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MapReduce algorithms can be difficult to write and test due to the accidental complexities involved with existing

MapReduce implementations. Furthermore, the configuration details involved in running MapReduce algorithms

within a cloud present a set of new challenges. Our research reveals that many details of cloud configuration can be
hidden from programmers in an automated and transparent manner. Using concepts from software engineering, we

have increased the ease of use for implementing MapReduce algorithms by creating a lightweight domain-specific

language (DSL). Additionally, we created a plug-in for the Eclipse integrated development environment (IDE)
based on this DSL to automate and hide many cloud configuration details. The goal of the combination of our

IDE and DSL is to improve the efficiency and effectiveness for programmers in developing MapReduce algorithms
for cloud computing.

This paper describes the existing challenges of creating MapReduce algorithms and how our approach minimizes

these challenges. MapRedoop is a framework that can be used to transform a program written in a DSL to
a MapReduce implementation, which can be deployed and executed in a cloud platform such as Eucalyptus or

Amazon’s Elastic Compute Cloud (EC2). Assorted examples selected from various domains have been rewritten in

the MapRedoop framework to demonstrate its expressiveness and usefulness. Our performance analysis reveals that
the advantages gained using our approach can be attained with comparable execution times to the methodologies

currently in practice.

Keywords: MapReduce, Hadoop, DSL, Execution Environment.

1. INTRODUCTION

Cloud computing provides users with the flexibility of performing high volume computations
without the cost of building the required infrastructure. There are several purposes for writing
software within a cloud architecture, such as file storage and management [Ghemawat et al.
2003], cloud infrastructure management [Sugiki et al. 2010], and computations of large datasets
[Manjunatha et al. 2011]. The focus of this paper is on writing MapReduce algorithms, which
is a programming model used to solve problems involving large data sets utilizing a cluster of
computation nodes where input and output are converted to key/value pairs [Dean and Ghemawat
2008]. The MapReduce model allows: 1) partitioning the problem into smaller sub-problems, 2)
solving the sub-problems, and 3) combining the results from the smaller sub-problems to solve
the original issue. The programming model automatically partitions the problems based on the
input given (e.g., splitting the input into lines or blocks of lines if given a text file; files if given
a directory; and objects if given a list of objects). MapReduce is responsible for solving the
sub-problems in parallel and makes the individual results available for the combiner to act upon.
From the programmer’s perspective, MapReduce involves two main computations:

(1) Map: implements the computation logic for the sub-problem; and

(2) Reduce: implements the logic for combining the sub-problems to solve the larger problem.

According to [Dean and Ghemawat 2008], since its development, “more than ten thousand
distinct MapReduce programs have been implemented internally at Google over the past four
years, and an average of one hundred thousand MapReduce jobs are executed on Google’s clusters
every day, processing a total of more than twenty petabytes of data per day.”
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Although Google was among the first to implement and utilize MapReduce, Apache (Hadoop)
and Stanford (Phoenix) have created open source implementations [Dean and Ghemawat 2008].
Google identified five areas for the refinement of MapReduce, including customized input and
output types and simplified debugging [Dean and Ghemawat 2008]. Not all MapReduce problems
will require the same input type (e.g., text file, associative array, clusters, vectors); therefore, if a
programmer wishes to use a different input type, it is the programmer’s responsibility to create a
conversion class. Google’s solution for customized input and output types is for the programmer
to create a custom reader that will convert the input into the required key/value pairs for the
mapper, which are called protocol buffers1 (PB). PBs create data structures automatically, but
the programmer must create the appropriate converters. Although this solution did improve
Google’s MapReduce implementation, the responsibility still lies with the programmer. When
debugging a MapReduce algorithm in Google’s original implementation, the programmer was
forced to debug in the cloud at runtime. Google’s solution for simplified debugging is to use a
specified flag to run the code locally, at which time the programmer can use the debugging or
testing tool of choice [Dean and Ghemawat 2004]. This gave the programmer the choice to test
either in the cloud or locally.

Our solution to the accidental complexity of customized input/output that emerges in MapRe-
duce solutions is to present a domain-specific language (DSL), which is an expressive language
focused on a specific problem domain that provides a higher level of abstraction for specifying a
computational or configuration need in the domain [Wu and Gray 2005; Raja and Lakshmanan
2010; Mernik et al. 2005]. According to [Mernik et al. 2005], an important benefit of a DSL is that
a programmer’s focus may lie on the problem space as the accidental complexities of the solution
space are minimized. Additionally, Raja and Lakshmanan explain that a DSL should “screen
away the internal complex operations of the system.” It is desirable for the programmer to focus
on the correctness of the algorithm and not be concerned with platform and configuration issues.

MapRedoop is our contribution that addresses the second accidental complexity related to
simplified debugging of a MapReduce algorithm. MapRedoop is a framework consisting of a
DSL and an integrated development environment (IDE) within Eclipse. In MapRedoop, the
programmer is given the flexibility to implement the map and reduce functions after specifying
some of the data structure details, such that the user is oblivious to the setup reuired to execute
the program and any possible type mismatches that might occur. Because MapRedoop is a
plug-in for Eclipse, a programmer may develop MapReduce algorithms within an IDE, in which
the programmer has the option to execute the code running Hadoop either in a cloud or on a
local machine instance. Section 5 describes how MapRedoop is used to address the challenges of
implementing MapReduce algorithms.

This paper discusses our motivation for implementing MapRedoop in Section 2. We describe
related work in Section 3 and provide additional details on MapReduce programs in Section 4.
A discussion of the benefits of applying MapRedoop can be found in Section 5. An evaluation of
MapRedoop on several examples is provided in Section 6. The final section of the paper includes
a summary of future work and conclusions. A demo using MapRedoop programs can be found
on our project site2.

2. MOTIVATION

As a motivating need for the approach described in this paper, our first experience with writing
a MapReduce algorithm was confusing and frustrating. We wanted to modify the WordCount3

example algorithm to compute the probabilities of bigrams beginning with a specific word occur-
ring within a given text file. The algorithm itself was straightforward, but the environment,

1http://code.google.com/apis/protocolbuffers/
2https://sites.google.com/site/mapredoop/
3http://wiki.apache.org/hadoop/WordCount

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.



Simplifying the Development and Deployment of MapReduce Algorithms · 141

particularly testing, data types, and class interactions presented challenges to our implemen-
tation.

In our initial solution using the pseudocode in Algorithm I, we encountered several accidental
complexities that contributed multiple challenges during the development process. The primary
issue we experienced was not demonstrated until we ran the code: we received zero for each of the
probabilities. We knew what the proper data type for each variable should be (int, double, float),
but Hadoop did not accept any of these types. Hadoop required the use of internal data types;
therefore, we had to change each instance of the IntWritable data type to the FloatWritable

data type. After we corrected the class and attempted to execute the program, we received a
type mismatch error (“Type mismatch in key from map”), and we realized we needed to alter
the data type in additional classes (Driver).

Input - R: Text files and a word w
Output - Bigram probability of the word in the files

mapper
if word = w

output (bigram, 1)

output (word, 1)
endIf

reducer
while morevalues

sum = sum + values
output (sum/total)

Algorithm I: Bigram probability estimation

A secondary issue we encountered was that the output of the mapper must match the type
of the input of the reducer. Additionally, if a partitioner or combiner were included in our
program, the output of the mapper would have to match the input of the partitioner, the output
of the partitioner would have to match the input of the combiner, and finally, the output of
the combiner would have to match the input of the combiner. This is a simple issue to which
a programmer acclimates after writing a few MapReduce programs; however, we feel this is yet
another accidental complexity. The situation differs when reading data from a text file versus
reading the text file itself; Hadoop reads text files slowly when compared to sequential files.
Therefore, the data from a text file must be converted to data in a sequential file to decrease the
program’s run-time. This experience caused us to ask a few questions:

(1) How can the programmer easily identify the required input requirements?

(2) Should the programmer need to be concerned with data types?

—Is there a way the programmer can use familiar data types and then use Hadoop to inter-
nally convert these data types appropriately?

(3) With what other issues should the programmer not have to be concerned?

We feel there are three primary areas about which the MapReduce programmer should not have
to be concerned:

(1) Input structure: The current frameworks, which claim to address these issues, have not
solved the issues entirely. For example, a K-means [Kanungo et al. 2002] program executed
in Mahout4 (a library for machine learning and data-mining programs) expects a vector as
an input; however, if the input structure differs, the programmer has to rewrite the file to
match the structure which Mahout supports.

4http://mahout.apache.org/
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(2) Improper level of abstraction: Ideally, the programmer should have the ability to focus
solely on the map and reduce functions rather than the implementation details. Currently,
the MapReduce programmer has to search within the source code to identify the mapper and
the reducer (and depending on the program, the partitioner and combiner). After identifying
these classes, the programmer has to delve deeper into the code to determine the proper
inputs. The key challenge is that there is no central place where the required input values
for each of these classes can be identified in order to increase program comprehension.

(3) Improper validation: Because the input and output for each class (mapper, partitioner,
combiner, and reducer) are declared separately, mistakes (such as the data type issue we men-
tioned previously) are not identified until the entire program is executed. The programmer
should have the ability to execute each class separately for validation purposes.

Upon identifying these three primary issues, we built a tool to aid the programmer in creating
MapReduce programs. Our tool and its implementation are described in Section 5.

3. RELATED WORK

There have been many efforts in providing DSLs to express computational intensive problems,
specifically in the parallel programming domain [Charles et al. 2005; Diaconescu and Zima 2007;
Allen et al. 2007; Jacob et al. 2010; Fritz et al. 2004; Chafi et al. 2011; Jacob et al. 2009]. Recently,
there have been many studies about the usefulness of DSLs in Cloud Computing, including work
by the following: [Manjunatha et al. 2011; Ranabahu et al. 2010; Low et al. 2010; Sugiki et al.
2010; Pike et al. 2005], McCullough5, and Kromer6. The six other efforts that are most relevant
to our work are briefly presented here.

Kumoi is an embedded DSL for virtual data center management. Their primary goal was to
“provide maximum management efficiency for experienced administrators” [Sugiki et al. 2010].
Kumoi utilizes a DSL to allow data center administrators to write complex management scripts
while hiding unnecessary details. This tool reduced the number of lines of code required to deploy
VMs by 71%, balance VMs by 81%, and shutdown VMs by 98% as compared to the same scripts
written in Libvirt (Java). This tool is similar to our MapRedoop in that it simplifies the code
necessary for programmers to write; however, Kumoi relies on a distributed object model (Java
RMI) rather than a parallel function model (MapReduce).

OptiML is a DSL from the machine learning domain. It automatically analyzes and optimizes
the domain specification generating CUDA7 code [Sujeeth et al. 2011]. According to Low et
al. “GraphLab achieves a balance between low-level (PThreads) and high-level (MapReduce)
abstractions” [Low et al. 2010]. The developers of GraphLab report a significant speedup among
the various ML (Machine Learning) algorithms tested, and thus, the goal of balancing high-
level and low-level abstractions while improving efficiency was met. MapRedoop differs from
GraphLab in that MapRedoop is based on creating an abstraction for MapReduce (a high-level
language according to Low et al [Low et al. 2010]).

Manjunatha et al. [Manjunatha et al. 2011] present a DSL, Metabolink Toolkit, for scientists to
analyze Nuclear Magnetic Resonance based metabolomics data. While the Metabolink Toolkit
can be implemented on multiple platforms including Apache’s Hadoop (taking advantage of
MapReduce) and Microsoft’s Azure, it is not an abstraction of the MapReduce algorithm itself,
which is the purpose of the tool presented in this paper. The three tools described above each
have commonalities with MapRedoop, but the primary difference between each of the described
tools and the approach presented here is the tools described above have been created for a very
specific domain. The goal of MapRedoop is to provide an easier method to write MapReduce
algorithms in a domain-independent manner.

5http://www.nofluffjuststuff.com/conference/reston/2011/04/session?id=20942
6http://mrflip.github.com/wukong/
7http://www.nvidia.com/object/cuda home new.html
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Three additional tools presented by [Pike et al. 2005], McCullough, and Kromer are very similar
to one another as they provide a DSL to write MapReduce algorithms more easily. These tools
provide high-level abstractions to simplify the map and reduce functions; however, because of
the simplification, they reduce the programmer’s power. In contrast, MapRedoop simplifies the
process of creating a MapRedoop program leaving the map and reduce function implementation
to the programmer; thereby, maintaining a flexible and powerful environment.

4. A STUDY OF MAPREDUCE PROGRAMS

While implementing a MapReduce solution for a given problem, the programmer has to setup
the data to allow the MapReduce framework to process the data efficiently, but the output
generated from the framework may need to be converted. Section 4.1 explains such common
setup steps involved in data conversions. Section 4.2 reveals more details about the interactions
of MapReduce programs within our framework.

4.1 Steps Before and After MapReduce

The number of stages before and after the MapReduce execution differs based on the problem
to be solved. As in the case of Hadoop8, if the MapReduce implementation requires reading
and writing to and from sequential files, more stages are required. Sequential files are flat files
containing data in the key/value format. Sequential files support splitting up data for parallel
jobs, even if they are compressed, making them a sufficient point of contact for the Hadoop
framework. The input text files are read as Java objects and are written to sequential files
before the MapReduce operation and converted back to text files after (or any other structure as
needed).

To get a better understanding of the process, a detailed explanation is given for some of the
common types of MapReduce problems. We categorize the MapReduce programs into three
classes:

(1) Class 1: Programs that take text files as the input and read tokens (e.g., WordCount,
Bigram, InvertedIndex [Lin and Dyer 2010]);

(2) Class 2: Programs that implement a machine learning algorithm (e.g., Clustering algo-
rithms, Classifier algorithms); and

(3) Class 3: Programs that create a data structure (graph) internally for computation, e.g.,
PageRanking [Lin and Dyer 2010], and Breadth First Search (BFS). Please note: although
some clustering algorithms take text files as input, we include it in the third class because
the text files must first be converted to sequential files before passing to the MapReduce
framework.

Programs that cannot be included either in the first or second classes are included in the
third class (e.g., matrix multiplication or matrix transposition). The examples to demonstrate
the process involved in implementing a MapReduce problem were carefully chosen such that the
problems represent a general way of implementing a class of MapReduce programs. We selected
InvertedIndex from the tokenizer algorithms (Class 1), the Clustering algorithm using Reuters
benchmark9 from the machine learning class (Class 2), and page ranking Wikipedia articles from
the graph algorithms (Class 3). The focus of the analysis is to identify the steps involved in
creating a MapReduce program not including the Map and Reduce sections.

4.1.1 Inverted Index. An InvertedIndex program for text files creates a data structure that
maps words in the file to their locations [Zobel and Moffat 2006]. Another implementation of
the InvertedIndex algorithm involves a data structure, which has a field to store the document
identifier and a counter for each word in this data structure that is emitted from the mapper. The

8http://hadoop.apache.org/
9http://www.daviddlewis.com/resources/testcollections/reuters21578/
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reducer collects the data structures for each word and combines the data to give the final inverted
index of that word. The input is a text file, a data structure that is required to implement the
MapReduce block, and a converter that is required to read the data structures to the required
output structure (see Figure I).

4.1.2 PageRank. PageRank10 is used by the Google search engine to sort search results [Page
et al. 1998]. The algorithm assigns a weight to the pages based on the incoming and outgoing links
in the documents. Pages are mapped to nodes while links are mapped to edges to create a graph
structure. The algorithm works on the graph and weights are calculated for graph edges. The
implementation11 we used for our analysis was from Cloud912, a MapReduce library implemented
using Hadoop for both teaching and data intensive research projects.

The program we used for our analysis creates a PageRank for all of the articles in the current
version of Wikipedia. Wikipedia allows downloading13 the article contents to a zip file, which
can later be extracted to an XML file (e.g., ‘date-pages-articles.xml’). As shown in Figure 1, the
XML file is converted to a sequential file of type PageRankNode using the class RepackWikipedia.
The MapReduce framework processes the sequential files and emits the output sequential files of
type PageRankNode. Using a converter, the output sequential files are read as Java objects of
type PageRankNode to get the data into the necessary final output structure.

Figure. 1: Input/output process overview

10http://www.google.com/corporate/tech.html
11http://www.umiacs.umd.edu/ jimmylin/Cloud9/docs/content/pagerank.html
12http://www.umiacs.umd.edu/ jimmylin/cloud9/docs/
13http://dumps.wikimedia.org/enwiki/
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4.1.3 Clustering. Clustering algorithms assign data into smaller groups based on a similarity
factor. We used one of the simplest clustering algorithms, K-means. More details about K-
means are presented in Section 6.2. We used the same implementation as Mahout. The K-means
program is also commonly implemented using Hadoop. The program takes vectors as input and
outputs a data structure of type Cluster. Using the data structure, the initial vectors can be
clustered into specified groups, and the current center of each cluster can be determined.

The input used for the algorithm testing was Reuters-21578, one of the most widely used text
collections in text categorization research. The text files are converted into sequential files of
type String and are passed to a DocumentVectorizer, which parses the string to a Vector. The
input vectors are then given to the MapReduce framework for clustering and output is generated
as sequential files of type Cluster. Using a converter, ClusterDumper, the cluster sequential files
are converted to text. The different stages of conversion involved in the K-means clustering of
Reuters-21578 are shown in Figure 1.

4.2 Data Structure Analysis of MapReduce Programs

As mentioned earlier, writing a MapReduce solution includes specifying mappers and reducers.
In some cases, adding a combiner and partitioner can make the solution more efficient. To define
any of these, however, programmers are expected to specify the key type and value type of both
the input and output. Hadoop has a small set of predefined key types and value types, which
we found to be insufficient for providing solutions for real-world problems. For our analysis, all
of the additional key or value types, which must be defined, are referred to as Writable. This
is the interface Hadoop utilizes for defining new types. Some of the defined types might require
a converter to read to and from Java Objects or text files. If they appear in the input of the
mapper or output of the reducer, such types are referred to as ‘Sequential types’ (the types are
generally written or read from sequential files). As an observation, if any of the input types of
the mapper is a Writable object, the input structure for the MapReduce job will be a sequential
file structure. The same is true for the output of the reducer.

Table I lists the various programs we used for our analysis and indicates whether the program
has a mapper (M), reducer (R), combiner (C), and/or partitioner (P). The list of writable and
sequential writable types for each program are also specified. All of the types shown as sequential
writable are also writable; hence, in the table, it is shown as just sequential writable. The
sequential writable types can be input (I), output (O), or both (I, O). The programs were collected
primarily from Hadoop, Cloud9, and Mahout examples. If a program was collected from another
source, the reference is provided within the table itself.

Class Type Name M R C P Writable types Sequential Writable types

Class 1

WordCount
√ √ √

Bigram
√ √ √

InvertedIndex
√ √ √

AssociatedArray
Collocation matrix

√ √ √
Map

Class 2

Collocation discovery
√ √ √

Gram

LDA model
√ √ √

Vector (I)

Kmeans
√ √ √

ClusterObservation Vector (I), Cluster (I,O)
Dirichlet clustering

√ √
Vector (I) Cluster (O)

FuzzyKmeans
√ √ √

ClusterObservation Vector (I), Cluster (I,O)

Class 3

HITS
√ √ √

HITSNode (O)
PageRank

√ √ √
PageRankNode (I, O)

BFS
√ √ √

BFSNode (I, O)
Matrix multiplication

√ √ √
Vector (O)

MonteCarlo14
√ √ √

GridJobResult (O)
Image processing15

√ √
Image (O,I)

Table I: Data structure analysis of MapReduce programs
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4.3 Summary of the analysis

The results of our analysis can be summarized in the context of three key concepts from software
engineering engineering based on criteria for well-designed software, such as comprehensibility
and reusability [Parnas and Clements 1986].

4.3.1 Code comprehensibility. Code comprehensibility plays a vital role both in software de-
velopment and software maintenance [Deimel and Lionel 1985; Kernighan and Plauger 1982].
To understand the execution of a given MapReduce program implemented in Hadoop, which is
often spread throughout many Java classes, the programmer must determine the Driver class. If
proper naming conventions are not followed, the programmer has to find out the extended classes
(AbstractJob) and implemented interfaces (Writable). This is the case for a programmer who
is familiar with Hadoop APIs. Even a Java programmer familiar with MapReduce concepts has
to read Hadoop documentation to get started with MapReduce programming.

The Driver class, which is the configuration file for Hadoop, is not sufficient in showing relevant
information for the code reader in MapReduce programs. As mentioned in the motivation section,
there exists a contract between Mapper, Reducer, and Combiner; the output of the mapper should
have the same type as the input of reducer, or vice versa.

4.3.2 Software reusability. With the existing framework in Hadoop, MapReduce programs
are written for a given input using a specified structure. This situation also occurs for libraries
that are built over Hadoop. As an example, a BFS program from Cloud9 takes sequential files of
type BFSNode as input. This type can be created from text files, which specify the graph in the
following structure: “NodeId AdjacentNodeId1, AdjacenteNodeId2.” If a programmer desired
to execute the BFS program where the input is specified in a slightly different structure (e.g.,
“NodeId: AdjacentNodeId, AdjacentNodeId”), he cannot directly use the BFS program from
Cloud9.

4.3.3 Generative programming. Generative programming brings the benefit of automation to
software development [Czarnecki and Eisenecker 2000]. Many programs require custom data
structures (writable and sequential writable) to do the necessary computations. Implementing
the Writable interface can be automated, as well as the corresponding converters, due to the
type information about the output of the Mapper being redeclared in the input of the Reducer,
and the input of Mapper being redeclared as parameters in the map method of the Mapper class.

Our analysis concludes that these issues occur due to the improper level of abstraction. Cur-
rently, MapReduce is implemented as an API, and these issues can be addressed if we can raise
the level of abstraction. Type checking should be done at this new level of abstraction to allow
the code to be more precise and readable. In the background, generative programming techniques
can be used to run Hadoop while the programmer is presented with a small language targeted
solely for MapReduce. Based on this analysis, a tool is presented that illustrates the potential for
increasing the extensibility of input/output types in support of generative programming, which
can assist in increasing code comprehensibility and software reusability.

5. MAPREDOOP

In this section, the MapRedoop framework is explained. MapRedoop has been used interchange-
ably to denote both the framework and the DSL. Section 5.1 explains the implementation of a
MapReduce program using MapRedoop from a user’s perspective and Section 5.2 explains the
implementation of the MapRedoop framework.

5.1 Using MapRedoop in the Eclipse IDE

In this section, MapRedoop is explained from a user’s perspective. The programmer writes the
MapRedoop (DSL) for his/her current problem in a specialized editor (marked ‘7’ in Figure 2),
which supports syntax highlighting, code completion, validation and quick fixes, and advanced
editor features such as bracket matching and outline view.
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Figure. 2: Screenshot of MapRedoop in Eclipse IDE

Development of MapReduce programs in MapRedoop occurs in four stages:

(1) Creating MapRedoop programs: The programmer completes the MapRedoop program,
which is represented by a file having extension “.hdp” (e.g., “kmeans.hdp” marked ‘1’ in
Figure 2). Within that program, the programmer specifies the required data structures and
plug points in the framework.

(2) Code generation: The programmer generates code by right-clicking the “.hdp” file and
using the “Generate code” option. This creates three Java packages: 1) hadoop.core, the
main package for executing, setting up, and running the mapper and reducer, 2) hadoop.ds,
the package for data structures in the program, and 3) hadoop.utils, the helper classes for
converting text files to sequential files, and vice versa.

(3) Implementing MapReduce methods: The programmer implements the actual MapRe-
duce algorithm. After the code generation, there are empty stub methods inside the “Core-
Helper.java” classes. These empty methods give the full flexibility of the Java programming
language for the programmer to implement the MapReduce logic.

(4) Execution: The programs written using MapRedoop can be executed in two modes:

—Hadoop standalone version: Upon right-clicking the “.hdp” file and selecting the “Run as
MapRedoop” option, the programmer is presented with a “Run Configuration” dialog as
shown in Figure 2. If the option “EC2” (marked ‘5’ in Figure 2) is unchecked, upon selecting
“Run” (marked ‘6’ in Figure 2), the program is executed as standalone. Because the run
configuration (marked ‘2’ in Figure 2) is implemented using the Eclipse run configuration
framework16, the same programs can be executed with different inputs or configurations,
and these configurations can be saved.

—Hadoop cluster in EC2: Before executing a program in EC2, a Hadoop cluster should be
launched. This assumes that the required EC2 configurations have already been made in
the Hadoop installation folder to start a Hadoop cluster in EC2. Upon selecting “EC2”
(marked ‘3’ in Figure 2), the programmer is presented with a light-weight pop-up (marked
4’ in Figure 2) to specify the cluster name and number of slaves.

16http://www.eclipse.org/articles/Article-Launch-Framework/launch.html

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.



148 · FEROSH JACOB et al.

All communication between the Hadoop server, whether it is standalone or EC2, are shown
in the console (marked ‘8’ in Figure 2). Video demonstrations of standalone executions and
EC2 clusters can be viewed at our project web site (see footnote 2).

5.2 High-Level Design Diagram

A high-level design diagram of the MapRedoop framework is shown in Figure 3.

Figure. 3: MapRedoop Overview

The configuration and control of this framework is achieved through the MapRedooop DSL
explained in Section 5.3. As shown in Figure 3, the MapRedoop tool has two components:

(1) Code generator: This component takes the MapRedoop DSL as input and generates code
for three packages, as mentioned previously. These generated classes can be combined into
three categories:
(a) Core classes: These include the Mapper, Reducer, Combiner, Partitioner, and the Driver.

Other than the Driver class, these classes are only generated if they are mentioned in the
MapRedoop DSL. In addition to the driver class, a CoreHelper class is generated; this
is where the programmer will implement the actual MapReduce algorithm.

(b) Data structure classes: Data structure classes are new types defined in the MapRedoop
DSL. There can be two types of data structure classes: 1) Data structure types that
occur as the key/value of any of the mappers or reducers, and 2) Data structure types
that are only used inside the program. In Hadoop, data structure types that occur as
the key/value pairs require Hadoop to implement an interface called Writable.

(c) File conversion classes: Programmers can specify the template in which input files should
be read. The MapRedoop framework generates classes such that the data can be read
while converting the text file to a sequential file and also while converting the sequential
file back to a text file. The classes are executed before and after the execution of the
MapReduce programs to make the automatic conversion of data possible.

(2) Code deployer: The deployment is done in four stages:
(a) Target environment: Based on the user’s choice, the tool deploys the code either in

Hadoop standalone version or in the EC2 Hadoop cluster.
(b) Format conversion I: Text files or the input information has to be converted to sequential

files, and in the case of the user selecting the EC2 cluster, the sequential files must be
uploaded to the server.

(c) Communication: Collect the results from the server in case of a cluster deployment.
(d) Format conversion II: Convert the results back to the original input structure.
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The key/value types of the program determine the steps. If the key-value types are not
composite, as in the case of the simple ‘WordCount’ program, the deployer just uploads the
input files to the server, executes the results and collects the output to the requested folder.
Class 1 programs generally skip the conversion steps because the input for the programs are
text files.

5.3 MapRedoop DSL

A subset of the grammar for the MapRedoop DSL is shown in Figure 4 (only the important parts
of the grammar are shown for clarity).

1. MapRedoop: Declaration { (Content)*}
2. Declaration: program ID (extend ID)?

3. Content: ListofEntities | MRBlock

a. ListofEntities: metaelements : { (Entity)* }
i. Entity: metaelement ID (extend [Entity])? { (Feature)+ }
ii. Feature: TypeDeclaration; | ReadWrite;

iii. ReadWrite: read (STRING, STRING) | write (STRING, STRING)

b. MRBlock: mapreduce : (loop )? { Mapper Reducer }
i. Mapper : map (Argument, Argument, STRING, STRING ) Block

ii. Reducer : reduce (STRING,STRING, STRING , STRING’) Block;

iii. Block: [(JavaMethodCall)* ]

iv. JavaMethodCall: TimeOfCall : ID

v. TimeOfCall: after | call | before

Figure 4. MapRedoop DSL grammar

The MapRedoop program starts with a declaration statement (line 2). An optional ‘extend’ is
included to reuse some of the features already declared within a DSL. All of the data structures
declared in the parent DSL will be available inside the extending DSL (child DSL). The DSL has
two sections: 1) Meta-elements (line 3a), and 2) MapReduce (line 3b).

(1) Meta-elements: This block is for generating Java code for the data structures to be
used later by file structure conversion classes or the MapReduce framework itself. For every
metaelement defined in the metaelements section, the code generator checks whether that
data structure appears as a type in the keys or values of the mapper or reducer. If it does not
appear, it is generated as a regular Java class with the fields declared in the metaelement,
adding setter and getter methods. If the types appear in any of the key/value pairs of mapper
or reduce, the class is generated as a Writable Java class.

(2) Writable classes: In Hadoop, the classes that are used as a key or value for the mappers
or reducers must implement the Writable interface. In order to implement this interface, the
programmer has to implement two methods, read and write. An example implementation17

of these methods is shown in Figure 5. The code block is taken from a class having three
fields (x, y, and z), each of type float. As demonstrated in Figure 5, it is clear that if we
know the field types, the code can be generated. Aggregate relationships, such as a Java
List, are implemented using an array of elements and each element’s type. In this situation,
our implementation adds an additional variable called fieldname+size of type int to the
original list of fields.
Each meta-element can have two types of features: 1) A TypeDeclaration (metaelement or
native type, such as int) and 2) ReadWrite. We first define the fields in a data structure and
later link them to the input structure in a text file. A line that is coded as:

read (‘‘ ’’, %nodeId%{%distanceFromSource%} : %adjacentlist%" );

17http://developer.yahoo.com/hadoop/tutorial/module5.html
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from a meta-element Node having three fields: nodeId, distanceFromSource, adjacentlist,

declares that the input structure for reading this object originates from a text file. Given
this information, during runtime, the parsers can create Java objects with the values read
from a text file. As an example, if a file has the following two lines: “2{3} : 3” and “3{2} :
4 5 6”, two Java objects are created:

(a) The first object created is nodeId 2 consisting of distanceFromSource 3 and a list
adjacentlist having the value of 3.

(b) The second object created is nodeId 3 consisting of distanceFromSource 2 and a list
adjacentlist having 4 5 6.

The second parameter of the read method defines the structure and the first parameter is
an optional way of specifying a delimiter while parsing a list of values. For objects of type
adjacentlist, a space is used as the delimiter.

(3) MapReduce blocks: The MapReduce blocks were designed to avoid the repeated decla-
ration of types required in the Hadoop implementation. Hence, there is no input declaration
for reducer and input/output declaration for combiner, because these would be the same as
the output of the mapper. Therefore, reducer has no input declaration, only output decla-
ration. The map function takes two parameters (type followed by variable name) and two
arguments (both representing a type). The first two parameters declare two variables, and
those variables can be used inside the mapper function. The last two parameters are argu-
ments declaring the output type of the mapper. Those types are only used inside the reducer;
hence, those variable names are defined as the first two arguments of the reducer. The last
two parameters of the reducer define the output types of the MapReduce program.

1. public void write(DataOutput out) throws IOException {
2. out.writeFloat(x);

3. out.writeFloat(y);

4. out.writeFloat(z);

5. }

6. public void readFields(DataInput in) throws IOException {
7. x=in.readFloat();

8. y=in.readFloat();

9. z=in.readFloat();

10. }

Figure. 5: Sample read and write implementation of Writable

In addition to the above, the MapReduce block allows plug-in Java calls to implement the
actual MapReduce program. For reducer and mapper, these Java calls can be made either
during the process function, or before or after the core function call. Plug-in method calls are
generated to support iterations of MapReduce calls by setting the flag loop. Examples of two
programs written using MapRedoop are introduced in Section 6.

6. CASE STUDIES

Algorithm K-Means BFS

Tool MapRedoop Mahout % Reduction MapRedoop Cloud9 %Reduction

Lines of Code 99 + 23 493 75% 94 + 20 331 66%

Table II: Lines of Code comparison of Hadoop libraries with MapRedoop
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In this section we describe two algorithms implemented using MapRedoop and compare the
solutions to other Hadoop libraries. Implementing the K-means clustering algorithm while im-
plementing the Breadth First Search (BFS) algorithm requires Class 3 types (please see Table
I). Code-level comparison of the programs is shown in Table II. Lines of code for MapRedoop
represent the actual implementation added to the MapRedoop DSL code. The lines of code for
the libraries include the code specifically written for implementing the program. The pre-defined
data structures (e.g., Vector in Mahout) are not considered when counting the total lines of
code. As described in the table, MapRedoop requires 75% less lines of code to implement a BFS
algorithm as compared to Cloud9, and 66% less lines of code to implement a K-means algorithm
as compared to Mahout. A detailed performance comparison of the two case studies along with
their MapRedoop solution is given in the following sub-sections. For the performance analysis,
we executed the two versions (MapRedoop and Hadoop Library) of the program in a standalone
Hadoop installation and also in an EC2 Hadoop cluster. The clusters were implemented with
one, two, four, and eight slaves for a given size of data. Every execution in the cluster, as well
as the standalone versions, was executed three times and the reading taken was the mean of the
three executions.

Figure. 6: MapRedoop DSL for BFS in Eclipse IDE

6.1 Implementing the Breadth First Search algorithm in MapRedoop

Breadth First Search (BFS) is a common algorithm to find the distance from the source node
to all the reachable nodes. The algorithm begins by finding all of the neighbors for the first
node, and for each of the first node’s neighbors, the algorithm finds those neighbors. This cycle
continues until the algorithm reaches the goal node. Applications of BFS include finding the
shortest path and spanning forests.

Implementation of BFS in MapReduce involves finding the distance from the current node to
the source node. The mapper is responsible for storing the computed distance to the next node.
This node is then passed on to the reducer and emitted. The reducer collects all of the nodes
from the mapper, and for each node, the reducer selects the node storing the smallest distance.
For every node, the least distant node is selected. Each MapReduce iteration is a hop in the
graph. The mapper should emit the structure along with the distance so that the adjacent nodes
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can be calculated for the next iteration. A MapRedoop DSL for describing these properties is
shown in Figure 4.

Figure. 7: Execution time of BFS programs in EC2 Hadoop cluster

6.1.1 MapRedoop DSL. The MapRedoop solution for the BFS algorithm is shown in Figure 6.
In the meta-elements block, a data structure or meta-element is declared called Node with fields:
nodeId, distanceFromSource, nodeType, and adjacentList. A Java class will be generated
from this structure with the name and corresponding fields of each type, as mentioned in the DSL.
While reading the structure “2{3}: 3, 4” from a file, the read method creates a Node object with
nodeId of 2, distanceFromSource of 3, and adjacent nodes 3 and 4. In the MapReduce block,
the map function accepts mapkey of type Text as the input key, and the input value mapnode of
type Node. The mapper function sets up an output key of type long, and creates an output value
of type Node.

As shown in the BFS example in Figure 6, only the type is defined in the map function. The
name of the variables are defined in the reduce function, because reducer uses the variables while
the map function defines the type of the variables. The reduce function also defines the type of
the output key and value. On code generation, MapRedoop creates Mapper and Reducer classes,
along with the Driver class containing all the necessary key value declarations. A class called
CoreHelper is created with methods emitStructure, emitDistance, and minimizeDistance.
The code is configured such that the map method in the Mapper class calls the emitStructure

method, while the cleanup method in the Mapper class calls the emitDistance. Finally, the
reduce method in the Reducer class calls the minimizeDistance method.

6.1.2 Performance Analysis. The data for the standalone version was classified into four cat-
egories: 1) Micro: a graph having 2,000 nodes and a variables number of edges (0-5), 2) Small:
graph having 10,000 nodes, each having 5 edges, 3) Medium: a graph having 50,000 nodes, each
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Figure. 8: Execution time of BFS programs in Hadoop standalone mode

having 5 edges, 4) Large: a graph having 100,000 nodes, each having 5 edges. For the cluster
micro, small, large, medium, large had 100,000, 200,000, 300,000, and 500,000 nodes respectively.
For performance comparison, we selected a program written by expert Hadoop programmers
from Cloud9, which was implemented using the same algorithm. From the figures shown in
Figure 7 and Figure 8, both the MapRedoop and the expert-created program gave comparable
performance in both the standalone and cluster implementations. As the graphs illustrate, there
are some scenarios where MapRedoop performed more poorly than Cloud9. The bars represent
the average of the trials ran, and the error bars represent the max and min values of the trials.
In some cases there is a large delta between the max and min illustrating the inconsistency of
the Hadoop File System, which is part of the reason for the vast difference in performance from
scenario to scenario. Additionally, due to the added flexibility for input/output types provided
by MapRedoop, there is a degradation in runtime.

6.2 Implementing the K-means algorithm in MapRedoop

K-means is possibly one of the most commonly used clustering algorithms according to [Kanungo
et al. 2002]. The K-means clustering algorithm groups a cluster into ‘k’ small clusters based
on a similarity factor. The similarity factor we used in this implementation is the distance.
The algorithm starts with randomly selected ‘k’ vectors (in our case, user specified vectors).
For every input vector, the algorithm calculates the distance from the initial ‘k’ vectors to the
current vector, and the closest ‘k’ vector is grouped with the current vector. In the MapReduce
implementation of K-means, every vector in the mapper part is emitted to the nearest cluster
and the reducer part collects the vectors to a given cluster.

6.2.1 MapRedoop DSL. The DSL for implementing K-means using MapRedoop is shown in
Figure 9. In addition to the features explained in the previous context of BFS, a K-means program
makes use of other features of MapRedoop. The ClusterInfo meta-element is a special type
that does not occur in any of the key/value types of the mapper or reducer. Hence, ClusterInfo
is generated as an ordinary Java class (not an implementation of Writable) and KVector is
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Figure. 9: MapRedoop DSL for K-means in Eclipse IDE

Figure. 10: Execution time of K-means programs in EC2 Hadoop cluster

generated as a Writable Java class. In this case, the before keyword is used both in the map

and reduce blocks. Hence, two additional methods are created in the CoreHelper class, which is
called from setup functions of Mapper and Reducer classes. In the implementation of K-means,
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there is an additional input other than the input vectors that represent the current clusters.
Before invoking the map and reduce operations, the data from the current clusters has to be
loaded using loadClustersMap.

Figure. 11: Execution time of K-means programs in Hadoop standalone mode

6.2.2 Performance analysis. The K-means implementation from the Mahout project was used
for a performance comparison. Both programs produce the same output. As input, N-points were
used to group the output into three clusters based on their Manhattan distance, which is the
distance measured along axes at right angles. The execution plots of these algorithms in EC2 and
standalone are presented in Figures 10 and 11. Four different values were used for N : 1) 100,000,
2) 200,000, 3) 300,000, and 4) 500,000. The MapRedoop version dominated in the standalone
version and had comparable results in the cluster implementation. This can be attributed to
the Vector data structure in Mahout. Because the K-means solution in Mahout is a case of a
generic clustering solution, there are many fields in the data structure that are not relevant to the
K-means problem. This can result in more writing and reading during file operations. In the case
of MapRedoop, solutions are written for a problem, and hence the programmer needs to define
only the fields relevant to the problem. As mentioned in the previous analysis, the inconsistency
in the Hadoop File System and the added input/output flexibility contribute to MapRedoop’s
degraded performance.

7. CONCLUSION AND FUTURE WORK

After writing several MapReduce programs in Hadoop, we recognized three specific areas of inef-
ficiency resulting from accidental complexities: input structure inflexibility, level of abstraction,
and ease of testing. Our goal was to create a tool that would provide an easier and faster means
for programmers to write MapReduce algorithms without affecting performance. Our solution,
MapRedoop, is a framework implemented in Hadoop that combines a DSL and IDE that removes
the encountered accidental complexities. To evaluate our tool, we implemented two commonly
described algorithms (BFS and K-means) and compared the execution of MapRedoop to existing
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methods (Cloud9 and Mahout). With MapRedoop, the programmer only needs to code the DSL
and MapReduce algorithms, whereas Cloud9 and Mahout focused on input/output conversions.
The analysis presented in Section 6 illustrate that MapRedoop performs comparably to the exist-
ing, common methodologies, and in some cases, MapRedoop proved to have better performance
due to the programmer being able to focus solely on the problem.

To expand upon this project in the future, we plan to implement support for additional MapRe-
duce implementations, such as Phoenix [Ranger et al. 2007] or Mars [He et al. 2008]. Additionally,
we want to increase the flexibility of MapRedoop by bridging it with the Hadoop Eclipse plug-in
to allow MapRedoop programs to be deployed in any cluster that supports Hadoop. Finally, the
primary benefit of MapRedoop is to the programmer. We plan to perform an empirical study to
demonstrate the time saved using MapRedoop.
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