
Strong Accountability for Service Compliance in the Cloud

Jinhui Yao

School of Electrical Engineering, University of Sydney

Shiping Chen

CSIRO ICT Centre, Australia

Chen Wang

CSIRO ICT Centre, Australia

David Levy

School of Electrical Engineering, University of Sydney

and

John Zic

CSIRO ICT Centre, Australia

In recent years, computing resource provisioning through the adoption of the cloud computing has emerged as a
promising paradigm to let companies and enterprises outsource their computational needs. Along with the widely
adopted Service Oriented Architecture (SOA), organisations can wrap various kinds of technological product
they are o�ering as a service, to collaborate with services provided by others to form new value-added business
products. Facing the ever-escalating global competition in current economy, such collaboration is crucial for their
survival. However, it is challenging to achieve trustworthiness in such a dynamic cross-domain environment,
as each participant may deceive for individual bene�ts. As a solution, we propose a novel design to enforce
strong accountability to enhance the trustworthiness in the cloud environment. With this accountability, the
root of a violation can always be identi�ed and associated with the responsible (or guilty) entity or entities, and
this association is supported by non-disputable evidence. We elaborate the approach to incorporate our design
into existing business processes de�ned using standard descriptive languages for business logic and service level
agreements. Then we deploy the system into a computing cloud to evaluate its e�ectiveness.

Keywords: cloud computing, accountability, service oriented architecture, trustworthiness, com-
pliance assurance

1. INTRODUCTION

In recent years, we have witnessed a range of innovations in the `service' related technologies and
concepts. Following the Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure
as a Service (IaaS) and many more �as a Service� concepts have been proposed. As one of the
outcomes, computing resource provisioning through the adoption of the cloud computing has
emerged as a promising paradigm to let companies and enterprises outsource their computational
needs. Along with the widely adopted Service Oriented Architecture (SOA), organisations can
wrap various kinds of technological product they are o�ering as a service, to collaborate with
services provided by others to form new value-added business products. Facing the ever-escalating
global competition in current economy, such collaboration is crucial for their survival [Papazoglou
et al. 2007].
The correctness of the inter-organization business processes relies on the individual correctness

of all participants, that is, if the collaborator is compliant to the pre-de�ned business process,
or Service Level Agreement (SLA). Any incompliance of the participants can to various extents,
negatively a�ect the value of the business product associated with this business process. It follows

Contact Author's address: J. Yao, School of Electrical and Information Engineering, the University of Sydney,
City Rd, Camperdown, NSW 2006, Australia.
Contact Author's email: jin.yao@sydney.edu.au

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 181

that, the viability of this paradigm and the willingness of new participants to join collaboration
highly depend on the trustworthiness of the behaviors of all collaborators.
Here we adopt the informal de�nition of trust based on comments made by Graeme Proudler:

something can be trusted when (i) it can be unambiguously identi�ed; (ii) it operates unhindered;
and (iii) the user has either �rst hand experience of consistent good behaviour or knows some-
one who can vouch for consistent good behaviour. A formal de�nition of trustworthy systems is
presented in IETF RFC4949 Internet Security [Mahbub and Spanoudakis 2004], that a trustwor-
thy system is a system that is already trusted, and continues to warrant that trust because the
system's behaviors can be validated in some convincing way.
It is a challenging task to preserve trustworthiness in such a dynamic cross-domain environment.

The composed business process usually spans several administrative domains, each of which will
have its own interests and priorities. Given that admission to violations may lead to penalties
in some form, it is conceivable that they may intend to deceive and hide this fact. Therefore, a
mechanism to detect and prove incompliance is urgently needed for this collaboration paradigm
to prosper.
As a solution, we propose a novel design to enforce strong accountability to enhance the trust-

worthiness in the cloud environment. While this will be illustrated shortly in following sections,
brie�y, accountability provides means to verify compliance according to evidence in a provable
and undeniable way. In a system with strong accountability, the root of a violation can always be
identi�ed and associated with the responsible (or guilty) entity or entities, and this association
is supported by non-disputable evidence. We elaborate the approach to incorporate our design
into existing business processes de�ned using standard descriptive languages for business logic
and service level agreements. Finally we deploy the system into a computing cloud to evaluate
its e�ectiveness.
The remaining parts of the paper are structured as follows: In the next section, we describe

a motivating scenario which will be used as a running example in this paper. In section 3 we
illustrate the core concepts of accountability and show how it can enforce compliance. Section 4
elaborates our design to incorporate accountability into the service collaborations in the cloud.
In section 5 a prototype is presented to evaluate its e�ectiveness and performance. Section 6
compares our approach to related work. Finally, we conclude in section 7 with a summary and a
discussion of our future research directions.

2. A MOTIVATING SCENARIO

Online one-stop loan application service composition

We use a one-stop loan application service as the running example in this paper. As shown in
Figure 1, the process requires the collaboration of �ve entities. First, a one-stop loan application
service allows the customer to lodge loan application and �ll in his personal information. His
personal information will �rst be used to obtain a credit score from the credit rating authority
and then the score is attached with other personal information to be sent to the loan bidding
company. The bidding company forwards the application to multiple loan companies (Star Loan

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

182 · Jinhui Yao et al.

& Ocean Loan), and selects the cheapest o�er (if any) available to return to the applicant. In this
typical collaboration scenario, the overall correctness of the system depends on the correctness of
all individual participants. As every of them may be interested to violate the collaboration rules
for their own bene�t or/and deceive to avoid possible penalties, the causer of a failure may be
extremely di�cult to determine.
For instance, a loan applicant, Bob, �nds out that he could have been o�ered a cheaper

loan through direct contact with one of the loan companies claiming to be involved by the
bidding company, proving that the one-stop loan application service has failed in its promised
service outcome. Bob cannot determine whether it is the credit rating authority that gave him
a bad rating, or whether the loan company is not actually involved during the bidding process.
Intuitively, Bob may hold the one-stop loan application service responsible. At this point, the
application service may attempt to alter its system record to prove its own innocence and push
the blame on to the bidding company. In turn, the bidding company could also do the same,
and shift the blame either to the credit rating authority or to the loan companies. Even in this
simple example it can be seen that a mechanism is required to prevent this �buck passing� or
denial of failure, this mechanism is essential for controlling the correctness of a business process
established.

3. ACCOUNTABILITY FOR COMPLIANCE

Accountability can be interpreted as the ability to have an entity account for its behaviors to
some authorities [Mulgan 2000]. This is achieved by binding each activity conducted to the
identity of its actor with proper evidence [Yumerefendi and Chase 2004]. Such binding should
be achieved under the circumstance that all actors within the system are semi-trusted. That is,
each identi�ed actor may lie according to their own interest. Therefore, accountability should
entail a certain level of stringency in order to maintain a system's trustworthiness. Below, we
identify several desirable properties of a fully accountable system:

� Veri�able: The correctness of the conducted process can be veri�ed according to the actions
and their bindings recorded.

� Non-repudiable: Actions are bound to the actors through evidence, and this binding is
provable, and therefore undeniable.

� Tamper-evident: Any attempt to corrupt to recorded evidence inevitably involves the high
risk of being detected.

Given above properties, a fully accountable system is in fact a fully provable system. The
current state of the participants can be veri�ed by what has been done in the past; and none of
them can negate their actions; neither can they change the evidence recorded during the actions.
With these notions, apparently, the handling of evidence is critical for accountability. To verify

the correctness of the processes conducted, evidence associated with the conducted activities must
be preserved, examples include input, output data, and service internal states. And to make such
evidence non-repudiable, cryptographic techniques should be employed to let the conductor of
the activities digitally sign on the evidence to make them undeniable.
The third property, tamper-evident, is the most important one as we regard the activity con-

ductors as untrusted. Untrusted entities are likely to alter, corrupt or delete entirely the recorded
evidence given that the evidence may lead to severe penalties in some form. Therefore, this fact
entails the need to maintain the evidence in a separate entity (entity B) other than the one which
generates the evidence (entity A). Ideally, entity B should 1.) have no bene�t related to the
compliance of entity A; and 2.) be willing to honestly maintain the evidence stored. Assuming
entity B is randomly chosen and does not even know entity A, it is still di�cult to guarantee the
second term, that is, whether it will faithfully deal with the evidence stored, as it can be another
untrusted entities. It follows that, entity B also needs to digitally sign on the stored evidence and
send this undeniable certi�cate back to entity B to vouch for the fact that entity A has stored
certain evidence in entity B.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 183

We illustrate our proposed approach in Figure 2. In our approach, accountability can be
incorporated into activity-based process by requiring the entity conducting the process to log
non-disputable evidence about the activities in a separate entity. In the �gure, after incorporating
accountability into an ordinary process, entity A is now required to perform logging operations
before and after conducting the activity in its process. The evidence is logged in a separate entity
� entity B � so that entity A cannot access the logged evidence. The evidence needed to be logged
should contain enough information to describe the conducting activity. In our simple example,
which is intuitive enough, the evidence should include the states of the factors concerning the
start of the activity (e.g. the input variables) and the factors concerning its completion (e.g. the
output value).

Example of incorporating accountability into process

As aforementioned, the logging operations require the employment of Public Key Infrastructure
(PKI) in all involved service entities. Each of them has its own associated public-private key pair
issued by certi�cated authorities. The logging operations are as follows:

(1) The logger (entity A) signs the evidence (E) by its private key (KA−) to create a digital
signature of the evidence (SA).

(2) The evidence and its signature are then logged in a separate entity (entity B).

(3) When received, entity B creates a receipt by signing entity A's signature with entity B's
private key (KB−).

(4) Lastly, the receipt (SB) is sent back to the logger (domain A) in the reply.

Assuming the digital signature is un-forgeable, the signed evidence in entity B can be used
to verify entity A's compliance; and yet any corruption or deletion applied to the evidence will
be discovered using the receipt received by entity A. Under the circumstance that neither of the
service entities is trusted; and assume they will not conspire to cheat (this assumption will be
relaxed later), this structure manages to ensure the proper preservation of evidence associated
with the process conducted. It is the basic structure our proposed system is built on.

4. SYSTEM DESIGN

As illustrated in the previous section, two entities need to be involved for preserving the evidence.
Further, to verify the compliance of the logger, logged evidence need to analyzed continuously. For
a system composed by services, one way to facilitate that, is to select some of the participating
services to store and process the evidence submitted by some of the others. However, this
approach may not be suitable for our scenario. In a cloud computing environment where services
are composed to form work�ows, a global view over the composed business process is critical for
analyzing the participants' compliance (evidence from multiple service nodes may be needed to
verify some individual nodes' correctness). This would require all the selected nodes to observe
the activities of all other nodes, resulting in an enormous message exchange overhead.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

184 · Jinhui Yao et al.

In our design, we propose to have special service nodes, dedicated to provide accountability to
all underlying services involved in the business process. Those special nodes are referred to as the
accountability service (AS) nodes. Figure 3 shows the overall model of our system. Let us imagine
the cloud to be a space of services, in our designed system, this space has been divided into two
domains: the business service domain (BSD) and the accountability service domain (ASD). In the
BSD business services (BS) compose with each other to conduct complicated business processes,
like the loan application example we used.

Overall system design

Accountability services (AS) in the accountability service domain (ASD) continuously process
the evidence received so as to ensure that the BS nodes are held accountable. Each BS node may
be associated with several AS nodes, which means it needs to submit evidence to everyone of
them. Similarly, each AS node may be in charge of a number BS nodes, it analyzes the evidence
submitted by all the BS nodes it monitors.
The use of multiple AS nodes to enforce accountability is mainly due to three concerns. Firstly,

according to the scale of the business process, the number of BS nodes involved may range from
several to hundreds. To make such systems scalable, a number of AS nodes should be employed
to monitor the compliance of di�erent parts of the process. The second concern is to prevent the
case that an AS node conspires with certain BS nodes to cheat for hiding compliance violations.
When a BS node submits evidence to multiple AS nodes, the determination of its compliance
will be the voting result of all of the AS nodes involved, which reduces the impact of individual
faulty or deceptive AS nodes. And the third concern is to deal with the possible disputes raised
while evaluating BS's compliance. Details of voting and dispute resolution will be elaborated in
later sections.
The AS here can either be provided by the cloud, or by other third parties as long as they

receive no bene�t whether the BS is being compliant or incompliant. It plays a neutral role in
the cloud. Therefore, this topology satis�es the concept of accountability previously discussed.
The misbehaviors of a service in either domain inevitably mean that service is willing to take the
risk that it will be exposed in another domain. This mutual constraint on services in the two
domains is the main strength of our approach to achieving trustworthiness. With this topology,
the core functionalities of the AS node are as follows:

� Evidence logging : Non-disputable evidence associated with the activities conducted must
be logged in real time. Such logs should be su�cient enough for any later disputes with respect
to the prede�ned correct behaviors.

� Compliance validation: Through the analysis of the activity logs, the system's state is
continuously monitored. Once a violation is detected or reported, the root cause should be
discovered in a provable manner and actions will be taken to remedy its impact.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 185

� Dispute resolution: In special cases where the source of failure cannot be bound to a speci�c
entity, procedures will be carried out to determine the violating entity(s) in a best e�ort manner.
Disputation should never cause minimal delay to the system.

As depicted in Figure 2, accountability needs to be incorporated into the existing business
process. Facilitating above functionalities inevitably involves con�guring both the nodes in BSD
and ASD. To describe the required con�gurations, we proposed an XML based de�nition, called
the �Accountability Policy� (AP). While it will be thoroughly elaborated in the following sub-
sections, in general, AP tells the AS what evidence will be provided by the BS and how they can
be used for compliance veri�cation and dispute resolution. After the BS provider has implemented
certain mechanisms for his BS to interact with the AS, an AP will be produced and submitted by
the BS provider to the AS for registration. AS will thus create the monitoring logic to get ready
for the incoming evidence from that BS. In the following three sub-sections, the accountability
functionalities will be discussed, together with their respective speci�cations in the accountability
policy.

4.1 Evidence logging

As in a legal setting, evidence plays the most critical role for the determination of one's guilt or
innocence. The e�ectiveness of the accountability mechanisms crucially relies on the collected
evidence during the execution of the business process. The logged evidence must be su�cient to
prove one's compliance or incompliance when problems occur, and yet not too comprehensive.
Therefore, determining the data to collect is a fundamental process for achieving accountability.
A service node conducts its designed activities while communicating with other service nodes

via messages. So a service node � S can be de�ned as S = (A, I), where A is the activities
and I is the interactions with other nodes in terms of sent and received messages. A business
process is a collection of service nodes BP = {S1, S2, . . . , Si}. To preserve evidence for BP, one
needs to save both A and I for all the services involved. While interactions can be captured by
recording the incoming and outgoing messages, the local activity conducted can only be recorded
by logging the internal state of the service node. So we de�ne evidence � E = (P, Min, Mout)
where P is the snapshot of local states,and Min and Mout are the received and sent messages.
With this setting, during the execution of business service nodes, the messages will be recorded,
and periodically the node takes snapshots of its internal states. Note that the state snapshot and
some messages may be extremely large and thus di�cult to be transmitted to AS. In this case,
the digest (hash value) of the evidence can be logged as a replacement.
Incorporating the accountability mechanisms into the business process involves the inclusion of

these to capture the evidence and log it to the AS. State snapshots can be implemented in various
ways, depending on the architecture of the system. For example, databases often provide speci�c
commands to generate snapshots. In other scenarios, non-trivial ad-hoc solutions may be applied.
On the other hand, service interactions play a bigger role for monitoring compliance during the
run time, as they show the inputs and outputs of a BS node. Here we propose an approach that
allows the automation of interaction capturing and logging for the business processes that are
orchestrated by process descriptive languages.
Process descriptive languages de�ne the business processes that involve activities associating

with multiple external/internal services. This de�nition is usually in the form of scripts, which will
be interpreted by orchestration engines (e.g. Apache ODE) to conduct the process accordingly.
A good example of the process descriptive language is Business Process Execution Language
(BPEL) [Andrews et al. 2003]. BPEL models the business activities into several basic activity
types, and then composes those types to describe the whole process. The core activity types
include:

(1) Receive, receiving the request from a requestor. This activity type will specify the variable
to which the input data is to be assigned.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

186 · Jinhui Yao et al.

(a) Original BPEL (b) Transformed BPEL
Transformation of BPEL

(2) Invoke, invocation to an endpoint (service). Invoke activity type will specify the variable
used as the input and the variable used to store the output data for this invocation.

(3) Reply, replying the invocation. A variable will be speci�ed to be returned to the requestor
as the result.

To add logging activities into the process, we can insert invoke activity types into the BPEL
script to invoke a certain endpoint (logging service) with the evidence to be logged. And due
to the distinct natures of receive, invoke and reply activity types, the rules used to decide the
insertion locations are in fact quite straightforward. For the receive activity, an invoke should be
inserted right after it, to log the input data received. For the invoke activity, one invoke should
be inserted before this activity and another to be inserted after, to log the input data and the
reply data of the invocation respectively. And �nally for the reply activity, an invoke needs to
be inserted just before it to log the result data that is about to be returned to the requestor.
The invocation endpoint for the invoke activities inserted should either be a service in the same
domain of the logger, or a trusted party nominated by the logger, which in turn signs the evidence
on the logger's behalf and forward the signed evidence to the AS.
To further illustrate this transformation process, we have presented an example in Figure 4.

Figure 4a shows the graphical view of an ordinary sample BPEL. This simple process is started
by receiving an input (ReceiveInput); then a partner link (collaborating service) is invoked in
turn (InvokePartnerLink), and �nally, replies the result to the client (ReplyClient). Figure 4b is
the BPEL after the transformation. We can see in Figure 4b that four logging invoke activities
(the InvokeLogging serie) have been inserted, one after the �ReceiveInput�; one before and one
after �InvokePartnerLink�; and one before �ReplyClient�. Because BPEL is entirely based on xml
schema, any xml schema parser will be capable of analyzing and inserting activities into it. The
details of our implementation of such BPEL transformer will be shown in the evaluation section.
To inform the AS about the evidence which the BS is going to submit, the provider of the BS

needs to declare the content and type of the evidence in the accountability policy (AP). Listing
1 is an example of the evidence de�nition. In the policy the service provider explicitly de�nes
each evidence item the service node will log with AS, and the data structure of each. The �rst
three evidence items are all input and output SOAP messages, so the URLs of their respective
WSDL de�nitions are provided as reference. Note that the �endpoint� is provided for the sending

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 187

message �InvokeEvidence�. AS will retrieve the WSDL de�nitions once this policy is registered
with it to learn the semantic. The last item is the digest of the system's state snapshot. As its
data structure is simply hash, only the log interval is given (which is daily).

Listing 1: Sample policy - Evidence section

<Pol i cy i s s u e r=Bus ine s sSe rv i c eProv ide r>
<Evidence>

<Item name =" InputEvidence " type="SOAP" ur l=" . . . wsdl "/>
<Item name =" InvokeEvidence " endpoint="ReceivorNode" type="SOAP" ur l=" . . . wsdl "/>
<Item name ="ResponseEvidence " type="SOAP" ur l=" . . . wsdl "/>
<Item name ="SystemState " type="SnapshotDigest " i n t e r v a l=" da i l y "/>

</Evidence>
. . .

</Po l i cy>

4.2 Compliance validation

As we have discussed ealier, accountability aims to make all the entities answerable for their
activities. This implies that an entity needs to be responsible for the consequences of its actions.
When the actions violate speci�c requirements, the entity will be penalized. Pre-established obli-
gations and agreements for business services in the composition can have many forms. Various
standards have been proposed to de�ne certain types of requirement. For example, Web Service
Agreement (WS-Agreement), Web Service Level Agreement (WSLA), Web Services Choreog-
raphy Description Language (WSCDL), etc. To illustrate our approach we assume that the
compliance requirements are expressed in Web Service Level Agreement (WSLA) and the busi-
ness process logic is expressed in BPEL. However, our approach can be extended to accommodate
di�erent types of description languages.
With this assumption, the validation logic in AS needs to verify that i) the performance of

the BS nodes meets the assurances de�ned in WSLA; and ii) the activities conducted by the
BS nodes are compliant with the business process logic de�ned in the BPEL. A notable feature
of WSLA is that it not only de�nes the SLA assurances, but also speci�es the procedure to
verify such assurances. Listing 2 below contains some extracts from a sample WSLA. Firstly, the
ServiceLevelObjective states that the SLAParameter (AverageResponseTime) needs to be less
than 1.6 seconds. This SLAParameter is de�ned in the second part, which should be the result
of the calculation de�ned by a Metric speci�ed in the third part.

Listing 2: Sample web service level agreement (WSLA)

(Part 1)
<Se rv i c eLeve lOb j e c t i v e name="ResponseTimeObjective ">

<Pred icate type="Less ">
<SLAParameter>AverageResponseTime</SLAParameter>
<Value>1 .6</Value>

</Pred icate>
</ Se rv i c eLeve lOb j e c t i v e>
(Part 2)
<SLAParameter name="AverageResponseTime">

<Metric>AverageResponseTimeLastHour</Metric>
<Source>Bus ine s sSe rv i c e</Source>

</SLAParameter>
(Part 3)
<Metric name="AverageResponseTimeLastHour">

<Function type="Divide " resu l tType="double ">
<Operand>AccumulatedResponseTime</Operand>
<Operand>Transact ions </Operand>

</Function>
</Metric>

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

188 · Jinhui Yao et al.

The validation logic in AS therefore needs to be accustomed to verifying the compliance accord-
ing to the WSLA shown in the example, and the BPEL scripts deployed by the BS nodes. In the
Accountability Policy this is expressed in the �validation� section, where �Functions� are de�ned
to verify compliance with di�erent description documents. The locations of the documents will
be provided as a URL; and if the veri�cation methods are also available (such as WSLA), their
location will be enclosed as well.
An example of the validation section of the policy is shown in Listing 3. Two functions are

de�ned: one is to verify business logic compliance, while the other is to verify SLA compliance. In
�BusinessLogic_function� the URL of the corresponding BPEL script is given. The two �validate�
specify that AS needs to check from the evidence logged whether the operation of an interaction
is de�ned in the BPEL script, and whether the endpoint of the transmitting message is one
of the �partnerLink� of the sender. In �SLA_function�, the URL of the WSLA is provided,
together with the SLA objective against which to validate. While the �SLAParameter� and the
veri�cation �Metric� can be reused by AS, an extra �Metric� needs to be de�ned to tell AS
how to obtain the �SLAParameter� from the evidence logged. WSLA was designed with the
assumption that the required parameters can be provided honestly by the service provider. As
this assumption is no longer appropriate in our scenario, �SLAparameters� must be computed with
the undeniable evidence logged so as to make the validation conclusion non-disputable. Therefore
service providers thus need to describe speci�cally the computation method in �Metric� in the
policy.

Listing 3: Sample policy - Validation section

<Pol i cy i s s u e r="Bus ine s sSe rv i c eProv ide r ">
<Va l ida t i on s>

<Function name="Bus inessLog ic_funct ion ">
<document name="Bus inessLog ic " type="BPEL" ur l=" ht tp : . . . /BPEL">
<va l i d a t e name="OperationTypePermitted">

($ Bus inessLog ic . operat ion)INCLUDE(operationType)
</ va l i d a t e>
<va l i d a t e name="PartnerLinkCorrect ">

($ Bus inessLog ic . partnerLink)INCLUDE($ endpoint)
</ va l i d a t e>

</Function>
<Function name="SLA_function">

<document name="SLA" type="WSLA" ur l=" . . . /WSLA">
<va l i d a t e name="ResponseTimeObjective " >

<SLAParameter="AverageResponseTime" >
<Metric="ResponseTimeFromEvidence">

<Operation type = " subt rac t i on ">
<Operand EvidenceItem=" InputEvidence " f i e l d="timestamp"/>
<Operand EvidenceItem="ResponseEvidence " f i e l d="timestamp"/>

</Metric>
</SLAParameter>
<Metric="AverageResponseTimeLastHour">

</ v a l l i d a t e>
</Function>

</Va l ida t i on s>
</Pol i cy>

As we have mentioned, BS nodes need to register with AS before submitting evidence. During
registration, Business Logic, Policy and SLA (and other description documentation) will be sub-
mitted by the business services participating in the business process, to form the validation logic
in AS. Note that it is up to the business service providers to agree to supply this information
and log evidence at AS; they may choose only to allow AS to validate some of its compliance
assurances. In this case, AS will only validate and vouch for the compliance that it can vali-
date. We regard this �exibility as important for allowing services to control their desired level of
accountability to suit di�erent circumstances.
Figure 5 displays the inner architecture of the AS node. The registered �Accountability Policy�

along with other description documentations (e.g BPEL, WSLA) will generate three components:

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 189

�Monitoring Logic�, �Auditing Logic� and �Exception Logic�. Monitoring logic continuously an-
alyzes the logged evidence to �nd any obvious compliance violations; this is also called �online
monitoring� due to the fact that this component needs to remain active while the business pro-
cess is being executed and the evidences are processed in real time. This type of monitoring will
focus mainly on the validation of less complicated compliance issues identi�able by analyzing
a reasonably small amount of evidence entries. For example, to �nd out the response time of
an execution, one simply needs to subtract the timestamp in the �ResponseEvidence� from the
timestamp in the �InputEvidence� (as expressed in Listing 3). The analysis result will be stored
in the data warehouse for later reference.

Validation components of the Accountability Service

On the other hand, the auditing logic periodically (or upon request) audits all the evidence
items and previous analysis results stored in the data warehouse. This is in order to identify
suspicious activity patterns, or to validate certain compliance that requires a systematic view
across the overall behaviors. The purpose of this audit is to identify or solve those violations
which can only be uncovered after a long time (or by reporting). For example, when the customer
�nds out later on that the loan o�er is not the cheapest and reports this to the AS. In this case
all the related evidence in the data warehouse will be audited to track the source of the fault.
Once the violation is successfully linked to a guilty service, certain actions need to be taken by

the AS in response to stop the misbehavior or to minimize its impact. Violations of the WSLA
should be handled according to the compensation rules de�ned within it. The most common form
of compensation is through penalty. In this case, a penalty report will be constructed by the
�Exception Logic� and sent to the compensator. The penalty report should contain the details
about the violations and the evidence to support these. In case of violations of the business logic,
depending on the severity, di�erent procedures can be followed. In general, the AS may �rst send
warnings to the violator and temporarily tolerate it, until a violation limit is reached; or instead
the AS may send notices to all other service nodes to dismiss the violating service. Again, the
notice should contain convincing evidence to notify them about the violation.
The monitoring data and the data received from the BS nodes are archived in the data ware-

house. These data are continuously processed and displayed in the monitoring console, an ap-
plication that displays real time compliance status of the business process. The details of the
monitoring console will be shown in the evaluation section.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

190 · Jinhui Yao et al.

4.3 Dispute resolution

One of AS's major tasks is to �nd the root of a failure. Although, even the failure space may
be reduced by a variety of heuristics, in some cases a particular solution pointing to a speci�c
entity may be unachievable. Under such circumstances a dispute is inevitable. Looking again at
our earlier example, if the Star Loan Company does not respond to the Loan Bidding Company's
bidding request, the bidding company cannot prove it has actually sent the request. Moreover,
disputes may be caused by the con�icting conclusions made by di�erent AS nodes, as the evidence
stored by them may have di�erent versions. When addressing disputes, simply pausing the service
nodes concerned before it is solved may severely impact the operation of the whole business
process. This is a challenge to an implementation of an e�ective accountability service able
to resolve suspected bad behaviours in a consistent, non-disputable manner. To tackle this we
propose to deploy a complementary best e�ort mechanism based on voting and probing .
As we mentioned earlier, one BS node may be monitored by several AS nodes, which will

conclude its compliance according to their respective evidence received. Any penalty concluded
by an AS node shall not be exercised until it is agreed by the majority. Ideally all AS nodes should
have a consistent view upon the underlying BS nodes; however if exceptions happen (e.g. false
accusation), the majority of the AS nodes can still prove its innocence. Such a voting method
tolerates some scope for disputes and failures. Further, it makes the conclusion and accusation
from ASD more reliable as it helps to address the concerns that an AS node could also misbehave,
either mistakenly or deliberately.
Probing is used to actively test the correctness of the disputed services nodes. The concerned

AS nodes send a special probe message to every disputed node to challenge the nodes to prove their
correct behaviour. The majority of the probing results from AS nodes would give a conclusion
about which node(s) is faulty with a high probability level, and would indicate whether it should
be penalized or replaced. The probing operation needs to be declared in the Accountability
Policy. An example of probing de�nition is shown in Listing 4. It describes a probing case for
testing the loan bidding process conducted by the LoanBiddingCompany. In the policy, it de�nes
the probing message and the endpoint (LoanBiddingCompany). Then it de�nes the expected
outcomes if that service node is properly functioning. Which are the evidence expected to be
logged by the bidding company and all the loan companies involved.

Listing 4: Sample policy - Probing section

<Pol i cy i s s u e r="LoanBiddingCompany">
<Probing>

<ProbingCase name="ProbeLoanBiddingProcess ">
<Message name="ProbeBiddingMessage" type="SOAP" ur l=" . . . wsdl "/>
<Endpoint name="LoanBiddingCompany" u r l=" ht tp : . . . "/>
<Outcome>

<Item name = " InputEvidence " I s s u e r="LoanBiddingCompany" . . . />
<Item name = " InvokeEvidence " endpoint="StarLoanCompany" I s s u e r="

LoanBiddingCompany" . . . />
<Item name = " InvokeEvidence " endpoint="OceanLoanCompany" I s s u e r="

LoanBiddingCompany" . . . />
</Outcome>

</ProbingCase>
</Probing>

</Pol i cy>

Possible violations incurred by any BS nodes as well as AS nodes can be regarded as Byzantine
faults [Lamport 1983]. The faulty node under this category may exhibit arbitrary behaviors, such
as being non-responsive or sending faulty messages. Early study of Byzantine faults [Haeberlen
et al. 2006; 2007] has found that for the diagnostic system to �nd the incompliant node, a system
requires f + 1 nodes, where f is the number of possible concurrent Byzantine faults. This is the
case when absolute evidence is available to that last healthy node, which can unarguably prove
the violations of the others. However, when conspiracy is involved, the conspiring AS node may

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 191

be able to forge fake yet seemingly genuine evidence, as a bid to prevent certain BS nodes from
being penalized.
Certainly, it is not likely an AS node will be able to forge evidence to claim something the

conspiring BS node has not done. For instance, to claim BS1 has sent a message to BS2 (which
it has not), the AS node will need the private key of BS2 in order to forge the log submitted by
BS2 after receiving the message. But in some other cases, when the private key of the conspiring
BS node is all what it needs, an AS node will be able to generate seemingly undeniable evidence.
For example, an AS node can always claim a BS node is not down, by showing the forged signed
response from the BS node for its probing message.
Figure 6 shows an example of a probing process. In the example, three BS nodes are composed

to form a business process, three AS nodes have been assigned to monitor them. In Figure 6a, a
possible fault is noticed when BS2 failed to send its output to BS3 in the required time frame.
All three AS nodes then send probing message to BS2, and �nd out the node is overloaded by
the requests from BS1 (Figure 6b). In Figure 6c, AS1 forges evidence to claim to BS1 that BS2

is working �ne, so as to gain more job requests for BS2 (although they will be processed slowly)
while AS2 tells the truth. At this moment BS1 is not able to decide if it should forward more
job requests to BS2. Finally, in Figure 6d, AS3 also notify BS1 of BS2 being faulty. BS1 is thus
convinced and send job requests to alternative BS nodes.

(a) (b)

(c) (d)
Probing and Voting process

Therefore, in the ideal case where certain evidence can unarguably prove compliance or in-
compliance, the requirement on the number of AS nodes (NAS) assigned to one BS node is that
NAS ≥ fAS + 1, where fAS is the possible number of AS nodes that are either unhealthy or
deceiving. And in the worst case, where conspiring AS nodes are able to forge seemingly genuine
evidence, more than half of the AS nodes need to be healthy and functioning justly so that the
compliance of the monitored BS nodes can be correctly determined. The requirement on NAS is
that NAS ≥ 2fAS + 1.
In the practice, it may not be easy to determine NAS or the approach to choose the AS nodes

with the smallest chance of conspiracy. Domain experts may be needed to make such decisions.
An alternative approach may be looking at the historical performance of the system and apply

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

192 · Jinhui Yao et al.

adjustments which eventually tune the system to its proper settings. In particular, one may be
interested to study the cases when AS nodes make con�icting conclusions. In those cases, the
ratio between the number of correct conclusions to the number of incorrect ones, indicates the
overall correctness of the system and the degree of dominance of the healthy AS nodes. However,
a further discussion on the optimisation of AS nodes selection is not in the scope of this paper.

5. EVALUATION ON AMAZON EC2

The Amazon Elastic Compute Cloud 1 is a computing resource provisioning service that charges
the user according to the CPU usage. Users can deploy their services and business processes in
the computing instances they rent in EC2. Computing instances can communicate with each
other with speed close to a LAN. While making use of this computing environment, users can be
quite concerned about other collaborators' compliance as well as their own. In this section, we
will elaborate our demonstration system implemented in EC2.

5.1 The demonstration system

We deployed �ve BS nodes and one AS node on six standard computing instances in Amazon EC2.
These are virtual machines with computing power equivalent to 1GHz CPU and 1.7GB memory.
The �ve services in our loan application scenario have been implemented in the �ve BS nodes.
Apache Tomcat 5.5 was used as the Servlet container, and Axis2 1.5 as web service engine in each
of the BS nodes. The service nodes are orchestrated using BPEL scripts. Apache Orchestration
Director Engine (ODE) has been used to conduct the business process. To incorporate the logging
mechanisms into the ordinary BPEL scripts, we implemented a simple BPEL parser/transformer
in JAVA using W3C document object model (DOM). It turns out that it is quite handy to
incorporate the logging activities into the business process, because the insertion rules we de�ned
previously are straightforward to apply. Transformed BPEL scripts can be redeployed by simply
dropping them into the ODE process folder, ODE will realize the modi�cations and use the new
processes to retire the outdated ones. Overall, we found that the incorporation of accountability
into a running business process is convenient and can be done with little impact or modi�cation
on the existing implementation.
The �ve nodes thus form an ordinary business work�ow with embedded logging operations to

log evidence for all receive, invoke, and reply activities. The WSLA de�nitions used for each
of the services are similar to the example in Listing 2, except that the value of response time
guarantees are di�erent for speci�c business services. And the Accountability Policy we de�ned
has been described in di�erent sections previously. In order to allow the AS node to learn the
context in Accountability Policy, BPEL and WSLA, the BPEL parser/transformer was also used
in AS to extract the needed information from those de�nitions. A data warehouse is implemented
as a PostgreSQL database in the AS node, which is accessed through the JDBC interface.
An execution of the system is as follows, a client (at the University of Sydney) sends a request to

the �rst service node � `One-Stop Loan Application Company', and the process goes on until the
loan o�er is returned back to the client. During which, the input and output of each service are
submitted as the evidence to the AS. The AS processes the evidence and updates the compliance
status of each BS nodes. The status as well as the evidence are then stored in the data warehouse.

5.2 The monitoring console

In order to visualize the capability of the AS in monitoring the status of the underlying business
process, we have implemented a monitoring console in the AS node to show the information it
has collected and concluded. A screenshot of the monitoring console is show in Figure 7. The
console consists of four panels:

Document panel : displays the documentation registered by the services participating in the busi-

1Amazon EC2 http://aws.amazon.com/ec2/

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 193

ness process. As in the �gure, each of the �ve services has registered its BPEL, WSDL
and WSLA.

Process panel : displays the overview of the business process. Animation is used to show the
interactions between the underlying services so that the stage of the current process
can be seen.

Service status panel : displays the status and statistics of an individual service. These include
general Qos, such as response time and up time; transmission speed with associated
PartnerLinks; and ful�llment of the SLAs.

Overall status panel : Overall status panel displays the status and statistics of the whole business
process. It shows the number of jobs that have been done, the stage of the current
process, and the health of the process concluded by the AS.

Screenshot of mornitoring console

During the operation of the business process, all the logged evidence will be displayed in the
console in real time. The console shows the global view across the business process maintained
by the AS node. In practice, the console can be deployed remotely to allow the concerned parties
or compliance monitoring agents to observe the behavior of the system. A detailed illustration of
the monitoring console with a running business process can be seen in our demonstration video
[Yao and Chen 2010].

5.3 Performance evaluations

Now with the evidence logged with the AS, any source of errors can be e�ciently discovered. In
this experiment the operation involves a deterministic encryption process. Given an input, the
output must be constant. In real composition, operations will be more complex than those in
our example; however, as long as it is deterministic, veri�cation is possible with proper evidence.
This is the main bene�t of our non-disputable logging. Below we list several monitoring aspects
we implemented in our experimental system:

BPEL compliance: According to the business process in Figure 1, the correctness of
the operation, as well as the correctness of service invocation are monitored regarding
its BPEL.

WS-Agreement compliance: Using the metric in Listing 2, the response time of
each of the business services is measured and compared to its guarantee in the WSLA.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

194 · Jinhui Yao et al.

Integrity checking: The evidence logged in AS contains the incoming/outgoing
messages. A simple comparison is run to check if the message sent by the invoker is
the same as the message received by the invoking service.

Transmission speed: Similar to the metric in Listing 2, another metric can be
de�ned to use the receive time at the invoked service to minus the invoke time at the
invoker in order to �nd the time consumed in the message transmission.

Each of these represents a typical service quality concerns of the client. Figure 8 shows the
monitoring results of the response time of three business service nodes. If we apply the WSLA
in Listing 2, we can see that although the majority is below the 1.6 seconds guarantee, each of
the business services still has violations from time to time. Because the timestamps contained in
the evidence logged are signed by respective service nodes, they serve as undeniable evidence for
the client to claim compensation from the business services.

Response time monitoring

We have conducted testing to evaluate the latency introduced by incorporating accountability
into business process. Figure 9a shows the overall latency to �nish the process with untransformed
BPEL scripts and with transformed ones. We have tested the work�ow with request message size
from 0.1KB (equivalent to a sentence) to 50KB (equivalent to a medium size document). For the
process with transformed BPEL scripts to log the entire input/output messages (the serie marked
with �circles�), the latency introduced compared to the untransformed one (the serie marked with
�squares�) grows as the request message becomes larger. In percentage terms, on average we
observed a 30% increase in the overall process latency. Intuitively, this latency is signi�cant to
the business process; however it can be improved through the use of hash functions. We can see
in the graph, the extra latency is signi�cantly reduced if the BPEL scripts are transformed only
to log the hash of the evidence (the serie marked with �triangles�). In fact, the extra latency
almost remains constant regardless of the size of the request message, so it becomes more and
more negligible when the message size increases.
In practice, it is very rare to log the entire communication message as the evidence. Instead,

the hash of the message computed using collision-resistant hash functions (e.g., SHA-1), which
is a very small digest (160 bits for SHA-1), can be logged as a substitute. Because the hashes
computed are collision-resistant, which means it is theoretically impossible to have two di�erent
items with the same hash, so the hash can be logged to represent the evidence. When necessary,
such hash can be used to request the logger to submit the evidence. Of course, the hash of the
evidence tells little information about the evidence to the AS. Most SLA compliance or business
logic compliance cannot be concluded based on hash. But one can choose to submit only the
critical part of the evidence and the hash of the rest to e�ectively reduce the latency while still
allowing the AS to validate his compliance.
As aforementioned, one AS node may be monitoring multiple BS nodes, or multiple work�ows.

Naturally, it is interesting to �nd out the processing capability of individual AS nodes. To

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 195

(a) Latency introduced by incorporating account-
ability

(b) Throughput of AS under di�erent loads

Performance testing

evaluate this, we replicated the business process we have implemented (the loan application
service composition), and invoke multiple business processes replicated concurrently. As such,
multiple BS nodes will be submitting evidence to one AS node simultaneously. With this setting,
we evaluate the processing throughput of an AS node when it is under di�erent loads (in terms
of evidence received per unit time). Figure 9b shows the testing results. In the �gure we can
see that, the processing throughput of the AS improves as the number of work�ows increments,
it reaches its peak when the AS is monitoring 6 work�ows, and then it decays gradually if
more work�ows are involved in the monitoring. We tested this with messages of size 50KB,
the processing operations conducted by AS involves both SLA and business logic compliance
validating, which may need to fetch history data from the data warehouse to make conclusions.
Since the computing power of an AS node is �xed, an decrease in message size or processing
complexity will shift the peak towards right to occur when more work�ows are involved, and vice
versa.
Based on above observations, we believe it is reasonable to conclude that the latency introduced

by incorporating accountability into existing business processes is acceptable and adjustable. An
AS deployed in a small computing instance with limited resources in the cloud is capable of
monitoring the compliance of a number of work�ows each of which consists of multiple service
nodes. Therefore, our approach provides a viable solution to enforce accountability in the practice.

6. RELATED WORK

Service compliance has been decently studied in recent years, conventionally it is referred to as
quality of service monitoring (QoS). The conventional QoS monitoring approaches focus on the
performance aspect of compliance, such as response time, transmission latency, up-time, etc. and
focus on the ease of deployment and measurement accuracy. Typical example of QoS monitoring
approach is [Ghezzi et al. 2004], where SLAs requirements are interpreted to generate monitors to
be inserted into the process being monitored. These monitors capture related run-time parameters
to �nd out the compliance.
Recent studies in server compliance di�er from the conventional QoS monitoring in that, the

procedural aspect of compliance is also considered. This implies the capturing or/and analysis
of the activities conducted. For example, [Moser et al. 2008] captures the incoming and outgoing
messages of service nodes in order to record all the interactions among the services. In [Beeri
et al. 2007], procedural requirements are expressed in terms of activity patterns to be matched
with the executed actions. COMPAS project [Schumm et al. 2010; Miseldine et al. 2008; Daniel
et al. 2009] attempted to extend the business process engine with the functionality to record
activity traces, which will be analysed for compliance diagnosis.
In these studies, it is assumed that the collected evidence is not bogus and the incompliant en-

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

196 · Jinhui Yao et al.

tity will admit the violation once it is discovered. Our work considers a more hostile environment
where all service entities are expected to behave in any possible manner and deceive for their own
bene�t. Some other approaches also utilize cryptography techniques to achieve provability and
un-deniability. [Yumerefendi and Chase 2004] require service nodes to maintain temper-evident
logs about their receiving and sending requests as well as service state digests. Correctness is
veri�ed through service nodes volunteer to send challenge and audit requests to each other from
time to time to collect those logs for validation. [Kim and Kher 2007] is an attempt to achieve
secure accounting of utility storage, and it requires the storage service provider as well as the
client to sign for every request so that the amount of usage can not be denied by either party.
[Yumerefendi and Chase 2007] uses a similar approach to [Kim and Kher 2007], however it uses
such a method to achieve certi�ed accountable tamper-evident storage service. Instead of un-
deniable usage, it uses the signed actions logged to verify the correct state of stored data. Any
changes cast by both client and the service is provable and undeniable.
In our work, we deploy a central authority (AS) for diagnosis. Similar setting is adopted by

PlanetFlow [Huang et al. 2006], a layer built into PlanetLab [Spring et al. 2006] to capture and
analyse all the network activities conducted on PlanetLab. In LLAMA project [Zhang et al.
2007; Lin and Chang 2009; Lin et al. 2009], evidence are stored locally on the nodes and a
central accountability authority will collect the required evidence from the most likely root cause
locations when needed. In contrast to central diagnosis, an alternative topology is peer diagnosis,
where all the participators collect evidence from each other and verify the compliance for each
other. Typical examples includes [Druschel et al. 2007], [Haeberlen et al. 2006] and the study of
Byzantine fault tolerance systems [Castro and Liskov 2002].
The concept of our work is generated from [Wang et al. 2009; Wang et al. 2008], in which the

authors have proposed the idea that, accountability can be used for veri�cation of services' cor-
rectness with regard to established service agreements. Their study has been well developed and
re�ned in our work. We incorporate the AS into the business process through the transformation
of BPEL scripts, and the compliance is validated against standard SLA de�nition.

7. CONCLUSIONS

Collaborations are becoming increasingly important for companies' and organisations' survival.
Complex tasks which cannot be done by individuals can be achieved by the joint force when they
are combined to form business processes, hence individuals only need to focus on the development
of its core strength to maintain its competitiveness. Such business process may span multiple
administration domains, therefore the viability of this paradigm critically predicates on a robust
mechanism to validate each participants' compliance to the system.
In this paper, we introduce the Accountability Service to enforce compliance on the service

providers, who participate in business collaborations in the Cloud. This accountability mechanism
can be conveniently incorporated into existing business processes de�ned with process descriptive
languages (e.g. BPEL). With strong accountability enforced, we can build a trustworthy cloud
environment, where incompliance can always be concluded with provable and non-disputable
evidence. We implemented an evaluation system into Amazon EC2 which shows that, our design
i) is easy to be incorporated into existing work�ows; ii) can enforce strong accountability in
various aspects; iii) does not consume excessive computing resource to provide accountabilty;
and iv) introduce acceptable processing latencies.
In the future, we aim to extend our work to adopt various diagnosis techniques to more ac-

curately and e�ciently diagnose complex system compliance. For example, QoS compliance is
di�cult to measure if high accuracy is required, mathematical modelling techniques [Sommers
et al. 2010; 2007] can be used to make better estimations. For procedural compliance, the
business logic can be �t into a formal model [Aalst et al. 2008] for better analysis of activity
conformance. And activity history can be mined to recognize certain patterns [Lou et al. 2010].
Another important capability is the reasoning and inference ability. When confronting disputes,

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 197

available evidence shall be gathered for reasoning to deduce the most possible root-of-fault and
take appropriate actions [Ru�o and Crispo 2001].

REFERENCES

Aalst, W. M. P. v. d., Dumas, M.,Ouyang, C., Rozinat, A., and Verbeek, E. 2008. Conformance checking
of service behavior. ACM Trans. Internet Technology 8, 3, 1�30.

Andrews, T., Curbera, F., Dholakia, H., et al. 2003. Business process execution language for web services
(BPEL4WS) speci�cations.

Beeri, C., Eyal, A., Pilberg, A., and Milo, T. 2007. Monitoring business processes with queries. In Inter-
national Conference on Very Large Database.

Castro, M. and Liskov, B. 2002. Practical byzantine fault tolerance and proactive recovery. ACM Trans.
Computer Systems 20, 4, 398�461.

Daniel, F., Casati, F., D'Andrea, V., Mulo, E., Zdun, U., Dustdar, S., Strauch, S., Schumm, D.,
Leymann, F., Sebahi, S., Marchi, F., and Hacid, M. 2009. Business compliance governance in service-
oriented architectures. In International Conference on Advanced Informa&on Networking and Applications.
113�120.

Druschel, P., Haeberlen, A., and Kouznetsov, P. 2007. Peerreview:practical accountability for distributed
systems. In ACM SIGOPS symposium on Operating systems principles. 175�188.

Ghezzi, C., Baresi, L., and Guinea, S. 2004. Smart monitors for composed services. In International Confer-
ence on Service Oriented Computing. 193�202.

Haeberlen, A.,Kouznetsov, P., and Druschel, P. 2006. The case for byzantine fault detection. In Conference
on Hot Topics in System Dependability. 5�10.

Haeberlen, A., Kouznetsov, P., and Druschel, P. 2007. Peerreview: Practical accountability for distributed
systems. Technical report, Max Planck Institute for Software Systems. March.

Huang, M., Peterson, L., and Bavier, A. 2006. Planet�ow:maintaining accountability for network services.
In ACM SIGOPS Operating Systems Review. 89�94.

Kim, Y. and Kher, V. 2007. Building trust in storage outsourcing:secure accounting of utility storage. In IEEE
International Symposium on Reliable Distributed Systems. 55�64.

Lamport, L. 1983. The weak byzantine generals problem. Journal of ACM 30, 3, 668�676.

Lin, K.-J. and Chang, S. 2009. A service accountability framework for qos service management and engineering.
Information Systems and E-Business Management 7, 429�446. 10.1007/s10257-009-0109-5.

Lin, K.-J., Panahi, M., Zhang, Y., Zhang, J., and Chang, S.-H. 2009. Building accountability middleware
to support dependable soa. IEEE Trans. Internet Computing 13, 2 (mar.), 16 �25.

Lou, J.-G., Fu, Q., Yang, S., Li, J., and Wu, B. 2010. Mining program work�ow from interleaved traces.
In ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, NY,
USA, 613�622.

Mahbub, K. and Spanoudakis, G. 2004. A framework for requirents monitoring of service based systems. In
International Conference on Service Oriented Computing. 84�93.

Miseldine, P., Flegel, U., and Schaad, A. 2008. Supporting evidence-based compliance evaluation for partial
business process outsourcing scenarios. In Requirements Engineering and Law. 31�34.

Moser, O., Rosenberg, F., and Dustdar, S. 2008. Non-intrusive monitoring and service adaptation for ws-
bpel. In WWW '08: Proceeding of the 17th international conference on World Wide Web. ACM, New York,
NY, USA, 815�824.

Mulgan, R. 2000. Accountability: An ever-expanding concept? In Public Administration. 555�573.

Papazoglou, M., Traverso, P., Dustdar, S., and Leymann, F. 2007. Service-oriented computing: State of
the art and research challenges. In Trans. IEEE Computer 40, 11 (nov.), 38 �45.

Ruffo, G. and Crispo, B. 2001. Reasoning about accountability within delegation. In International Conference
on Information and Communications Security. 251�260.

Schumm, D., Leymann, F., Ma, Z., Scheibler, T., and Strauch, S. 2010. Integrating compliance into
business processes. In Multikonferenz Wirtschaftsinformatik.

Sommers, J., Barford, P., Duffield, N., and Ron, A. 2007. Accurate and e�cient sla compliance monitoring.
SIGCOMM Computer Communication Review 37, 4, 109�120.

Sommers, J., Barford, P., Duffield, N., and Ron, A. 2010. Multiobjective monitoring for sla compliance.
IEEE/ACM Trans. on Networking 18, 2 (apr.), 652 �665.

Spring, N., Peterson, L., Bavier, A., and Pai, V. 2006. Using planetlab for network research: myths, realities,
and best practices. SIGOPS Operating System Review 40, 1, 17�24.

Wang, C., Chen, S., and Zic, J. 2009. A contract-based accountability service model. In IEEE International
Conference on Web Services. 639�646.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

198 · Jinhui Yao et al.

Wang, C., Nepal, S., Chen, S., and Zic, J. 2008. Cooperative data management services based on accountable
contract. In International Conference on Cooperative Information Systems. 301�318.

Yao, J. and Chen, S. 2010. Monitoring by accountability service - demostration video.

Yumerefendi, A. and Chase, J. 2004. Trust but verify:accountability for network services. In ACM SIGOPS
European Workshop.

Yumerefendi, A. R. and Chase, J. S. 2007. Strong accountability for network storage. ACM Trans. Stor-
age 3, 3, 11.

Zhang, Y., Lin, K.-J., and Hsu, J. 2007. Accountability monitoring and reasoning in service-oriented archi-
tectures. Service Oriented Computing and Applications 1, 35�50. 10.1007/s11761-007-0001-4.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

Strong Accountability for Service Compliance in the Cloud · 199

Jinhui Yao is a PhD student in the School of Electrical and Information Engineering
at the University of Sydney. He is also undertaking research internship at the Informa-
tion Engineering Lab of CSIRO ICT Centre, Australia. His main research areas include
trustworthy computing platforms, service oriented architecture, service compliance.

Shiping Chen received the Bachelor degree in electrical engineering from the Harbin
University of Technology China, the Master degree in computer system engineering from
the Chinese Academy of Sciences (CAS), and the PhD degree in computer science from
the University of New South Wales (UNSW), Australia. He is a senior research scientist
at CSIRO ICT Centre working on middleware and distributed systems. He also holds an
honorary associate with the University of Sydney through co-supervising PhD and Mas-
ter's students. He is actively involved in service computing research community through
publications and PC member services (WWW, ICSOC, ICWS, SCC, etc.). His current
research interests include software architecture, secure data storage, and compliance as-
surance technologies. He is a member of the IEEE.

Chen Wang received his PhD from Nanjing University. He is a research scientist in
CSIRO ICT Center. His research interests are primarily in distributed, parallel and
trustworthy systems. His current work focus on accountable distributed systems, resource
management in cloud computing and the smart grid. Prior to joining CSIRO, he worked as
a research fellow in School of Information Technologies at University of Sydney. Dr. Chen
Wang has industrial experience. He developed a high-throughput event delivery system
and a medical image archive system, which are used by many hospitals and medical
centers in USA.

David Levy is an associate professor in Faculty of Engineering and Information Tech-
nologies at the University of Sydney. His research passion is building dependable systems,
that is, systems that do as expected, with a focus on performance, consistency and se-
curity issues. He conducts research in the areas of software architectures, distributed
components and middleware, real-time systems and performance engineering.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.

