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Cloud computing has emerged to provide virtual, pay-as-you-go computing and storage services over the Internet,
where the usage cost directly depends on consumption. One compelling feature in clouds is elasticity, where a user

can demand and gain access to resources. However, this feature introduces new challenges in developing application

and services. In this paper, we focus on the challenges of elastic data management in cloud environments.
Particularly, we consider an elastic key-value store, which is used to cache intermediate results in a service-

oriented system, and accelerate future queries by reusing the stored values. Such a key-value store can clearly

benefit from the elasticity offered by clouds, by expanding the cache during query-intensive periods. However,
supporting an elastic key-value store involves many challenges, including selecting an appropriate indexing scheme,

data migration upon elastic resource provisioning, and optimizations to remove certain overheads in the cloud.

This paper focuses on the design of an elastic key-value store. We consider three ubiquitous methods for
indexing: B+-Trees, Extendible Hashing, and Bloom Filters, and we show how these schemes can be modified

to exploit elasticity in clouds. We also evaluate various performance aspects associated with the use of these
indexing schemes. Furthermore, we have developed a heuristic to request elastic compute resources for expanding

the cache such that instance startup overheads are minimized in our scheme. Our evaluation studies show that the

index selection depends on various application and system level parameters that we have identified. And while we
confirm that B+-Trees, which pervade many of today’s key-value systems, would scale well, we show cases when

Extendible Hashing would outperform B+-Trees.

We also conduct an analysis which focuses on cost–performance tradeoffs of maintaining the cache. We have
compared several Amazon Web Service (AWS cloud) resources as possible cache placements and found that appli-

cation dependent attributes such as unit-data size, total cache size, and persistence, have far reaching implications

on the cost of cache sustenance. Moreover, while instance-based caches expectedly yield higher cost, the perfor-
mance that they afford may outweigh lower cost options.
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1. INTRODUCTION

Recent developments in Internet scale and other data-intensive applications have generated considerable
interest in cloud computing. The cloud facilitates near instant, paid access to infinite storage and comput-
ing, in a model that is tantamount to the familiar utilities, e.g., electricity [Armbrust, et al. 2009]. With the
cloud, conventional cost and risk barriers for initiating large-scale projects, including high upfront costs
for building and maintaining a cluster of high-performance machines, are lifted. Today, many prominent
cloud providers have been initiated, and among these, Amazon Web Services (AWS) 1 appear to be the
most widely adopted platform.

AWS is classified as an Infrastructure as a Service (IaaS), as it allows users complete control over
compute and storage resources. Thus, one important facets of AWS is its notion of elasticity — the
ability for users to instantly scale their resource allocation up and down according to demands. When
exploited optimally, the elastic compute aspect lets users avoid over- or under-provisioning of resources
[Armbrust, et al. 2009], a highly desirable feature for any enterprise. Although the emergence of the

1Amazon Web Services, http://aws.amazon.com
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cloud clearly offers new opportunities in computing, its effective use for certain types of applications
invokes new challenges. For example, there are currently high levels of interest in accelerating large-
scale processes (ubiquitous in data-intensive projects) by employing the cloud. However, systems that
haphazardly allocate cloud resources without proper planning may not yield speedups and can lead to
significant overhead in terms of usage costs.

The emergence of the elastic paradigm has been timely. Consider a scenario where the demand for
various service-oriented applications (e.g., popular Web services, scientific workflows) is not always con-
stant, and certain phenomena could lead to an increase in the number of requests, which would likely
reduce availability of the service. With access to the elastic cloud, one way to address this issue would
be to dynamically allocate resources and replicate the service application over the newly allocated nodes.
In general, while elasticity can be beneficial for many applications and use-scenarios, it also imposes
significant challenges in the development of applications or services. Some recent efforts have specifi-
cally focused on exploiting the elasticity [Chiu et al. 2010; Das et al. 2009; Lim et al. 2010] for various
application classes.

We believe that one prominent issue that has not yet received much attention is data management
while leveraging elasticity. In this paper, we focus on the challenges of managing an elastic key-value
store in a cloud environment. While several cloud-based key-value storage systems have been developed
recently [Chang et al. 2006; Lakshman and Malik 2009; DeCandia et al. 2007; Fitzpatrick 2004], they
have not been considered in the presence of elastic computing. We have developed an elastic key-value
cache, which is motivated by the challenges of accelerating service-oriented computations on the cloud.
Our elastic store caches intermediate results of Web services and uses these results for fulfilling future
computations. Such a cache can clearly benefit from elasticity — an unexpected query-intensive period
can be responded to by a self-managed expansion of resources.

Self-managed elastic scaling, however, comes at the cost of resource usage price. Thus, another dimen-
sion of focus is on evaluating the performance and costs associated with a number of caching and storage
options offered by AWS.

Our cache is created by a set of cooperating cloud nodes, and its design adheres to its underlying elastic
environment. Maintaining a fast and highly available cache in an elastic environment is challenging, and a
major contributor to the performance is the data’s indexing scheme used on each of the cooperating nodes.
The reasons are two-fold: First, an appropriate indexing scheme would clearly allow for fast random
accesses to cached data. Second, as our cache incrementally expands to meet load requirements, portions
of resident cached data must be migrated to newly acquired cloud nodes. The indexing mechanism, whose
performance often relies on the application, must then also be conducive to rendering such migrations
efficient.

We have developed data migration algorithms to support the use of three popular indexing schemes:
B+-trees [Bayer and McCreight 1970; Comer 1979], Extendible Hashing [Fagin et al. 1979], and Count-
ing Bloom Filters [Fan et al. 2000; Putze et al. 2009]. We focus on these indexing schemes because they
pervade existing systems and are heavily documented in literature. Based on our migration algorithms, we
compare the performance obtained from these three methods. Besides developing migration algorithms
associated with different indexing schemes, we have also optimized the caching scheme so that it would
work as unobtrusively as possible in the cloud environment, with the aim to minimizing the idle time
(during the node expansion/migration phase).

These indices were evaluated in terms of total time taken for running an experiment and the time
taken to migrate a set of data records upon cache expansion. In cases where querying rates are 50 and
255 queries per time step, the overheads of data migration and node allocation vary on average 44.8%
and 30.8% of total execution time, respectively. We also applied a simple heuristic to speculate the
prelaunching of AWS nodes as a means to reduce overhead during migration periods. Our evaluation
studies confirm that B+-Trees, which pervade many of todays key-value systems, would scale consistently
well. Interestingly, we also observe instances when the Extendible Hashing scheme could outperform
B+-Trees. After optimizing two of our indexing schemes, we observed a 4× and 14× reduction in the
overhead, respectively.
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Besides indexing and migration performance, we also analyze usage costs. Because AWS offers flex-
ibility in provisioning the resources to store data, weighing the tradeoff between performance and usage
costs makes for a compelling challenge. In one approach to store data on AWS, the cooperation of ma-
chine instances can be allocated (this scheme is as stated earlier). Data can be stored either on disk or in
memory (for faster access, but with limited capacity). The costs of maintaining such a cache would be
much higher, as users are charged a fixed rate per hour, per instance allocated. This fixed rate is moreover
dependent on the requested machine instances’ processing power, memory capacity, and bandwidth. Al-
ternatively, AWS’s Simple Storage Service (S3) can also be used store data. It could be a much cheaper
alternative, as users are charged a fixed rate per GB stored per month. Data are also persisted on S3,
but because of this overhead, we might expect some I/O delays. Depending on the application user’s
requirements, performance may well outweigh costs or vice versa.

In this paper, we make the following contributions:

(1) We describe our implementation of an elastic cooperative cache using three ubiquitous indexing
schemes.

(2) We present algorithms to leverage elasticity through autonomous scaling and data migration. A
heuristic for minimizing scaling overheads is also discussed.

(3) We provide an in-depth analysis on the effects of indexing schemes and migration time.
(4) A cost-performance evaluation of deploying such a cache over various AWS service options is also

provided. We believe this analysis would be useful in the computing community by offering new
insights into deploying general applications onto AWS.

The remainder of this paper is organized as follows: in Section 2, we present the background of our
cooperative elastic cache design. We also provide background on the available (at the time of writing)
AWS service options. In Section 3, we present the integration of the three indexing schemes in the cache.
In Section 4, we present the experimental evaluation. A discussion of related works is given in Section 5.
Finally, we conclude our work in Section 6.

2. BACKGROUND

In this section we describe the basic architecture of our chosen key-value store: a cooperative cache man-
aged over consistent hashing. We also present background on AWS resource costs and discuss tradeoffs
for their utilization.

2.1 Elastic Key-Value Cache System

A main goal of the cooperative cache is to provide fast access to the data, and this can be achieved by
caching all the data in the main memory. However, because memory is a limited resource, overflowing
into disk could cause prohibitively long latencies. Leveraging on the cloud’s elasticity, we instead allocate
on-demand node instances to handle overflow.

Our system, shown in Figure 1(a), is comprised of a set of cloud nodes, which consist of a coordinator
node and cooperating storage nodes, indexed by consistent hashing. Users interface with the coordinator
using a simple key-value API. The coordinator is responsible for several mechanisms: upon a given
request, it must first determine which server node might contain the data and route the query request to
the identified node. During a hit cache on one of the cooperating nodes, it sends the data directly to the
user. Conversely, on a miss, the coordinator invokes the service application, S, for execution, then sends
the results to both the user and cache.

Initially, it may seem like a simple hashing mechanism would suffice for identifying the node respon-
sible for storing some data (k, v). However, because we are considering our cache under an elastic en-
vironment, nodes may incrementally (or decrementally) scale on demand. This dynamism renders many
hashing mechanisms useless, as an incredibly large number of key-value pairs would require a rehash
upon node membership changes.

To address this problem, consistent hashing [Karger, et al. 1997] is being employed on the coordinator
due to its ability to quickly adapt to nodes joining and leaving a cooperating system. Consider the example
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in Figure 1(b), which depicts a consistent hashing system consisting cohort nodes A and B. The hash
range is circular from 0 to r − 1, and consists of several buckets placed randomly or strategically on the
ring. Each bucket further stores a pointer to a physical storage node. A simple auxiliary hash function,
such as node = ∗clockwise succ(k mod r) can be used to initially hash a key-value pair (k, v) onto the
hash ring. Then a (k, v) pair hashing onto 35, for instance, would follow the ring to the closest succeeding
bucket in clockwise fashion to node A, referenced by bucket 75.

Aside from interfacing with the user, the coordinator is also responsible for monitoring the cache’s
status and when appropriate, allocating cloud nodes and scheduling for data splitting and migration from
the overflown node to the newly acquired node. In Figure 1(b), we are further showing that node A
is overflown, and a new node, C, has been instantiated from the cloud to join the system. Assuming
that the range between (75, 8] on the hash ring is crowded with too many keys hashing onto A, we can
strategically place a new bucket such that a substantial amount of keys in will be hashed into the new
node, C. The new bucket b, for instance, could be placed half way between the two existing buckets:
bnew = (75+ b(r−75+8)/2c) mod r. To complete the new node membership process, the (k, v) pairs
hashing into (75, bnew] are finally migrated onto C.

Each cooperating server employs an indexing scheme to facilitate fast searches. The server stores
the index together with the cached data in memory to ensure efficient hit times. The specific indexing
scheme is application-dependent, however, and we choose to evaluate three among the most widely used
indexing schemes. The choice of index on the cache server should impact the node split and migration
time, since the support of fast range queries could quickly negotiate the data records that need to be
transferred. Moreover, the overall performance of the cache is dependent on the speed of record retrieval
and how quickly it can determine a hit or miss. In the following section, we present the background for
three ubiquitous index structures: B+-Tree, Extendible Hashing, and Bloom Filters. The performance
evaluation of node splitting and data migration in the presence of these popular indexing schemes is a
main focus in this paper.

2.2 AWS Usage Costs and Tradeoffs

AWS offers many options for on-demand computing as a part of their Elastic Compute Cloud (EC2)
service. EC2 nodes (instances) are virtual machines that can launch snapshots of systems, i.e., images.
These images can be deployed onto various instance types (the underlying virtualized architecture) with
varying costs depending on the instance type’s capabilities.

For example, a Small EC2 Instance (m1.small), according to AWS2 at the time of writing, contains
1.7 GB memory, 1 virtual core (equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor),
and 160 GB disk storage. AWS also states that the Small Instance has moderate network I/O. Another

2AWS Instance Types, http://aws.amazon.com/ec2/instance-types
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instance type we consider is the Extra Large EC2 instance (m1.xlarge), which contains 15 GB memory,
4 virtual cores with 2 EC2 Compute Units each, 1.69 TB disk storage with high I/O Performance. Their
costs are shown in Table I. We focus on these two contrasting instance types to show a wide spectrum of
capabilities, but are careful to note that several other instance types are in fact available in AWS.

Amazon’s popular persistent storageAWS Feature Cost (USD)
S3 $0.15 per GB-month

$0.15 per GB-out
$0.01 per 1000 in-requests
$0.01 per 10000 out-requests

Small EC2 Instance $0.085 per allocated-hour
$0.15 per GB-out

Extra Large EC2 Instance $0.68 per allocated-hour
$0.15 per GB-out

EBS $0.10 per GB-month
$0.10 per 1 million I/O requests

Table I. Amazon Web Services Costs

framework, Simple Storage Service (S3),
provides a key-value store with simple
ftp-style API: put, get, del. Typi-
cally, the unique keys are represented
by a filename, and the values are the
data objects, i.e., files. While the ob-
jects are limited to 5 GB, the number
of objects that can be stored in S3 is un-
limited. Aside from the simple API, the
S3 architecture has been designed to be
highly reliable and available. It is fur-

thermore very inexpensive (see Table I) to use.
Another option for persistent storage is to employ Elastic Block Storage (EBS) in conjunction with EC2

instances. The EBS service is a persistent disk volume that can be mounted directly onto a running EC2
instance. The size of an EBS volume is user defined and limited to 1 TB. Although an EBS volume can
only be attached to one instance at any time, an instance can conversely mount multiple EBS volumes.
From the viewpoint of the EC2 instance, the EBS volume can be treated simply as a local filesystem.

2.3 Tradeoffs

We now give a brief discussion on the tradeoffs of deploying our cache over the aforementioned cloud
resources.

Instance-Memory Option: There are several advantages in supporting our cache over EC2 nodes in
terms of flexibility and throughput. Depending on the application, it may be possible to store all cached
data directly in memory, which reduces access time. But because small instances contain only 1.7 GB of
memory, we may need to dynamically allocate more instances to cooperate in establishing larger capacity.
On the other hand, we could also allocate an extra large instance with much more memory capacity to
begin with. However, the instance could overfit our cache needs, which would betray cost-effectiveness.
Because of these reasons, we would expect a memory-based cache to be the most expensive, but possibly
with the highest performance, especially for an abundance of smaller data units.

Instance-Disk Option: In cases where larger amounts of data are expected to be cached, we could store
on the instance’s disk. Even small EC2 instances provide ample disk space (160 GB), which would save
us from having to allocate new instances very frequently for capacity, as we would expect in the previous
option. However, disk accesses could be very slow compared to an in-memory cache if request rates are
high. Conversely, if the average data size is large, disk access overheads may be amortized over time.
We can expect that this disk-based option should be cheaper than the memory-based, with slightly lower
performance depending on the average unit-data size.

Persistent Options: The previous two configurations do not account for persisting data. That is, upon
node failure, all data is presumed lost even if stored on disk. Moreover, it can be useful to stop and restart
a cache, perhaps during peak/non-peak times, to save usage costs.

The simplest persistent method is to directly utilize S3 to store cached data. This avoids any indexing
logic from the application developer, as we can subscribe directly to S3’s simple API. It is very inexpensive
to store data on S3 and more importantly, because S3 is independent from EC2, we further elude instance
allocation costs. However, due to S3’s reliability and availability guarantees, it implements an architecture
which supports replication and consistency, which would likely impact performance. Also, although
storage costs are low, the data transfer costs are equivalent to those of EC2 instances, which leads to the
expectation that high-throughput environments may not benefit cost-wise from S3.

We noted previously that another persistent method are EBS volumes. One difference between EBS
International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.
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and S3 is that EBS volumes are less accessible. They must first be mounted onto an EC2 instance. But
because they are mounted, it alludes to the potential for higher throughput than S3, whose communications
is only enabled through high-level SOAP/REST protocols that ride over HTTP. Also in contrast to S3, EBS
volumes are not unlimited in storage, and their size must be predefined by users. However, EBS adds a
storage and request cost overhead on top of the hourly-based EC2 instance allocation costs.

3. INDEXING BACKGROUND AND ELASTIC INTEGRATION

A distinct indexing service has to be implemented on each node supporting the key-value server. We
consider three ubiquitous indexing schemes used in our cache nodes for facilitating key-value storage: B+-
Tree [Bayer and McCreight 1970; Comer 1979], Extendible Hashing [Ullman et al. 2001], and Counting
Bloom Filters [Fan et al. 2000; Putze et al. 2009]. To facilitate cache elasticity, when a node overflows,
we must migrate a subset of its records to another node, which may be preexisting or newly allocated. As
the three schemes we have selected are inherently dissimilar in structure and methods of operation, they
make compelling candidates for extension to an elastic environment and performance evaluation.

In the rest of this section, we initially present the background on each indexing mechanism, and then
describe how we have implemented the migration mechanism over the three indexing schemes upon a
node overflow.

3.1 B+-Trees

B-trees and their variant B+-trees are used extensively in many of today’s systems. The B+-tree is a
multilevel indexing scheme, which automatically adjusts the number of levels depending upon the file
size. In terms of access, it is a balanced data structure, where all paths from the root to any leaf have the
same length (akin to binary trees, with approximately log2 n depth). The leaf nodes of the B+-tree store
the records in ascending order from left to right, and all the leaf nodes are linked to the next node, which
was specifically designed to accelerate range queries [Elmasri and Navathe 2003; Ullman et al. 2001].

The basic structure of the B+-tree is as follows. Each node contains a set of n keys and n − 1 child
pointers. Ki are the keys and Pi is the pointer to a tree node and Prj is the pointer to a record’s physical
location. All keys in the left branch of the key K are less than or equal to the K and all keys in the
right branch are greater than the K. While searching, we follow the appropriate branches based upon the
comparison of the key with the entries in the tree. In a process tantamount to searching a binary tree, we
start from the root and follow the left path if the key is less than or equal to the root, else we follow the
right path, recursively.

Due to its support for fast range queries, we would expect the B+-tree integration to be particularly
auspicious for our consistent hashing-based cache. Such fast accesses to ranges of data should facilitate
faster data migration upon node membership. Data migration, in this case, is comprised of deletions of
keys in the range from the smallest to half of the overflow node. Since B+-Tree contains the keys sorted
in ascending order from left to right, on the leaf level, it is efficient to identify all keys that lie in the range
and delete them, as well as their associated data, from the memory of the overflown node. To migrate data
from a B+-Tree, both kstart and kend are the inputs to the migration procedure, and they denote the limits
of the range of keys. We first search to find the leaf containing kstart. Because all leaf nodes are linked,
we can sweep all leafs until kend has been reached or passed.

3.2 Extendible Hashing

Hash tables are another commonly used form of indexing, which excels at offering O(1) exact-match key
search times. The tradeoff, however, is that hash tables are not well-suited to handle range queries.

In most hash implementations, we assume that there exists a hash function h(k) ∈ [0, B − 1], where
B is the total number of buckets in hash line. Each bucket contains a set of records stored in memory
or a set of pointers to records stored in secondary memory. A hash function should ideally hash each
key to a distinct bucket, but this is seldom possible because the key range is often much larger than B.
Therefore, the buckets typically allow for storing a set of records, but even so, they can still overflow.
To avoid this from happening, hash tables implement some form of collision reconciliation technique. A
simple technique is to have overflow chains, where overflown records are stored in a linked list attached
International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.
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to the bucket. The performance of this technique decreases linearly as the load factor (ratio of the number
of records stored to the size of bucket) increases.

We can avoid this performance hit by using dynamic hashing [Enbody and Du 1988], where the number
of buckets, B, can vary, unlike the aforementioned static hashing. In dynamic schemes, B is increased
whenever necessary. We have implemented a form of dynamic hashing, namely, Extendible Hashing
[Fagin et al. 1979], which introduces a concept known as a directory— an array of pointers to the hash
buckets. The buckets themselves contain an additional array of pointers to the records’ physical location.

Initially, each directory contains one bucket, but this is allowed to grow whenever required. In Ex-
tendible Hashing, the length of the directory is always a power of 2, which translates to doubling the size
of the directory size in each growing phase. However, because multiple pointers can point to the same
physical bucket, the actual number of buckets can be ≤ to the size of the directory. A hash function h(k)
computes a binary sequence for each record based on the search key, k, and the first i least significant bits,
are used to determine the bucket to which the record belongs. Thus, when a directory contains 2i number
of pointers to buckets the actual number of buckets is ≤ 2i.

Searching for a key in an extendible hash table is a two-phase process. First, the least significant i
bits from the hash value of the key and determine the bucket it belongs to. Finally, a linear scan within
the identified bucket is required to return its position, if it is found. The searching time would expectedly
increase as the number of records per bucket increases. Conversely, a higher number of records per bucket
would lead to fewer splits and a smaller directory. As we alluded to earlier, while Extendible Hashing
offers constant-time exact match queries, range queries will expectedly suffer because the hash function
disrupts k’s original locality.

To support migration, we implemented Extendible Hashing such that we could dynamically specify the
number of records per bucket. Because Extendible Hashtables do not store the records in any particular
order, we linearly scan through each bucket and delete keys that lie within the migration range.

The migration procedure inputs kstart and kend again to denote the range of keys to be migrated.
Initially, we traverse through all directories, denoted by Dx, and for each directory, we follow the pointer,
y, to its corresponding bucket. Any key, k, which lies in the range, [kstart, kend], is appended along with
its data object, v, to keys. Finally, keys is returned when all records have been scanned through.

3.3 Bloom Filter

Bloom Filters [Bonomi et al. 2006] are probabilistic data structures used to quickly determine the mem-
bership of a record in a set. It consists of a bit array of m bits and a set of j hash functions which hashes
each record to j different values. Generally, m � j, which reduces the probability of the hash functions
setting the same bit for a record. Though Bloom Filters are vulnerable to false positives, false negatives
are not possible.

Insertions into a Bloom Filter are simple: apply the hash functions to the key and set the corresponding
bits. Similarly, we can determine whether a record is present in the set by applying each of the j hash
functions to the data item and verifying whether all the corresponding bits are set. If all the corresponding
bits are not set, then the data item is not present. However, because false positives are possible, even if
all the corresponding bits are set, the record may still not be present, so a scan is required after such a
pseudo-hit. Fortunately, the false positive rate has a bound f = (1−e(−jN/m))j , where j is the number of
hash functions, m is the length of the bit array, and N is the number of set bits. Clearly, the false positive
rate increases as the number of inserts increases, but choosing a relatively large m and independent hash
functions can render f negligible [Kirsch and Mitzenmacher 2008].

Because the same bit could have been set for multiple records, deletion in the traditional Bloom Filter
is not possible. Indeed, modifying the bit array could lead to false negatives which are prohibitive. To
support deletion, we implemented a variant, Counting Bloom Filters [Fan et al. 2000; Putze et al. 2009].
Each bit in the bit array is associated with a 4-bit counter, which keeps track of the number of records that
set the bit, and enables the delete operation.

These structures are quite useful for applications requiring fast tests of record existence (especially
for testing non-existence). To search for a record with key k, we first apply the j hash functions to k.
Secondly, we AND all bits from the bit array corresponding to the locations hi(k)|i = (0, . . . , j). If this
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result is 1, then the record may be present, and a scan is initiated to retrieve the record. Otherwise, the
record is non-existent. Because the linear scan may be required for a hit, it invokes a costly overhead in
the case of false positives, but as we had mentioned previously, low false positive rates can be ensured by
having a large m and independent hash functions.

The implementation of migration for CBF is also trivial. kstart and kend are again the inputs. We start
from the minimum threshold and increment till the maximum threshold and search for each key in the
range and delete the keys that are present. This makes migration time linear to the amount of keys within
[kstart, kend], albeit that check for non-existence is fast and guaranteed (no false negatives).

3.4 Elastic Cache Support

We have implemented our system on the Amazon Elastic Compute Cloud (EC2), and will describe our
system under its context. EC2 supports Infrastructure-as-a-Service (IaaS), allowing users to allocate nodes
on demand. EC2 nodes (instances) are virtual machines that can launch snapshots of systems, i.e., im-
ages. Furthermore, these images can be deployed onto various instance types (the underlying virtualized
architecture) with varying costs depending on the instance type’s capabilities. As a baseline, we have
chosen to only employ EC2’s m1.small instances in our implementation, although it should be noted
that instances bearing much greater (or lesser) capabilities are also available.

During system execution, records may be continuously inserted into the cache nodes, and an overflow
on any of the nodes can invoke incremental scaling. Recalling from the example given previously in
Figure 1(b), this process involves starting a new EC2 node and migrating a subset of the data from the
overflown node to the newly allocated node. We can expect two types of overhead when scaling nodes.
We refer to the first overhead as Instance Allocation Time, which is observed between the time that the
command is issued to allocate an EC2 instance to the time the instance is running. We have observed this
overhead to take on the order of tens of seconds to several minutes depending on Amazon’s load for an
m1.small instance. The second overhead is Data Migration Time, which is invoked after the new EC2
instance has been allocated. It initially identifies the range of data to be migrated from the overflown node,
followed by transferring the identified key-value pairs to the new node (migration). While the system is
undergoing scaling, it can continue to answer queries from nodes that are not involved in the migration
process. Conversely, to ensure consistency, the system waits until after scaling to update.

The main concern in this article is to evaluate how the different indexing schemes (B+-Trees, extendible
hashing, and bloom filters) that are used on each EC2 node would affect Data Migration Time. A sec-
ondary concern is addressing Instance Allocation Time, which typically dominates Data Migration Time.
To this end, we implement a simple speculative heuristic for pre-launching instances when a key-value
record threshold has been met. A background thread initiates the pre-launching and eagerly migrates data
from the fullest node once the new instance is booted.

Our speculative threshold T is based on the following observations. If the request rate is high, then T
should be lowered, as the nodes are likely to fill up faster, and vice versa. Let n denote the node where
some (k, v) pair is to be inserted. We use the following to estimate n’s threshold:

T = c(n)/2 + δH × (||N || −R/δL)
where δL and δH are constants representing the lowest and highest expected querying rates respectively.
R is the current request rate, c(n) is capacity on node n, and ||N || is the total number of nodes in our
cooperative cache. As the number of nodes, ||N ||, increases the threshold should also increase so as to
delay the allocation of new nodes. R/δL is used to normalize the current rate, R.

For instance, consider a configuration where c(n) = 5000, δL = 50, δH = 250, and R = 100. Then
for a cooperative system containing 1, 2, 3, and 4 nodes, the respective thresholds would be 2250, 2500,
2750, and 3000. Hence, T increases linearly by δH for each node added in this scenario. Certainly, more
robust models can be employed here for speculation, but it is beyond the scope of this work. We use this
threshold in our key-value insertion algorithm, shown in Algorithm 1.

In Algorithm 1, k and v are the inputs to the algorithm and they denote the key and value object,
respectively. On Lines 1-3, the statically declared inverse hash map, NodeMap[...], the ordered list of
buckets B in our consistent hash table, and the auxiliary consistent hash function, h′, are brought into
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Algorithm 1 Insert(k, v, δL, δH )
1: static NodeMap[. . .]
2: static B = (. . .)
3: static h′ : K → [0, r)
4: n← NodeMap[h′(k)]
5: T = c(n)/2 + δH × (||N || −R/δL)
6: if T < dne × 0.1 then
7: T ← dne × 0.1 . to avoid extremely low values of threshold
8: end if
9: if T > (dne × 0.75) then

10: T ← dne × 0.95 . to delay allocation of new nodes
11: end if
12: if ||n||+ sizeof(v) < T then
13: n.put(k, v) . insert directly on node n
14: else if ||n||+ sizeof(v) > T then
15: . Launch threads t1, t2 which would execute the Lines 16 - 22
16: . find fullest bucket referencing n
17: bmax ← argmax

bi∈B
||bi|| ∧NodeMap[bi] = n

18: kµ ← µ(bmax)
19: ndest ← n.migrate(min(bmax), kµ)
20: . update structures
21: B ← (b1, . . . , bi, h

′(kµ), bi+1, . . . , bp) | bi < h′(kµ) < bi+1

22: NodeMap[h′(kµ))]← ndest
23: else
24: . n overflows
25: . Launch Thread t3 if t1 and t2 are not taking care of n and execute Lines 16-22
26: end if

scope. The NodeMap[b] returns the node n pointed by bucket b.
Lines 5-11 are for handling speculative threshold selection. The idle time caused by migration can be

reduced to zero if a good threshold is selected, but selecting such a threshold is tricky, as a low value
could lead to higher number of instances being launched. This, in turn, would not be optimal, as running
extra instances would be costly. Using a higher threshold could lead to higher idle times because the node
allocation is being initiated too late. Therefore, the selection of a threshold is a tradeoff between lowering
idle times and optimizing the number of instances being initialized.

Returning to the algorithm, Line 5 of Algorithm 1 calculates this threshold. In Lines 6-11, we check
for two conditions; the first condition increases the threshold initially to delay launching of instances,
whereas the second condition increases the threshold after a certain instant, so that new instances would
not be initialized unnecessarily, which helps reduce cost.

In order to reduce idle times we need to parallelize the execution of various parts of the code. It was
empirically observed that two instances generally reached the node capacity at the same time, since our
experiments issue random workloads. We first introduce two threads, t1 and t2, that would initialize a
new node if required (Lines 15-22). If a node reaches capacity, dne, then a third thread, t3, would handle
the overflown node if neither of the two threads were handling it already (Lines 24-25). Thus, at any point
there could be a maximum of 4 threads running (including the main thread).

The three threads all perform the operation mentioned on Lines 17-22. On line 17, we identify the
fullest bucket bmax referencing n. On Lines 18-19, we migrate half the keys (from the minimum to the
median, kµ) from bmax. The migrate method returns a reference to the destination node, ndest, which may
be preexisting or newly allocated. Finally on Lines 20-22, the statically declared structures, NodeMap
and B, are updated.

Resuming discussion of the cache servers, each cohort node consists of the index, put(), delete(), mi-
grate(), and search() methods. At any instance of time, the consistency of the index needs to be main-
tained, which requires that the methods modifying the structure of the index be synchronized. Hence,
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put(), migrate(), and delete() to acquire a lock on the cache server instance at the start of the method and
release it at the end. Since search() is read-only, this method does not acquire any locks.

4. EXPERIMENTAL RESULTS

In this Section, we evaluate the performance of our elastic key-value cache on the Amazon EC2 Cloud.
We also compare the performance of the three indexing schemes.

4.1 Experimental Configuration

In all experiments, we used Small EC2 Instances from the Amazon Cloud (1.7 GB of memory, 1 virtual
EC2 core - equivalent to 1.0 -1.2 GHz 2007 Opteron or 2007 Xeon Processor on a 32 bit platform). Each
instance was loaded with an Ubuntu Linux Image and a cache server, which contains the indexing logic.

We ran a real service application, Shoreline Extraction, a geodetic Web service. Given the location,
L, and the time of interest, T , the service retrieves a data file representing the terrain at location L, then
interpolates this file with a water level reading, measured at time T . The queries are submitted to the
coordinator node, and it tries to locate the results on the cache nodes based on the inputs from the query.
If the result is present in the cache, i.e., it is precomputed via some previous request, it is retrieved and
returned directly to the caller. In the case of a miss, the shoreline extraction service is invoked. The
queries are submitted randomly over 64K distinct possibilities for each service request. Because we know
the key range in advance, we have also set r, the consistent hashing modulo function, to 64K.

We tested our system under varying query rates. We varied the rate between 50 queries/time step and
255 queries/time step. At each time step, we recorded the average (in seconds) and the number of hits
and misses. In order to show the cache’s elastic behavior over execution, we submitted R queries per time
step. Each time step is a logical iteration, and does not reflect real time. Note that the granularity of a time
step in practice, e.g., t seconds, minutes, or hours, does not affect the overall hit/miss rates of the cache.
At each time step, we observed and recorded the average service execution time (in number of seconds
real time), the number of times a query reuses a cached record (i.e., hits), and the number of cache misses.
We analyze the cache behavior in real-time in section 4.3.

4.2 Evaluation of Elastic Cache vs. Static Cache

We compared our cooperative elastic cache (co-op) against static versions of our cache. The static
caches are fixed at 2, 4, and 8 nodes (static-2 , static-4, and static-8 respectively), and
cannot expand. Therefore, the static versions implement LRU (Least Recently Used) replacement policy
to prevent overflow. In this experiment, only the B+-Tree is being considered.
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Figure. 2. Miss Rate
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Figure 2(a) and Figure 2(b) represents the results for miss rates for experiments conducted with 50
queries/timestep and 255 queries/timestep respectively. The X-axis represents the time steps elapsed in
our experiment (recall from above that a time step is not real time, but a simulated time in which R query
requests are sent). The right-hand Y -axis represents the EC2 nodes allocated throughout the experiment.

As the experiment proceeds, the miss rates decrease linearly, since requests are submitted at random.
static-2 and static-4 appear to converge very early in the experiments, while static-8 seems
to perform as well as our system in Figure 2(a). It can also be observed that our system uses a maximum
of 8 nodes at the end of the execution, which explains its similar performance to static-8. The early
convergence of static-8 can finally be observed in Figure 2(b), where the query rate is increased to 255
queries/time step. Our system can attain near-zero miss rates toward the end of the experiment, however,
at the expense of 15 final nodes.

One aspect that is not being shown here is the time taken to split and migrate data when a new node
is allocated. This may be a costly overhead that varies depending on the index that is being used on
the cohort cache server. We show an evaluation of the impact of indexing schemes, and the migration
overheads, next.

4.3 Cache Server Index Comparison

The three indexing schemes we compared are: B+-Trees (B+Tree), and Counting Bloom Filter (CBF),
and Extendible Hashing with three bucket size configurations: (EH100, EH300, EH500). We evaluate
the suitability of these algorithms for our system based on the total time taken to run the experiment, as
well as its breakdown on time taken for migration and instance start up. Each experiment was run three
times, and we took the average.

In these experiments, we are showing the total time taken to interact with two querying models: 50
queries/timestep and 255 queries/timestep without speculative migration. We will show the optimization
observed with speculation in a later subsection.
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Figure. 3. Execution Time of Indexing Schemes

Figure 3(a) shows the results obtained by running the experiment with 50 queries/timestep, which is in
contrast to Figure 3(b) (255 queries/timestep). The total time taken to run the experiments varied between
50 to 70 minutes. As we had alluded to earlier, we observe that instance startup times can vary quite a bit.
Combined with data migration, these overheads account for nearly half of the total execution time for 50
queries/timestep. As expected, the migration time for CBF performs the worst, but is easily dominated by
instance startup overhead. Although these overheads expectedly amortize as we increase the request rate
to 255 queries/timestep, they are still quite significant.

In Figure 3(a), it can be observed that EH500 outperforms the rest, while CBF is clearly the worst
option. We can observe that, the system parameter (records per bucket) greatly impacts the performance

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.



170 · David Chiu, et al.

of Extendible Hashing. The B+-tree performs well irrespective of the parameters. This can also be verified
by Figure 3(b), where EH300 now performs the best and CBF again performs the worst. However, the
performance of EH500 records per bucket has degraded considerably whereas the performance of B+-
Tree scales quite well even when the query intensity is increased. Thus, we posit that the performance of
Extendible Hashing also depends on the system parameter: querying rate.
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Figure. 4. Migration Time of Indexing Schemes

Focusing now on Figures 4(a) and 4(b), we have averaged over three runs the time taken per data migra-
tion, i.e., the time taken to identify and transfer the range of data to be moved from the overflown node to
the new node. In total, the 50 queries/timestep rate invoked migration 7 times and the 255 queries/timestep
experiment invoked migration 15 times. The results being shown are compelling. We do not observe much
variation between the two graphs for B+-Trees, which suggests that it scales well to high requests rates.

The interesting note is that, on average, CBF actually perform better as the number of migrations
increases. This is due to the fact that the number of records to be migrated decrease over time across
all indexing schemes, as an effect of consistent hashing. The reason for this is because, over time, the
ranges on the consistent hashing ring will generally decrease. Recalling that migration on CBF is slightly
super-linear due to scanning for false-positives, as the data range decreases over time, false-positives also
decrease, rendering this algorithm closer to linear time. As we can see in Figure 4(b), CBF is eventually
equivalent to the B+-Trees’ linear-time migration algorithm.

The same logic can be applied to explain the degradation in performance for the EH* schemes, which
all perform worse as the number of migrations increase from 7 to 15. Using the worst case, EH500,
to exemplify, the average migration times are quite low when we have fewer migrations because there
are smaller numbers of buckets to traverse linearly. As the number of migrations increases to 15 times,
this would imply that a greater quantity of data is being stored in the index, which translates to not only
a larger directory size (which grows exponentially), but also potentially many buckets with data in the
range scattered within each. In other words, we begin to observe the inherent problem of hashing-based
solutions for handling ranges. The tradeoff is that its O(1) lookup facilitates fast hit/miss indication,
which leads to better overall performance for high querying rates.

We summarize by observing that B+-Tree would scale well irrespective of the system parameters, and
EH*, with their O(1) exact-match searches, could actually outperform B+-Trees if the parameters are
chosen appropriately. However, if the cache system is volatile, and migration is invoked often, EH*
indexing schemes will yield increasingly poor migration performance. CBF should typically be avoided
as an indexing scheme for elastic key-value store, but it may scale well for applications relying on space-
efficient structures. We also made the interesting observation that CBFmigration overheads become better
over time.
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4.4 Optimizing Instance Allocation Overhead Results

Back in Section 3.4, we described an approach to minimize the idle time when allocating a new EC2
instance. Instances are pre-launched when a threshold T is met and the migration overlaps with normal
program execution. We used the following parameter settings for the Insert algorithm: c(n) = 5000,
δL = 50, and δH = 250. Specifically, c(n) states that each node can contain 5000 key-value pairs,
δL = 50 states that 50 requests per second is the lowest expected request rate, and δH specifies that 250
requests per second is the highest expected.

Again, we executed a total of three runs and reported the average overhead and total times. We ran these
experiments using R = 50, i.e., the true request rate being 50 requests per second. We show the results
for EH300 and CBF are summarized in Figure 5. On the left side of the figure, we show the original
results for EH300 and CBF. The right side of the figure depicts the results after we apply speculative
pre-launching.
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Figure. 5. Instance Allocation Overhead for Query Rate = 50 queries/timestep.

After optimization, we managed to improve the scaling overhead by 4× and 14× respectively in EH300
and CBF. Even with the improvements, there are clearly opportunities for further refinement here, and we
propose to develop more robust heuristics in future works.

4.5 Performance-Cost Analysis

To analyze the performance and cost tradeoffs, we use only the B+-Tree version and we run experiments
over the following configurations:

(1) S3: Data stored as files directly onto the S3 storage service (persistent).
(2) ec2-m1.small-mem: Data stored in memory on Small EC2 instance (volatile, moderate I/O).
(3) ec2-m1.small-disk: Data stored as files on disk on Small EC2 instance (volatile, moderate

I/O).
(4) ec2-m1.small-ebs: Data stored as files on a mounted Elastic Block Store volume on small EC2

instance (persistent, moderate I/O).
(5) ec2-m1.xlarge-mem: Data stored in memory on Extra Large EC2 instance (volatile, high I/O).
(6) ec2-m1.xlarge-disk: Data stored as files on disk on Extra Large EC2 instance (volatile, high

I/O).
(7) ec2-m1.xlarge-ebs: Data stored as files on a mounted Elastic Block Store volume on Extra

Large EC2 instance (persistent, high I/O).

In both m1.small (32-bit) and m1.xlarge (64-bit) systems, we employ the Ubuntu Linux 9.10 Server
image provided by Alestic.3

3Alestic, http://alestic.com/
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Figure. 6. Mean Cache Hit + Retrieval Time

To analyze cache and storage performance, which can be affected by memory size, disk speed, network
bandwidth, etc., we varied the sizes of cached files: 1 KB, 1 MB, 5 MB, 50 MB. One such file is output
from one execution, and over time, we would need to store a series of such files in our cache. These sizes
allow for scenarios from cases where all cached data can fit into memory (e.g., 1 KB, 1 MB) to cases
where in-core containment would be infeasible (e.g., 50 MB), coercing the need for disk or S3 storage.
The larger data will also amortize network latency and overheads, which increases throughput.

We submitted queries to hot caches, which guarantees a hit on every query, and we are reporting the
mean time in seconds to search the cache and retrieve the relevant file on one cache node. Figures 6(a),
6(b), 6(c), and 6(d) show the average hit times for each cache configuration.

Figure 6(a) shows that using S3 for small files eventually exhibits slowdowns by 2 orders of magnitude.
In the other figures, we observe the justification for using memory-bound configurations, as they exhibit
for the lowest mean hit times. Also, we observe consistent slowdowns for ec2-m1.small-disk and
ec2-m1.small-ebs below S3 in the 1 MB and 5 MB cases. Finally, using the results from Figure
6(d), we can conclude that these results again support our belief that disk-bound configurations of the
small instance types should be avoided for such mid-sized data files due to disk access latency. Similarly
for larger files, S3 should be avoided in favor of ec2-m1.xlarge-ebs if persistence is desirable. We
have also ascertained from these experiments that the high I/O that is promised by the extra large instances
contributes significantly to the performance of our cache.

We now present an analysis on cost for the instance configurations being considered. The costs of the
AWS features evaluated in our experiments were summarized earlier in Table I. While in-cloud network
I/O is currently free, in practice, we cannot assume that all users will be able to compute within the same
cloud. We thus consider the worst case where all data is transferred outside of the AWS network, but in
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practice, the costs might be much lower depending on the system configuration. The settings from the
previous set of experiments are repeated, so an average unit data size of 50 MB will yield a total cache size
of 25 GB of cloud storage (assuming there are 500 distinct request keys). We are furthermore assuming
a fixed rate of R = 2000 requests per month. To show the impact of I/O, we have also extrapolated
R = 200000 requests. Due to space constraints, we only show the analysis for 50 MB unit sizes. A
complete analysis of all data sizes can be found in [Chiu 2010].

In Figures 7(a) and 7(b), we show the monthly costs of sustaining volatile caches on m1.small-disk
and m1.xlarge-disk instances for R = 2000 and R = 200000 requests respectively. To qualify the
monthly costs, we also display the speedups achieved (shown as S in the figures) for the 2000th and
200000th request. To hold the large cache data in its entirety, we only use disk-based instance types here.
Here, the total cost can be computed as C = CAlloc+CIO where CAlloc = h× k× ct denotes allocation
cost, impacted by the number of hours h needed to allocate k nodes for instance type t. CIO = R×d×cio
accounts for transfer costs, where R transfers were made per month, each involving d GB of data per
transfer, multiplied by the cost to transfer per GB, cio.
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Figure. 7. Cache Cost Analysis: 50 MB Unit Size (25 GB Total Cache Size)

Let us first consider Figure 7(a). On the left axis, the monthly costs are shown. Clearly, the total
costs are dominated by instance allocation time due to small amounts of I/O. The cost per unit speedup
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(dotted line shown against the right axis), suggests that m1.xlarge instances may not be cost effective
for applications with low request rates. In Figure 7(b), we show the same configuration with the higher
amount of requests, R = 200000. Due to the large amount of requests and 50 MB per transfer, the
costs now become dominated by I/O. As can be seen, the significant gap between the speedups obtained
by m1.small and m1.xlarge are now revealed. The costs per speedup are also showing the reverse
trend, suggesting that m1.xlarge should be used when R is expected to be large.

Next, we focus on the persistent storage options, shown in Figures 7(c) and 7(d). The equations for
computing total costs are changed as follows. For ebs-based instances, the costs can be computed the
same as before, CEBS = CAlloc + CStore + CReq + CIO with the addition of CStore and CReq . CStore
is the monthly cost to store the data, and CReq is the cost per 10000 out-bound requests. CAlloc and CIO
remain the same as before. For S3, the cost is CS3 = CStore + CReq + CIO. Because CReq and CStore
are typically so low, they are not shown in the figures. For instance, CStore is only $3.75 per month for
storing 25 GB on S3. This number drops to $2.50 per month for ebs storage. CReq is almost zero cost
for our amount of requests per month.

Initially, in Figure 7(c) we can clearly observe that S3, devoid of costly instance allocation, is by
far the most inexpensive option. Furthermore, when R is small, its performance is comparable to the
considerably more costly ebs instance types. This results in an extremely high payoff of having low cost
per unit speedup. However, for a large request rateR this payoff is amortized due to the I/O transfer costs.
Moreover, the speedups observed by ebs also overcome S3 significantly when given the high number of
requests.

While this results in lower cost per unit speedup on ebs-backed instances, the instance ebs allocation
costs are still quite high in practice (e.g., xlarge-ebs would still cost $500 more per month over S3).
Furthermore, as we mentioned previously, not all applications will require out-of-cloud transfers, which
gives more rise towards using S3 as an inexpensive and viable storage option.

4.6 Discussion

The experiments demonstrate some interesting tradeoffs between cost and performance, the requirement
for persistence, and the average unit-data size. We summarize these options below, given parameters d
= average unit-data size, T = total cache size, and R cache requests per month. Although we could not
present the cost evaluation for all unit data sizes in this article (see [Chiu 2010]), we offer a summary of
our observations here.

For smaller data sizes, i.e., d ≤ 5 MB, and small total cache sizes T < 2 GB, we posit that because
of its affordability, S3 offers the best cost tradeoff when R is small, even for supporting volatile caches.
m1.small.mem and m1.small.disk also offer very good cost-performance regardless of the request
rate, R. This is due to the fact that the entire cache can be stored in memory, together with the low cost of
m1.small allocation. Even if the total cache size, T , is much larger than 2 GB, then depending on costs,
it may still even make sense to allocate multiple small instances and still store everything in memory,
rather than using one small instance’s disk – we showed that, if request rate R is high, and the unit-size,
d, is small, the speedup for m1.small.disk is eventually capped two orders of magnitude below the
memory-bound option. If d ≥ 50 MB, we believe it would be wise to consider m1.xlarge. While it
could still make sense to use a single small instance’s disk if R is low, we observed that performance is
lost quickly as R increases, due to m1.small’s lower-end I/O.

If data persistence is necessary, S3 is by far the most cost-effective option in most cases. However, it
also comes at the cost of lower throughput, and thus S3would be viable for systems with less expectations
for high amounts of requests. The cost analysis also showed that storage costs are almost negligible
for S3 and EBS if request rates are high. If performance is an issue, it would be prudent to consider
m1.small-ebs and m1.xlarge-ebs for smaller and larger unit-data sizes respectively, regardless
of the total cache size. Of course, if cost is not an a pressing issue, m1.xlarge with or without EBS
persistence should be used achieve the highest performance.
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4.7 Hybrid Cache Evaluation

From these observations, we believe it would be cost effective to create a hybrid cache, which uses only
one EC2 node and evicts records into S3. This cache variant is in contrast to previous versions, which
grow incrementally without eviction. We believe this hybrid configuration would offer a cost-effective
way to store the same amount of keys, but at a slight cost of performance of having to query S3.

The key search function would initially query the EC2 node, and upon miss, looks in S3. We built
this cache hybrid, and ran the following experiments on one m1.xlarge node. Using 5 MB unit size,
we again randomly submitted 3000 unique keys over 5000 requests. We also submitted 1000 requests
over 500 unique keys for 25 MB unit size. We measured their miss rates, shown in Figures 8(a) and 8(b)
respectively. The subgraphs within each figure show the amount of records that have been evicted into S3.
As can be seen in both figures, the hybrid cache offers higher miss rates, which would expectedly lower
average request times. This pattern is more prominent and occurs sooner in Figure 8(b) due to a lower key
range being used in this experiment. Due to space constraints, we do not offer a deep performance and
cost analysis on this version of the cache against previous versions. We plan to disseminate these results
as future work.
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Figure. 8. Miss Rates for S3-Hybrid Cache

5. RELATED WORKS

[Juve et al. 2010] examined application performance in the context of scientic workflow data deployed
on various storage options, namely S3, NFS, GlusterFS, and PVFS. Their findings proved that the cost of
running workows on EC2 is not at all prohibitive when a single instance is used, and S3’s performance and
cost-effectiveness exceeds all others when data reuse is necessary in an application. [Dejun et al. 2009] ad-
dressed the issue of performance homogeneity, imperative for predicting future resource requirements for
maintaining the SLA in service-oriented applications, in the context of Amazon EC2’s resource provision-
ing, and observed heterogeneous performance behavior among instances. However, small EC2 instances,
spread across different zones, can be classified into three or four clusters with similar performance mea-
sures. [Evangelinos and Hill 2008] concluded that EC2 has huge potential in parallel HPC applications
if coupled with the right parallel middleware (MPI) and high-performance interconnect (e.g., Myrinet or
Infiniband). [Hill and Humphrey 2009] performed a quantitative evaluation of 64-bit Amazon EC2 as a
replacement of Gigabit Ethernet Commodity Clusters for small-scale scientic applications. Their results
echo the findings of other similar research. EC2 is not the best platform for tightly coupled synchronized
applications with frequent communication between instances because of high network latency. However,
its on-demand capabilities with no queuing front-end (unlike traditional HPC environment) makes for a
compelling environment for scientists looking to quickly debug and compute small scale applications,
without the queue and wait time.
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Distributed data and cache storage systems are abundant, and they differ in usage expectations which
define their functionalities. As today’s data store solutions typically seek to avoid a centralized architec-
ture, consistent hashing [Karger, et al. 1997] has quickly become the preferred method for specifying
data locality. For instance, consistent hashing is currently being employed in many Web caching [Karger,
et al. 1999], peer to peer [Stoica et al. 2001; Rowstron and Druschel 2001; Zhao et al. 2004], and NoSQL
data stores [DeCandia et al. 2007; Lakshman and Malik 2009; Olson et al. 1999].

Due to the simplicity in their APIs, key-value stores (or so-called NoSQL data stores) have become
increasingly popular in supporting today’s applications. Memcached [Fitzpatrick 2004] is a popular dis-
tributed key-value caching system which originally aimed to accelerate dynamic Web applications by
eluding expensive unnecessary queries to back-end databases. It stores serialized data objects in memory
up to a fixed size, but it is typically assumed small. The memcached servers utilize an LRU and TTL
eviction policy and requires manual scaling. MemcacheDB [memcached ] further adds persistence and
transaction support to the memcache framework by using BerkeleyDB [Olson et al. 1999] as a back-end.
In contrast, our system has no restrictions on data size and allows the servers to expand on-demand when
reaching capacity. We use consistent hashing on the client to route requests and furthermore provision
data migration capabilities to avoid cache misses upon node expansion. Due to memcache’s lack of mi-
gration, we can expect significant amounts of misses on certain range of keys during manual scaling. We
are working on comparing our work against memcached in an elastic cloud environment.

Google’s BigTable [Chang et al. 2006] and the open-source Hadoop-oriented implementation, HBase4,
are distributed column-stores capable of handling very large structured data, capable of scaling to thou-
sands of low-cost machines. Amazon’s Dynamo [DeCandia et al. 2007] and Facebook’s Cassandra [Lak-
shman and Malik 2009], are highly available and reliable key-value stores for structured data. Like our
system, both Cassandra and Dynamo allow for incremental scaling of nodes through exploiting consistent
hashing to handle data partitioning and migration. The above efforts in key-value stores put forth focus
on supporting features required in transactional databases, including replication, persistence, and consis-
tency. While enabling such support is a necessity for persistent data applications, it expectedly leads to a
degrade in performance. The data cache presented in this paper is far more ephemeral and lightweight in
nature. Our cache does not focus on persistence and thus avoid these such requirements.

Other works on indexing multi-dimensional data in the cloud [Wang et al. 2010] have focused on using
Content-Addressable Networks (CAN) and R-Trees. There they propose an overlay structure called RT-
CAN that is capable of scaling up with demand. However, there is an assumption that the overlay is a static
network, meaning once a node is brought online it remains so until the hardware fails. This preclused the
ability to scale down on-demand. By comparison, our system makes no such assumption and, indeed,
is built with the expectation that nodes will be joining and leaving frequently as demand requirements
change.

Our proposed cache system has been tailored for cloud environments and is capable of incrementally
grow to flexibly adapt to increasing workloads, which are prevalent in compute- and query-intensive
environments. Moreover, the main contribution in this paper is analyzing data migration overheads given
various pervasive key-indexing schemes in elastic cloud environments.

6. CONCLUSION

Clouds are an on-demand source of computational and storage resources and supports dynamic scaling of
these resources. This property of the cloud motivated us to implement a cooperative elastic cache which
has been deployed onto Amazon EC2. We showed through experiments that elasticity can be leveraged
incrementally to reduce cache miss rates to near-zero values in our application. Moreover, the system
achieved the same performance as the static node versions (found in traditional cluster environments), but
utilized fewer nodes in the process, which is important in terms of cost.

Secondly, we evaluated the performance of B+-tree, Extendible Hashing and Counting Bloom Filters.
Counting Bloom Filters consistently performed poorly and were the least suited for our system, in the
context of supporting the elastic cache. As expected, B+-Trees performed well consistently and scaled

4http://hbase.apache.org
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well with change in query intensity. The performance of Extendible Hashing was dependent on its pa-
rameter (number of records per bucket) and the system environment (query intensity). Thus, Extendible
Hashing outperformed all other indexing schemes, on choosing the right parameters, which was not ini-
tially within our expectations. Another interesting observation we made was the Bloom Filter’s increasing
performance in data migration, as nodes were being added. In the end, however, this resurgence will not
overtake B+-Trees’ overall performance. We attempted to optimize the system by minimizing wait time
(idle time) through speculative prelaunching of instances. This was achieved by pre-loading instances
when a threshold was met and by introducing multi-threading. The threshold varied dynamically and
depended on the node capacity, number of nodes allocated and the query intensity.

In terms of costs, we offered an extensive evaluation of supporting such a cache over Amazon’s EC2
and S3 services. While S3 is certainly a viable option, for high performance applications, users might
prefer the more costly memory-based store. We designed a hybrid version of this cache, which stores the
most-recently used records in EC2 nodes, and evicts records into S3, as a cost-effective alternative.

We plan to extend our elastic key-value store such that all the subtlety regarding resource allocation in
the cloud is abstracted from the user. We propose a fully autonomous cache engine that would intelligently
control cloud resources based on users’ expectation of cost and performance. Our cache engine would
control two aspects of the data organization: micro-level and macro-level. At the micro-level, each cache
server is concerned with where data should be placed: in memory, on disk, or in persistent storage. As
such, we plan to outfit each server node with efficient strategies for classifying data and promoting or
demoting to different storage options (or evicting in entirety) based on usage patterns, data size, and other
factors. At the macro-level, the organization engine is mostly concerned with managing the size of each
tier in the hierarchy, and thus is also concerned with costs. The application users have the option to input
the following: (1) a cost constraint parameter, C, (2) a cost-priority parameter, Pc (0<Pc<1), and (3) a
list of cloud resource usage cost. The objective is to maximize cache performance given these constraints.
The cost-priority parameter allows users to configure the importance of performance versus cost, i.e., a
high value of Pc implies that the cache manager should strive to keep costs as low as possible. The macro
component is also responsible for capacity planning, and upon any danger of overflowing, it would initiate
the allocation of new instances (or upgrade to a larger machine), if within budget. Conversely, it would
take necessary steps to consolidate instances if under-utilization is predicted.
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