRIN, D. 2005. Networked
infomechanical systems: a mobile embedded networked sensor platform. In Information Processing in Sensor
Networks, 2005. IPSN 2005. Fourth International Symposium on (pp. 376-381).

SAMET, H. 1990. The design and analysis of spatial data structures. In (Vol. 85, p. 87). Reading, MA: Addison-
Wesley.

SHI, H. AND SCHAEFFER, J. 1992. Parallel sorting by regular sampling. In Journal of Parallel and Distributed
Computing, 14(4), 361-372.

SOMASUNDARA, A. A., RAMAMOORTHY, A., AND SRIVASTAVA, M. B. 2004. Mobile element scheduling for efficient
data collection in wireless sensor networks with dynamic deadlines. In Real-Time Systems Symposium, 2004.
Proceedings. 25th IEEE International (pp. 296-305).

SusHANT, R. C. S. S. R.. Data MULEs: Modeling a Three-tier Architecture for Sparse Sensor Networks.

WANG, Z. M., BASAGNI, S., MELACHRINOUDIS, E.; AND PETRIOLI, C. 2005. Exploiting sink mobility for maxi-
mizing sensor networks lifetime. In System Sciences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii
International Conference on (pp. 287a-287a).

WILLINGER, W., TAQQU, M. S., SHERMAN, R., AND WILSON, D. V 1997. Self-similarity through high-variability:
statistical analysis of Ethernet LAN traffic at the source level. In Networking, IEEE/ACM Transactions on,
5(1), 71-86.

XiNG, G., L1, M., WANG, T., Jia, W., AND HUANG, J. 2012. Efficient rendezvous algorithms for mobility-enabled
wireless sensor networks. In Mobile Computing, IEEE Transactions on, 11(1), 47-60.

ZHAO, F.; AND GuiBas, L. J. 2004. Wireless sensor networks: an information processing approach. In Morgan
Kaufmann.

http://jist.ece.cornell.edu/index.html. [Online/

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

128 . MOHAMED M.ALI MOHAMED et al.

Mohamed M.Ali Mohamed received his B.S. in Computer Engineering from Cairo Uni-
versity, Egypt, in 2007. In 2008 he joined the University of Illinois at Chicago, where he
received his M.S. in Mechanical Engineering in 2009 and, recently, his Ph.D. in Electrical
and Computer Engineering in 2015. His main research interests are in the areas of dis-
tributed algorithms, spatio-temporal data management in wireless sensor networks,and
high performance computing. Over the course of his Ph.D. work, Dr. Mohamed pub-
lished several papers in refereed conferences, and received a Best Short Paper Award at
the ACM MSWIiM conference (2013). His research work was funded by National Science
Foundation grants. His industry experience is in the photo-lithography and electronic
design automation industries, where he worked at the world leading corporations and has
been contributing to their cutting-edge products.

Ashfaq Khokhar is serving as a Professor and Chair of the Department of Electrical
and Computer Engineering since Fall 2013. Dr. Khokhar joined Illinois Institute of Tech-
nology from the University of Illinois at Chicago (UIC), where he was a Professor and
Director of Graduate Studies in the Department of Electrical and Computer Engineer-
ing. He also held adjunct appointments in the Department of Computer Science and the
Department of Biomedical and Health Information Sciences at UIC.

Dr. Khokhar earned a B.S. in Electrical Engineering from the University of Engineering
and Technology in Lahore, Pakistan, in 1985; an M.S. in Computer Engineering from
Syracuse University in 1989; and a Ph.D. in Computer Engineering from the University
of Southern California in 1993. Dr. Khokhar is also the chief technology officer of Video Analytica, Inc., a
Woodridge, Ill.-based startup company he founded that develops scalable and computationally efficient solutions
for multimedia applications, including smart and intelligent video surveillance technologies.

Dr. Khokhars research centers on context-aware wireless networks, computational biology, health care data mining,
content-based multimedia modeling, retrieval and multimedia communication, and high-performance algorithms.
He is considered a leading expert in the area of high-performance solutions for multimedia applications, especially
those that are data or communication intensive. Under his directorship, the research group at UICs Multimedia
Systems Lab has grown substantially. His lab has graduated more than 20 Ph.D. students in the last 10 years.
Dr. Khokhar has contributed to five edited volumes and co-authored nine book chapters, 55 publications in archival
journals, and 158 refereed conference papers. Additionally, he has presented his work and has served as program
chair at several prominent conferences. His research is currently supported by multiple awards funded by the
National Science Foundation (NSF) and National Institutes of Health. In the recent past, Khokhars research has
also been supported by the United States Army, the Department of Homeland Security, and the Air Force Office
of Scientific Research. The funding level associated with these activities has been well over $10 million to date.
Dr. Khokhar has extensive teaching experience and is highly committed to both graduate and undergraduate
education. Over the years, he has developed new graduate courses in the areas of parallel computing and multimedia
systems. At UIC, he revised the contents of several existing graduate and undergraduate courses to adapt to the
rapid changes in the field and to reflect the latest research trends. Dr. Khokhar has actively pursued reorganization
of the undergraduate curriculum in the computer engineering and computer science areas and has collaborated with
his colleagues to streamline the contents of different courses and link them to state-of-the-art trends in the computer
industry.

Dr. Khokhar has received numerous scholarly recognitions and awards, including the NSF CAREER Award in
1998 for his work on multi-threaded algorithms for multimedia applications. He has served as associate editor on
the editorial board of numerous journals. Khokhar was elected an Institute of Electrical and Electronics Engineers
(IEEE) Fellow in 2009 for his work on multimedia computing and databases.

Goce Trajcevski received his B.Sc. degree from the University of Sts. Kiril i Metodij,
and his MS and PhD degrees from the Dept. of Computer Science at the University of
Illinois at Chicago. His main research interests are in the areas of spatio-temporal data
management, routing and data management in wireless sensor networks, and reactive
behavior in dynamic systems. He has published over 90 papers in refereed conferences
and journals and received a Best Paper Award at the CooplS conference (2000), Best
Paper Award at the IEEE MDM conference (2010) and Best Short Paper Award at ACM
MSWiM conference (2013). His research has been funded by BEA, Northrop Grumman
Corp., NSF and ONR. He has served as an associate editor at ACM DiSC, and is presently
an associate editor of Geolnformatica and ACM Transactions on Spatial Algorithms and
Systems (TSAS). He has been part of organizing and program committees in numerous
conferences and workshops, and serves as an Associate Editor for the Geolnformatica
journal and the ACM Transactions on Spatial Algorithms and Systems. Presently, he
is an Assistant Chairman with the Department of Electrical Engineering and Computer
Science at the Northwestern University.

International Journal of Next-Generation Computing, Vol. 6, No. 2, July 2015.

