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For a data center to operate effectively (i.e., meeting customers’ Service Level Agreements (SLAs)) and efficiently
(i.e., maximizing resource utilization), the virtual machines (VMs) must be carefully managed. In particular, as

the resource demands of VMs change, the assignment of VMs to physical machines becomes sub-optimal. VM
replication and migration provide a solution for dealing with dynamic workloads. However, as migrations are
costly, an effective control policy is critical to avoid frequent migrations. Moreover, an agile decision making
component is also important to reduce feedback latencies. In this paper we propose SOPRAN, a virtual machine

management system leveraging an integrative workload model for the data center, which can dynamically adapt the
assignment of VMs to physical machines to minimize resource consumption without sacrificing the SLAs. Different
from existing trace-based methods for this problem, SOPRAN characterizes the dynamic workloads in the system

using an integrative risk cube model, and approximates the workload demands with a representative state set. The
optimal plan for each representative state is incrementally generated, forming the switchable plan set. At runtime,
a two-phase re-optimization strategy matches the current system demand to the closest representative state and
actuates the corresponding plan in the switchable plan set. At the same time, online monitors profile the actual

demands and refine the risk cube to guarantee the model’s accuracy. This modeling technique and optimization
procedure based on it brings the great savings in optimization cost and migration frequency, and enables the high
scalability of SOPRAN. We evaluated SOPRAN against the state-of-the-art IBM MFR algorithm. The results
show that, with comparable resource consumptions, SOPRAN can achieve more stable SLA violation rate of no

more than 4%, 80% lower migration rate, and save up to 90% optimization overhead.
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1. INTRODUCTION

Cloud computing is increasingly being deployed in commercial systems and research projects
[Garfinkel et al. 2003]. Virtualization, as the underlying platform of cloud infrastructures, has
significantly contributed to the advantages brought by cloud service [Ng et al. 2003]. For example,
by letting multiple virtual machines (VMs) hosting applications run on the same physical machine
(PM), the physical resource utilization can be increased, and the data center capacity can be
subsequently increased; the power consumption, cooling cost and maintenance fee can be saved
with better investment return [Jung et al. 2009; Kansal et al. 2010]; workloads running on
the same PM can be safely isolated; and a programmable control layer provided by Virtual
Machine Monitors (VMM) such as Xen [Barham et al. 2003] and VMware [Haletky 2007] enables
performance surveillance and online automatic control of VM reconfiguration and migrations
across PMs.
In particular, the VM migration function enabled by VMMs provides the flexibility of handling

dynamic workloads with minimized resource consumption. However, VM migrations, even in the
live mode, are not free of cost. A typical live migration operates in two steps: in the “pre-copy”
step, the memory pages are copied to the destination machine while the VM is still operating; in
the “stop-and-copy” step, the VM is stopped and the remaining pages are copied, after which the
VM is completely migrated, and the service interruption happens in the “stop-and-copy” stage.
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Although the service interruption (i.e., downtime in the second step) is only 60 ms as claimed
in [Clark et al. 2005], the lengthy “pre-copy” stage can increase the application’s response time
by 50% to 200%, which causes significant impact on both the migrated VM and the co-located
VMs on the same server [Verma et al. 2010; Jung et al. 2009].
To fully exploit the aforementioned benefits brought by virtualization while avoiding unneces-

sary performance degradation, it is crucial to develop proper automatic control mechanisms for
virtual machine management (placement, communication and migration, etc.) in data centers [Bu
et al. 2009; Wang et al. 2007]. Meanwhile, since the workload demands are always changing, it
is very important to take into account the Service Level Agreement (SLA) fulfillment under such
dynamic demands in the automatic control mechanisms [Abdelzaher et al. 2002]. For instance,
if some workload’s CPU demand experiences peak time and valley time periodically, the control
mechanism must be able to detect the demand changes and react as soon as possible, so that
when the demand increases, more CPU fraction can be allocated to this VM hosting the workload
to satisfy the needs, and when the demand decreases, excess CPU fraction can be taken away
from this VM to save the cost.

1.1 Objectives

Therefore, the objectives for a virtualized data center is to achieve an optimal system configu-
ration so that it can “do more out of less”. Firstly, the VMs must be dynamically reconfigured
with sufficient resources, and be assigned to proper physical hosts (a.k.a. VM-PM allocation)
to achieve the stipulated SLA, (which has the highest priority in a commercial data center [Fito
et al. 2010]). Secondly, the system also needs to adaptively (re)optimize the hosts of VMs so that
the dynamic online resource demands can be catered with minimized cost. And lastly it must
also balance the optimization and migration overhead against the cost savings, so that frequent
VM migrations will not happen, to avoid frequent service interruptions. [Kimbrel et al. 2004;
Sapuntzakis et al. 2002].
To quantify the above objectives in evaluating VM management mechanisms, we use the follow-

ing performance metrics in our experiments as the performance indicators, in order of decreasing
importance from the perspective of data centers.

(1) Average SLA violation rate during runtime. This reflects the performance of a scheme in
terms of meeting customers’ SLA requirement;

(2) Average migration rate during runtime. This indicates a scheme’s ability to provide system
stability;

(3) Total re-optimization overhead during runtime. This captures the overhead of a scheme,
which is important for the online performance and system reliability; and

(4) Average number of physical machines used during runtime. This gives an indication of the
operational cost of the data center. In particular, machines that are not used can be powered
down or set to stand-by mode to make the system more energy efficient.

These metrics will be introduced in the experiment section again.

1.2 Challenges

To achieve the above objectives, it is very helpful to understand the workloads’ demand patterns,
especially for long running ones. Various demand patterns can incur quite different optimization
results. For example, some workloads are very stable in CPU demand over the time, while some
others may display periodicity. Some may have high demand on CPU but relatively low on
memory. And some comprehensive studies also point out that in real-world workloads the CPU
demand changes more rapidly than memory resource [Gmach et al. 2008]. If these characteristics
are taken into account to design the system, more effective and reliable deployment plans can be
achieved by decoupling the complicated relationships in multiple resources allocation.
Next, since the system is expected to achieve automatic management with satisfactory perfor-

mance, it is important for the control system to properly reconfigure VMs for the workloads with
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dynamic demands during the runtime, which is to decide the fractions of physical resources (e.g.
CPU, memory, I/O bandwidth) to be allocated to the VMs. Note that the amount of allocated
resources should handle possible fluctuations in the near future to avoid scenarios where resources
are repeatedly being added to or remove from a VM.
Moreover, to ensure an optimal workload consolidation solution for the purpose of minimized

total resource consumption servers with changing demands, it may be necessary to re-assign the
VMs’ hosts at runtime. In our context, we call the residence-host relationship of all VMs and
PMs currently in the data center a plan. While an exhaustive enumeration of all candidate plans
will end up with an “optimal” plan, the optimization overhead would grow exponentially with
increasing number of VMs. As a result, the overall effect may harm the online agility of the
control system.
During runtime, the performance monitor will detect SLA violations of workloads and feedback

to the system coordinator. Once the violation rate exceeds a certain predetermined threshold,
reoptimization will be triggered. Intuitively, a tighter threshold means more aggressive reop-
timizaion and higher migration rate, which may incur more service interruption; while a more
relaxed threshold may cause higher SLA violation rate. Therefore, a robust plan is preferred in
order to trade-off between performance and optimization overhead, and to guarantee that the
deployment we make can be effective enough in the foreseeable future.

1.3 Existing Methods

Most of existing solutions for this virtual machine management problem follow a “modeling-
optimizing-actuating” framework, yet certain strategies are employed for specific workloads such
as web application [Karve et al. 2006; Abdelzaher et al. 2002], database workloads [Seltzsam
et al. 2006; Soror et al. 2008] or multi-tier workloads [Padala et al. 2009; Jung et al. 2009]. A
more detailed literature review is presented in Section 2.

1.4 Contribution

In this paper, we propose SOPRAN, a trace-based virtual machine management system using
an integrative workload model for the data center. SOPRAN has the following distinguishing
features:

(1) SOPRAN discretizes and approximates each workload into a small set of coarse-grained
resource demand (e.g., low, moderate, high). In this way, a risk (hyper-)cube model (in a hyper-
cube space) can be derived to capture the integrative system load. Essentially, each point in
the model corresponds to a resource demand state of the data center where the ith dimension
captures the resource demand of the ith workload.

(2) Our risk cube model is compact without complex formulas and parameters, and can easily
handle a much broader range of dynamic workloads. This is in contrast to some modeling methods
which require complex parameter inference and refinement processes. Thus, SOPRAN greatly
simplifies the optimization process, and so improves the online performance in terms of system
latency.

(3) SOPRAN pro-actively maintains a set of switchable plans, one for each point in the risk cube
(which is defined in section 5.2). Each such plan is essentially the optimal VM-PM allocation plan
with regard to the given system load corresponding to that point. Benefiting from the reduced
dimension of the workload model, the plans in this switchable plan set are effective and robust
in handling a set of conditions represented by the corresponding states in the model.

(4) SOPRAN adopts a two-phase re-optimization strategy. In the first phase, it monitors the
actual runtime workload and matches it to the corresponding point in the risk cube. In the
second phase, it determines the best allocation strategy to use. When the current system load
falls within that captured by the risk cube, an optimal plan is readily available for reuse. This
keeps the optimization overhead low. When the actual load is not captured by the risk cube, it
has to be refined to reflect the current system load more accurately (see the next point).
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(5) As workload demand changes with time, there may be a need to refine the risk cube and
re-optimize the corresponding switchable plan set. Based on the workload profile, SOPRAN
periodically recomputes a tentative risk cube. This tentative risk cube will replace the existing
risk cube once SOPRAN detects that the discrepancy between them is sufficiently significant.
This mechanism combines both proactive and reactive advantages, to maintain the accuracy of
the risk cube model, so as to ensure SLA fulfillment with minimized cost.

(6) The switchable plan sets are generated incrementally during runtime when the correspond-
ing representative states are matched up, to amortize the optimization overhead and further
reduce the system latency. Also, the low optimization overhead and small migration rate keep
the entire system more stable without frequent service interruption, guaranteeing a good system
scalability.

1.5 Paper Organization

The rest of this paper is organized as follows. Section 2 presents an overview of related works
in comparison with our SOPRAN. In Section 3 the background of this paper is summarized,
and in Section 4 we identify the optimization problem. Section 5 gives the system architecture
and detailed description of SOPRAN. Section 6 reports results of a performance study. And we
conclude this paper in Section 7.

2. RELATED WORK

The workload deployment strategies can be roughly divided into two categories: Under static
deployment, each VM is assigned a fixed amount of resources (typically the peak demand) and
a pre-determined VM-PM allocation. This system configuration will be in use for a long period,
e.g. several months. Static deployment simplifies the system design. However, the resources are
typically not well utilized and the system cannot cope well with changing workloads. In dynamic
deployment, with the help of VM migration function, the system periodically re-optimizes the
VM-PM mapping according to the runtime feedback to achieve optimal performance. However,
it may incur high optimization overhead when the system scales up.

2.1 Static Deployment

Static deployment schemes pre-determine the configuration and placement of the VMs. This
allocation will then be used for a long period (e.g. several months) without changes. This
decision is often done offline [Urgaonkar et al. 2002]. Static deployment makes the system easy to
manage and scale up, but VMs are very likely to be over-provisioned in order to satisfy peak time
demands. Obviously, for those workloads who rarely reach their peak times, the corresponding
VMs are severely under-utilized even when other VMs in the same cluster are hungry for resources.

2.2 Dynamic Deployment

For a more effective solution to the automatic virtual machine management/scheduling problem,
dynamic deployment strategies are preferred. Dynamic deployment has been studied by both
academia [Karve et al. 2006; Abdelzaher et al. 2002; Seltzsam et al. 2006; Soror et al. 2008;
Padala et al. 2009; Jung et al. 2009; Bobroff et al. 2007; Fito et al. 2010; Wang et al. 2007;
McNett et al. 2007; Xu et al. 2007; Verma et al. 2008; Gmach et al. 2008] and industry (such as
HP Service Integration Environment (SIE) and IBM System Director). And most of the existing
solutions follow a “modeling-optimizing-actuating” framework, which corresponds to the main
challenges in automatic virtual machine management as discussed in section 1.2.

2.3 Dynamic Deployment with Workload Differentiation

Within this dynamic deployment scope, different strategies are employed for specific workloads
such as web application [Karve et al. 2006; Abdelzaher et al. 2002], database workloads [Seltzsam
et al. 2006; Soror et al. 2008] or multi-tier workloads [Padala et al. 2009; Jung et al. 2009]. For
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example, Soror et al. discussed how virtualized platform can benefit database workloads [Soror
et al. 2008]. They discussed the tuning problems caused by running database systems inside
the VMs, and proposed to reconfigure VMs at runtime for database workloads. They modeled
the performance of a VM with a certain configuration using a “what-if” model based on the
database query optimizer, and identified this problem as an optimization of resource allocation
among several VMs with some performance constraints. This solution works well for database
workloads, however, it cannot be generalized to non-database workloads, since the model relies
on the query optimizer in database system.

2.4 Dynamic Deployment with Resource Differentiation

Besides the differentiations in workloads, some proposed methods emphasize on specific resources,
such as CPU, memory, I/O bandwidth, etc. For example, the authors in [Bobroff et al. 2007]
focused on CPU resource allocation during online reconfiguration, and some other groups studied
the I/O performance in virtual machine scheduling [Kim et al. 2009; Ongaro et al. 2008; Gulati
et al. 2009]. Since the workloads’ requirements for different resources can be correlated, the
overhead relationship between different resources, e.g. CPU vs. I/O and memory, has also been
investigated to provide guidelines for building cost models [Jang et al. 2011; Cherkasova and
Gardner 2005].
Our proposed SOPRAN system is applicable to multiple resource types, although we use CPU

resource demands in our risk cube model as an illustration. The rationale is that in real-world
workloads the CPU demand changes more frequently than memory resource [Gmach et al. 2008],
and memory resizing is not as agile as CPU reconfiguration.

2.5 Dynamic Deployment: Trace-based Modeling Methods

For methods that focused on CPU resource reconfiguration in shared-resource environment, many
of the existing methods adopt a trace-based modeling mechanism [Bobroff et al. 2007; Gmach
et al. 2008; Rolia et al. 2004; Rolia et al. 2005; Seltzsam et al. 2006]. Workload traces have been
shown to be useful especially when the workloads display repetitive patterns in resource demands
over a long period. Therefore workload trace can reflect future demands well. In SOPRAN the
risk cube model is also built on the basis of workload traces which are kept up-to-date.
Generally the trace-based methods model the workload demands using the historical traces of

the workload, and predict the future demands according to the model, which will be used for
resource resizing and allocation in the optimization phase. For example, the MFR system [Bobroff
et al. 2007] models the workload’s CPU demands into autoregressive time series first, and then
predicts the future demand for certain time interval as the input of plan optimization. This
algorithm fully exploits the characteristics of time series models. However, it is not generally
applicable to workloads that cannot be accurately modeled with time series.
Three findings of the workload modeling phase are: (1) as the model’s granularity increases,

the model’s accuracy increases, but the modeling overhead such as parameter inference and
refinement overhead also increase. After the model’s granularity reaches certain level, the gain in
model accuracy may not worth the increased overhead; (2) as the model’s granularity increases,
the optimization complexity also increases, because the dimension of the searching space in the
optimization algorithm grows exponentially with the cardinality of the model. And similarly,
the model’s granularity should not be too fine to make up the optimization overhead; (3) most
of the aforementioned modeling methods model the individual workloads running in the system,
yet they fail to capture the overall workload pattern in the system. This is fine for systems with
few machines, but when the system grows to 1000 VMs, the scalability of the control system
may be degraded due to the trivial model technique. Based on these findings, in SOPRAN we
adopt a coarse-grained model for each workload, and maintain an integrative system workloads
model called the “risk cube model” that improves the model’s abstraction ability for the entire
system’s workload pattern, to enable a coarse-grained online adjustment for VM reconfiguration
and reallocation.
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Figure. 1: A data center with virtualized platform

There are also non-trace-based academic systems such as Sandpiper [Wood et al. 2007]. These
systems can also work well in its proposed environment.

2.6 SLA-aware Dynamic Deployment

The objectives of virtual machine management in a data center are not only to achieve a minimum
resource consumption but also the fulfillment of Service Level Agreements. In particular, for the
Infrastructure-as-a-Service framework, the service provision level is critical to users, and can
impact the service providers’ standpoint in the cloud market. Therefore, SLA-aware virtual
machine scheduling has also been investigated by some groups of researchers [Bobroff et al. 2007;
Fito et al. 2010].
In SOPRAN, we also use online performance feedback as an indicator of SLA fulfillment, and

to adjust the resource allocation or VM placement whenever the VMs’ performance becomes
degraded, in order to provide users with high quality of service.

2.7 Energy-aware Dynamic Deployment

Besides performance objectives, the energy and power consumption concerns are becoming in-
creasingly important.
To ensure energy efficiency, energy and power aware virtual machine management strategies

have also been proposed [Kansal et al. 2010; Verma et al. 2008].
In particular, since virtual machine migration is costly, migration-aware virtual machine man-

agement in data centers are being pursued by several groups of researchers. For example, Akshat
Verma et al. proposed pMapper as a trade-off between power and migration cost and applica-
tion performance in virtualzed systems [Verma et al. 2008]. Some other works also sought to
minimize migration opportunities during runtime [Kimbrel et al. 2004; Sapuntzakis et al. 2002;
Wood et al. 2007; Xu et al. 2007]. In SOPRAN, the compact system workload model uses rep-
resentative states to cover similar system conditions, and render a reduced solution space for the
optimization problem, so the probability for VM migrations has been significantly reduced.

3. BACKGROUND

Currently, many commercial vendors adopt the hardware architecture depicted in Figure 1 for
data centers [Brantner et al. 2008].
There are two types of physical nodes: computing nodes and storage nodes. Computing nodes

are mainly for providing computation power and do not hold data, and VMs can only be hosted
by computing nodes. When migration is invoked, VMs do not need to carry data with them. All
the data and logs are stored in the storage nodes. Some of the computing nodes may be set to
standby mode or even powered down, while storage nodes are active most of the time.
All computing nodes are interconnected as a cluster with a centralized coordinator, and all

storage nodes are interconnected to build an “infinite” storage pool, which can be expanded
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Symbol Meaning

P =< P1, ..., PM > Physical machines
V =< V1, ..., VN > Virtual machines

W =< W1, ...,WN > Workloads
R =< R1, ..., RM > PMs’ resource capacity

D(t) =< D1(t), ..., DN (t) > Resource demands at t
S(t) =< S1(t), ..., SN (t) > Resource allocated at t

τ Re-optimization interval
S A time section of n× τ

RSS Representative State Set
SPS Switchable Plan Set

Table I: Notations of the system model

when necessary by adding more storage nodes without being perceived by the VMs. On top of
each computing node there is a VMM layer between the hardware and the operating systems,
which handles VM creation, resource allocation, VM migration, performance monitoring, etc.
Mature VMMs such as Xen and VMware can achieve high control accuracy and low overhead.
Multiple VMs with their (fractional) resource allocation (CPU, memory, bandwidth, etc.) can
be created by VMM, and each guest OS can run as if it is assigned dedicated hardware.

The computing cluster is connected to the storage pool using a fast communication bus. Every
time the computing nodes need to exchange data with the storage, they will issue I/O requests
which are queued and processed accordingly. The coordinator can communicate with all VMMs
to coordinate the tasks and schedule the I/O requests.

4. PROBLEM IDENTIFICATION

SOPRAN is designed based on the above data center architecture. Suppose there are M physical
computing nodes with a data storage pool, and N VMs with workloads running on the M PMs.
The notations of this system are listed in Table I.

The objectives of SOPRAN are to make sure that the VMs must be allocated sufficient physical
resources to achieve the stipulated SLA under dynamic workload demand, and also to adaptively
reconfigure VMs and possibly dynamically change the host of each VM, so that the resource
consumption can be minimized through consolidation.

At the same time, the adjustment granularity of resource allocation during the optimization
must be traded off against the gains from this dynamic consolidation, so that there will not
be too frequent VM migrations across PMs, which itself consumes resources and interrupts the
applications hosted on the VMs. If the migration is too frequent, the system stability is affected,
and may render a poor scalability due to the associated overhead in each migration operation.

The optimization problem of VM resource allocation and placement problem can be identified
as a constrained programming problem, in which the workload demands are the inputs and the
VM-PM mapping plan is the output.

4.1 Control Variables

We use a matrix mMN , called the plan matrix, to represent the multiple-to-one mapping between
N VMs and M PMs, which indicates the resident-host relationship between them. If VM Vj

resides on PM Pi, the ith-row and jth-column element mij in the plan matrix equals to 1;
otherwise, mij = 0. Intuitively, if some PM Pm is not hosting any VM, the elements in the mth-
row of this matrix will be all zero, and we call this row a “zero line”. The number of non-zero
lines in the matrix is the number of used PMs in the system. All the elements in this matrix

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.



Integrative Workload Modeling and Proactive Reoptimization for Virtual Machine Management · 109

constitute the control variables of the optimization problem.

mMN =


m11 m12 ... m1N

m21 m22 ... m2N

... ... ... ...
mM1 mM2 ... mMN

 (1)

If Vj resides on Pi, mij = 1; else, mij = 0.

4.2 Constraints

There are some constraints in the VM resource allocation and placement optimization problem.
For example, the amount of resource allocated to each VM in a plan should be greater or equal
to the demand of this workload at time t, as shown in Formula (2):

Dj(t) ≤ Sj(t), 1 ≤ j ≤ N (2)

The summation of all the VMs’ resource Sj on the same PM Pi should not exceed the capacity
of this host PM, as shown in Formula (3):

N∑
j=1

mij · Sj(t) ≤ Ri, 1 ≤ i ≤ M (3)

In each plan, one VM can only be hosted by one PM at a time, meaning that there must be
strictly a single “1” in each column of plan matrix, as represented by Formula (4).

M∑
i=1

mij = 1, 1 ≤ i ≤ N (4)

4.3 Objective Function in Optimization

The objective of this optimization problem is to minimize the average number of PMs used during
runtime (every PM holds as many VMs as possible), subject to the demands of each VM with
respect to the above constraints (Formulas 2), (3) and (4). Therefore, we have

cost(mMN ) = rank(mMN ) (5)

where mMN is the matrix of a plan that is to be evaluated, and the rank of a matrix A is the
number of linearly independent rows or columns of A. Here, since every plan is a matrix, the
number of PMs used equals to the rank of the matrix by definition.

4.4 A 0-1 Optimization Problem

The optimization problem has now been packaged into a 0-1 programming model. We use first-fit
heuristic algorithm to solve it and obtain the best solution. Experiments have shown that the
best solution from first-fit heuristic is very close to the optimal one from dynamic programming
algorithm while the latter would cost much longer time to solve.

5. DESIGN OF SOPRAN

In Section 2.5, we have introduced the IBM MFR method which establishes a deterministic
model for the workloads, uses the inner components of the model to predict future performance
degradations, and proactively makes adjustment. This model is accurate, yet the computational
cost and optimization cost may be significant.
Instead, SOPRAN discretizes and approximates each workload into a small set of coarse-

grained resource demand (e.g., low, moderate, high). In this way, a risk (hyper-)cube model (in
a hyper-cube space) can be derived to capture the system load without any tedious parameter
inference efforts. In addition, the online checking of the risk cube model’s deviation drives the
system reoptimization according to online feedbacks. In particular, the compact model simplifies
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Figure. 2: SOPRAN system architecture

the optimization process, and makes the overall optimization overhead grow at a much slower
speed than precise modeling methods as the number of VM increases.

5.1 System Architecture

Figure 2 shows the architecture of SOPRAN. It consists of several key components:

— The Workload Analyzer examines the (historical) workload traces to build a model that
represents the possible states of the system load. ForN distinct workloads, the model is essentially
a N -dimensional hyper-cube which we called risk cube. At runtime, the Profile Updater gathers
runtime system demand (from the Online Monitor) and updates the workload profiles. These
updated profiles are periodically processed by the workload analyzer to generate a tentative risk
cube that more accurately reflects the recent workload.

— The Two-Phase Re-optimizer (2PR optimizer) consists of two sub-components - the
Plan-set Optimizer and the In-set Optimizer. After the risk cube has been updated, a new
set of representative states (see the definition in section 5.3) are derived from the new risk cube,
and the previously maintained plan set (which we call switchable plan set) must be updated. The
plan-set optimizer is the one that incrementally generates one optimal plan for each representative
state and maintains the complete set of plans for all representative states, forming the switchable
plan set. At runtime, the in-set optimizer matches the current system load state to the closest
state in the representative states set, and selects the corresponding plan in the switchable plan
set, which is actually the pre-computed optimal plan for this representative state by the plan-set
optimizer. As long as the system load stays within the current risk cube, the best plan can
be easily obtained from the switchable plan set without further reoptimization. However, when
the current switchable plan set no longer gives acceptable performance, the in-set optimizer will
request an update of the risk cube.

— The Online Monitor on each VMM samples the actual demands of VMs and reports to
the Profile Updater. It also detects SLA violation of the running workloads. If the average
SLA violation rate exceeds a predtermined threshold (say, 5%), 2PR optimizer will be triggered.
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Figure. 3: Three categories of workload patterns with histograms

The SLA violation for each workload is obtained by comparing the assigned amount of resource
with the monitored actual demand within the time window. If the ratio between the assigned
demand and the actual demand is below the pre-defined threshold, this is counted as a violation.
If over the time window 5% of the time the SLA is violated for this workload, then the SLA
violation rate is considered to have exceeded the threshold.

— The RiskCube Checker checks the accuracy of the current risk cube. Once the dis-
crepancy between the tentative risk cube and the current one exceeds a certain pre-determined
threshold, the riskCube checker will replace the current risk cube with the tentative one, and
notify the plan-set optimizer to clear the current switchable plan set.

— The Actuator is responsible for actuating the plan that is chosen by the optimizer. It
analyzes the plan matrix and translates the matrix into the corresponding residence relationship
between the VMs and PMs. Then it compares this chosen plan with the current plan in the
system, and figures out the discrepancies, e.g. whether the host of each VM in the currently
deployed plan has been changed in the newly chosen plan, and if changed, what is the IP address
and related information of the new host for this VM. Thus an instruction that calls the virtual
machine monitor on the current host to suspend and migrate the particular VM to the destination
host is pushed into the instruction list, which is a series of instructions that migrate the affected
VMs.

The design of SOPRAN has three novel features:

— Feature 1: Risk Cube Model of workloads contributes to SOPRAN’s supporting of
various workload patterns, simpler model and lower migration rate;

— Feature 2: Adaptive Two-Phase Re-optimization contributes to better SLA fulfill-
ment and less online re-optimization overhead; and

— Feature 3: Incremental Plan Generation contributes to the further reduction of re-
optimization overhead, especially for large scales of VMs, so as to guarantee good system scala-
bility.

The three features are the three main steps in SOPRAN, which we shall discuss in depth in
the following three subsections.

5.2 Risk Cube Model

5.2.1 Workloads Characterization. The characteristics of the dynamic workload demands can
provide useful information to (a) better explore the optimization opportunities, and (b) avoid
frequent re-optimization and migration, so as to improve system performance and guarantee SLA
fulfillment.
For simplicity, we assume that each workload’s resource demand is represented by its CPU de-

mand trace; generalizing to other types of resources will be considered in future work. According
to the survey of [Bobroff et al. 2007] on a large number of CPU usage traces from production
servers, the workloads can be roughly divided into three categories, as shown in Figure 3. The
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first type represents servers with consecutive tasks executed, such as application servers. The
second type represents servers with random density of CPU loads, and sometimes have sudden
burst, such as web servers and mail servers. And the third type has clear repetitive patterns in
CPU demands with peak time and valley time. Application servers and database servers used
by banking system often display such workload patterns – during office hours the servers are at
peak load, but in the night the systems become idle or lightly loaded.

To clearly illustrate our proposed scheme, in this paper we reasonably assume that all the
workloads running in the data center display the three patterns of resource demands without lost
of generality.

5.2.2 Risk Cube and Representative Value Vector. Because the three types of workloads
present different patterns, we assign each pattern a risk score based on the demand fluctuation,
to measure the degree of uncertainty. The risk score can be labeled either using the statistical
parameter of historical demand traces, or values assigned by experts (based on their experience)
when the historical traces are not available. Besides, for each workload trace a risk interval can
be formed, indicating that the future demand values are most likely to be within this value range.
The calculation procedure of risk intervals from historical traces will be discussed later.

Risk intervals make the optimizer aware of the dynamic pattern of each workload, so that it
can switch plans accordingly or trigger re-optimization if necessary. More importantly, such plans
are robust enough to be effective for the interval. In this way, the system is more stable system
with fewer re-optimizations.

With the historical trace of workload j, we calculate the risk interval as follows: make a
histogram of the trace and take it as an approximation of the probability density distribution
of the demand values, and identify the 5 and 95 (or any other numbers defined by the system
administrator, such as 2.5 and 97.5) percentile values of this histogram, denoted as v0.05 and
v0.95. Thus the value of risk score riskj for workload j is assigned as:

riskj = scale× (v0.95 − v0.05) (6)

The scale factor, scale, is an ad-hoc number that identifies the sensitivity of this risk score. It is
also defined by the system administrator and should be between 0 and 1, such as 0.5, 0.6. And
therefore the risk interval is [v0.05, v0.95], meaning that the probability of the next value falling
into this range is approximately 90%.

With the risk interval computed, a d-dimensional representative value vector for this histogram
can be drawn. By evenly dividing the risk interval into d subintervals, each subinterval’s upper
value is picked as a representative value for the subinterval. The dimension of the representative
value vector is set to be 3 by default, as our experiments show that 3 representative values
are adequate to approximate the demand curve with satisfying performance and low overhead.
Three-dimensional representative value set is illustrated by the three vertical lines (exclude the
left-most one) in each of the histogram in Figure 3.

Since there are three types of workloads in the system, if we put each workload’s demand value
along one dimension in a coordinate system, the three representative value vectors will form a
risk cube as shown in Figure 4. If at time t we observe all three workloads’ demand values as a
vector, the point in the coordinate space corresponding to this vector at time t will most likely
arrive inside the risk cube.

In the procedure of resource allocation, for each workload we get the actual amount of CPU
resource demand, and pick the value which is immediately greater than it from the three repre-
sentative values of this workload type, thus forming the staircase approximation of this actual
trace along the time axis, as shown in Figure 6. Note that the three representative values will be
periodically refined according to online statistics.
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5.3 Two-Phase Re-optimization

Before introducing SOPRAN’s 2PR optimizer, let us define some terms used in the following
description:

Definition 1. At any time point t0, the CPU demands observed from all N VMs form a
N -dimensional vector, D(t0) =< D1(t0), D2(t0), ..., DN (t0) >, called the System State at time
t0.

Definition 2. Each sample value of workload demand has its representative value which has
three possible values (details in Section 5.2), and there are three types of workloads in this system.
So there are a set of possible combinations, called the Representative States Set (RSS), which
will be effective until the risk cube has been refined. Note that RSS can be directly formed from
risk cube.

Definition 3. For a given system state, the plan that has the minimum value for the objective
function (5) is called the Optimal Plan at this system state.

Definition 4. For each representative state set, if we find every optimal plan at all represen-
tative states and form a plan set, it is called the Switchable Plans Set corresponding to this
representative states set.

Definition 5. The risk cube that is active in the system, and to which the current switchable
plan set corresponds, is called the Current Risk Cube.

Definition 6. Each time the profile has been updated, a new risk cube, called the Tentative
Risk Cube, will be computed by the workload analyzer.

The tentative risk cube will be compared against the current risk cube, and the decision on
whether to replace the current risk cube with the tentative one is made during runtime.
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In SOPRAN, we adopt an enhanced version of the solution proposed in Section 4 to achieve a
more robust performance as well as a lower optimization overhead.
Initially, the workload analyzer studies the historical resource demand traces of workloads and

characterizes the workloads using the representative states. From the resultant combined risk
cube model for all workloads, the representative state set can then be derived from the risk cube.
The starting state of the system is measured and an initial plan is deployed. During runtime,
the online monitor performs two tasks. First it measures the actual system state and uses it
as an estimate for the workload demands for the next time window τ . Second, it estimates the
SLA violation rate under the current resource allocation. If the detected or anticipated SLA
violation rate is below the pre-determined threshold, the system will carry on with the current
plan. Otherwise, it will trigger 2PR optimizer.
The 2PR optimizer works in two phases: in the first phase, it compares the system state with

the current representative state set. If the system state still stays within the current risk cube,
the 2PR optimizer can proceed to the second phase. In the second phase the in-set optimizer
adjusts the plan among the switchable plans. This ensures that as few changes as possible would
be made to the current placement. For example, if the current system state changes from closest
to representative state 1 to closest to representative state 2, then the system can just jump from
plan 1 to plan 2 in the switchable plans set, without exhausting the huge plan space.
However, if the system state falls outside the risk cube so that none of the representative state

in RSS can be used, then risk cube has to be refined and the switchable plan set has to be reset,
as discussed in the next paragraph.
Besides the reactive refinement of risk cube, SOPRAN will also proactively refines it if nec-

essary. The profile updater will gather the actual demands from the online monitor and add
into the historical traces, forming the updated profile. The workload analyzer will periodically
compute the tentative risk cube from the updated profile. The RiskCube Checker continuously
compares the tentative risk cube with the current one. Once the discrepancy between the two
risk cubes is big enough, or in the two-phase re-optimization loop the system state lies far outside
the risk cube, the tentative risk cube will become the current risk cube, and the switchable plan
set will be regenerated.
The discrepancy of the two risk cubes is measured by the average distance between the corre-

sponding matching points from the two cubes, as shown in Figure 5. Each representative state in
the RSS is a point in the risk cube, denoted as p1, p2, ..., pl, where l is the dimension of RSS and
SPS. Let d(pi, p

′
i) be the Euclidean distance of p and p′ in the d-dimensional coordinate system.

The discrepancy of two risk cubes is therefore dif(riskCube, teriskCube) = 1
l

∑l
i=1(d(pi, p

′
i)).

To decide whether the discrepancy is big enough or not, a threshold is set as the guideline. In-
tuitively, a stricter threshold means more aggressive re-optimization and higher migration rate,
which may incur more service interruption and migration failure. On the other hand, a less strict
threshold may cause higher SLA violation rate. In our experiment we simply choose a value that
can make the SLA violation rate just below 5%, in order to trade-off between performance and
optimization overhead, and to guarantee that the deployment we make can be effective enough
in the foreseeable future.
The 2PR optimizer can effectively reduce VMmigration rate and service interruption by reusing

switchable plans as much as possible. Algorithm 1 gives an algorithmic description of the main
idea of the two-phase re-optimization.

5.4 Incremental Plan Generation

The third feature can further reduce or spread the online re-optimization overhead: once the rep-
resentative states are changed, instead of generating the l switchable plans all at a time, SOPRAN
incrementally optimizes them when the corresponding representative state is encountered, and
keeps the plan rather than drop it once the state has expired. In such case, as long as the current
representative states set is still effective, for any representative state that has been encountered
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before and is picked again, SOPRAN can simply reuse the pre-computed plan in the SPS instead
of optimizing again. Not until the risk cube has been refined will the switchable plans set be
cleared.
This feature is extremely helpful when the risk-cube checking interval is long, and the system

has a large scale. It not only avoids repeated computations, but also reduces SOPRAN optimizer’s
online latency.

Algorithm 1: Two-Phase Re-optimization

input : history traces D(t)hist, t ∈ [T0 − S, T0] and realtime traces D(t), t ∈ [T0, Tend]
output: Optimal Plan OptP lan

1 compute RiskCube and RSS from D(t)hist;
2 OptP lan = initialP lan;
3 Tentative risk cube TeRiskCube = RiskCube;
4 /*realtime loop*/
5 while T0 ≤ t0 ≤ Tend do
6 update RiskCube’ threshold thres;
7 window number w = 0;
8 closet representative state id sid = 0;
9 foreach τ ∈ S do

10 w ++;
11 update Sw;
12 OptP lan = Plansid in SPS;
13 PMusedw = rank(OptP lan);
14 get monitored Dw with length τ ;
15 /*record SLA violation in this time window*/
16 SLAviow = compare(Sw, Dw, SLA);
17 Scurrent

w = Swindow;
18 sidcurrent = sid;
19 < sid, Sw >= InsetOptimizer(Dw, RSS);
20 /*First phase: reactively refine RiskCube*/
21 if system state not close enough to any Representative state then
22 RiskCube = TeRiskCube;
23 derive RSS from RiskCube;
24 clear SPS;
25 < sid, Sw >= InsetOptimizer(Dw, RSS);

26 /*Second phase: state matching and plan selection*/
27 if Scurrent

w ̸= Sw then
28 if Plansid not exists then
29 OptP lan = PlansetOptimizer(Sw, R);
30 accumulate OptimizCost;
31 add OptP lan to SPS as Plansid;
32 else
33 OptP lan = Plansid in SPS;

34 deploy Plansid in SPS;

35 compute TeRiskCube from updated profile;
36 shift = compare(RiskCube, TeRiskCube);
37 /*proactively refine RiskCube and RSS*/
38 if shift ≥ thres then
39 RiskCube = TeRiskCube;
40 derive RSS from RiskCube;
41 clear SPS;

42 t0 = t0 + S;
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6. EXPERIMENTAL EVALUATION

To fully understand the system performance of SOPRAN, we have conducted two groups of
experiments. The first evaluates the benefits that can be derived from the three features in SO-
PRAN. The second compares the overall performance of SOPRAN to existing methods, namely,
the IBM MFR system [Bobroff et al. 2007] and a static deployment method.

6.1 Experiment Setups

In our simulation experiments, we adopt the data center topology as described in Section 5.1.
The number of VMs is varied from 25 to 1000 to see the scalability performance. We assume

that there are always sufficient PMs in the data center for up to 1000 VMs with the given SLA.
The PMs have identical configurations with 4 CPU cores and 4G memory. The data are stored
in shared disk pool, and VM migration has no effect on data transfer.
To focus on the performance evaluation of SOPRAN on system modeling and reoptmization,

we only implemented the Workload Analyzer, Profile Updater, RiskCube Checker and the 2PR
Optimizer. The workloads running on the VMs are emulated to generate resource demands as
the input to our experiment testbed.
In each round of experiments, the number of VMs is fixed at a certain number N , and the

workload traces are generated randomly at the beginning of each round. The three algorithms
are applied separately for a simulated time duration of 2500 hours with the same set of work-
loads. After each round, the values of the performance indicators (described in section 6.3) are
calculated, and the results presented in sections 6.4 and 6.5 are the average level of 5 rounds for
each case.

6.2 Workloads Emulation

To mimic the data center workloads, we generate three types of CPU usage traces as the workload
demand traces during runtime, with the patterns described in Section 5.2.
The first pattern is approximated using step functions, together with white noise being added,

which is quite common in real world machine’s CPU usage conditions. In our experiments, this
type of workload trace is realized with random parameters drawn from a pre-defined range.
The second pattern is approximated using noised AR(2) time series functions, which is also

the model adopted in [Bobroff et al. 2007]. Each realization of this type’s trace is generated with
random AR coefficients and randomized interpolations of sudden bursts.
The third type is approximated using noised sine function, and each realization will have

randomized amplitude and phase. Figure 3 illustrates these workload types.
The generated traces are used as input to each algorithm to evaluate the online performance.

To ensure fairness, each round of comparison experiments will use the same group of traces.

6.3 Performance Metrics

The following performance metrics are used to evaluate the methods in our experiments, in order
of decreasing importance from the perspective of data centers.

(1) Average SLA violation rate during runtime. This reflects the performance of a scheme in
terms of meeting customers’ SLA requirement. It is very critical to data centers to ensure
customers are satisfied;

(2) Average migration rate during runtime. This indicates a scheme’s ability to provide system
stability. Frequent migration increases the failure rate and overhead;

(3) Total re-optimization overhead during runtime. This captures the overhead of a scheme. It
is important for the online performance and system reliability; and

(4) Average number of physical machines used during runtime. This gives an indication of the
operational cost of the data center. In particular, machines that are not used can be powered
down or set to stand-by mode to make the system more energy efficient.
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6.4 SOPRAN Feature Evaluation

To evaluate the contributions derived from each of the three features in SOPRAN, we compare
the performance of three versions of this algorithm constructed by deactivating different features
in SOPRAN.

— Version 1: Only Feature 1 is activated and the other two are deactivated, combined with a
regular optimization algorithm used in [Bobroff et al. 2007]. Therefore, it uses the representative
value set to form a staircase approximation of the workload demands, and re-optimize the plan
once SLA violation is anticipated to happen.

— Version 2: Feature 1 and Feature 2 are activated, and Feature 3 is deactivated, therefore
it uses a staircase approximation of the workload demands, and has the risk cube (or equally
representative states) which will also be refined online. Each time when the current representative
state is expired it will drop the plan instead of keeping it for possible further usage.

— Version 3: All three features are activated, forming the full-functional SOPRAN system.

First, we compare Version 1 and Version 3 under the same conditions, and the results are
shown in Figure 7 and Figure 8. From the figures we can see that even though Version 3 has
slightly higher (-1% to 8% more) resource consumption than version 1, it can achieve much lower
(2-4 times less) and more stable SLA violation rate. Since SLA fulfillment is the most important
objective for data center, we prefer Version 3 over Version 1.
Next we compare Version 2 and Version 3 under the same conditions. The results are presented

in Figure 9 and Figure 10. As shown in the figures, as the system scales up to 1000 VMs, Version 3
can save up to 12% of the online re-optimization overhead, which means that the Incremental
Plan Generation feature can actually help to reduce substantial overhead and improve the
system scalability.
Based on the above two comparison experiments, it is clear that all the three features in

SOPRAN are indispensable for better performance, in terms of fulfilling SLA, reducing overhead
and improving system scalability.

International Journal of Next-Generation Computing, Vol. 2, No. 2, July 2011.



118 · Jian Zhou et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

100 200 300 400 500 600 700 800 900 1000

S
LA

 V
io

la
tio

n 
R

at
e

Number of VMs

Static
IBM MFR
SOPRAN

Figure. 11: Average SLA violation rate
during runtime

 0

 0.05

 0.1

 0.15

 0.2

100 200 300 400 500 600 700 800 900 1000

V
M

 M
ig

ra
tio

n 
R

at
e

Number of VMs

Static
IBM MFR
SOPRAN

Figure. 12: Average VM migration rate
during runtime

 0

 50000

 100000

 150000

 200000

100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

eo
pt

im
iz

at
io

n 
O

ve
rh

ea
d 

(s
ec

on
ds

)

Number of VMs

Static
IBM MFR
SOPRAN

Figure. 13: Total re-optimization overhead
during runtime

 0

 200

 400

 600

 800

 1000

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 N
um

be
r 

of
 P

M
s 

U
se

d

Number of VMs

Static
IBM MFR
SOPRAN
Equal line

Figure. 14: Average number of PMs used
during runtime

In the next group of experiments that compare SOPRAN with other methods, we activate all
three features in SOPRAN.

6.5 Comparison Experiments

The IBM MFR is a state-of-the-art workload modeling based method that reconfigures VM online
with SLA constraints (see Section 2). However, it only applies to the second workload pattern
in Section 5.2 (see Figure 3). For other two patterns, MFR can neither formulate their model
nor infer the parameters. Therefore, we set MFR algorithm to have full knowledge of the future
demand for the next time window τ , while SOPRAN can only estimate from past traces. In
other words, the experiments are biased towards MFR scheme. For static deployment, our static
scheme gets the profile at the beginning of deployment based on the history traces, allocates the
maximum amount of past demand to the VMs, and maintains this configuration for a long time.
By letting N varies from 25 to 1000 with the step of 25, we run 40 experiments in total.

6.5.1 Average SLA Violation Rate. Under the same experiment settings, the average SLA
violation rates of the three algorithms are illustrated in Figure 11. First of all, we observe that
the SLA fulfillment under static deployment is very uncertain. When the history traces happened
to be perfectly representative of the online load, the static deployment is very effective - it can
meet most of the SLA requirements (i.e., violation rate below 1%). However, on occasions where
there are sudden bursts of workload or when unexpected patterns happen, the static deployment
may fail to handle them. Hence, the violation rate can even be as high as 13%, which would be
totally unacceptable to customers.
On the contrary, both MFR and SOPRAN can adapt to the dynamic changes in the workload

demands. Even if the changes were not reflected in the history traces, both the two algorithms
can make adjustments based on model prediction or online monitoring. Since we assume MFR
can perfectly predict the future demands, in the experiments MFR can keep the SLA violation
rate below 5% when the number of VMs scales from 25 to 1000. SOPRAN can also response
effectively to the sudden burst or unknown patterns by monitoring the actual demands and
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refining the risk cube. Therefore SOPRAN can successfully control the SLA violation rate to be
around 2% to 4%.

6.5.2 Average Migration Rate. Next we compare the three algorithms in terms of the VM
migration rates. The results are shown in Figure 12. Since the static scheme does not perform
any re-optimization, it will not trigger any migrations. While both MFR and SOPRAN allow
live migrations, they react differently: MFR is more aggressive than SOPRAN in performing
re-optimization, and exploits more opportunities of migration and re-optimization to achieve
better SLA fulfillment and lower resource consumption (see Figure 14). Therefore the average
migration rate under MFR is quite large - above 12%. SOPRAN, on the other hand, can save
up to 6 times the migration rate of MFR - it has a migration rate of lower than 2%. However,
SOPRAN incurs slightly higher resource consumption. We argue that this cost is worth paying
since migration itself also consumes resources, such as CPU time, memory, network and I/O
bandwidth. More importantly, the gain in terms of lower VM migration rate will give rise to
shorter service interruption and lower failure rate.

6.5.3 Total Re-optimization Overhead. Static deployment also does not incur any re-optimization
overhead even though its performance may be poor at times.
As illustrated in Figure 13, SOPRAN saves as much as 90% of the re-optimization overhead

compared to MFR, especially when there is a large number of VMs. We can see that the overhead
of MFR grows dramatically, while SOPRAN’s grows at a much slower speed.
For the MFR algorithm, a VM should be allocated exactly or slightly higher amount of resources

than its demand. This is to ensure that it can fulfill the SLA while keeping the cost low. As
such, it has to re-optimize nearly every time the workload demands change. Therefore the re-
optimization overhead grows exponentially as the number of VMs scales up, given that the search
space grows dramatically.
While SOPRAN has a coarser re-optimization scheme, and it only searches among limited

combinations of the state space when the system scales up, therefore the re-optimization cost
each time is much lower. Moreover, each time when SOPRAN is making a decision for the next
τ , it will anticipate the future demands based on the history. Thus, the next plan to be actuated
is likely to be effective in the foreseeable future. This characteristic reduces the re-optimization
times, increases the system reliability, and earns the much lower migration rate as explained
in Section 6.5.2. Furthermore, less optimization overhead also avoids slowing down the whole
system.
From the above perspectives, we can see that SOPRAN is especially efficient for large scale

systems.

6.5.4 Average Number of Physical Machines Used. Although SLA is the most important con-
cern of both customers and data centers, the resource utilization is also important for the data
centers. This is especially so in a cloud environment where the data centers want to make higher
profit and at the same time compete with opponents with lower price.
From Figure 14 we can see that both SOPAN and MFR can save substantial amount of average

number of PMs used: MFR uses 51.9% of the number of PMs used by static deployment, while
SOPRAN uses 58.6%, which is 6.6% higher than MFR.
To summarize, we can see that with the same settings and workloads, both SOPRAN and

MFR are much more efficient and flexible than static deployment. While SOPRAN consumes
slightly more resources, it compromises the cost for better SLA fulfillment, much lower migration
rate and re-optimization overhead and better scalability.

7. CONCLUSIONS

In this paper, we have addressed the problem of online virtual machine management with dynamic
workloads. Our proposed SOPRAN system represents the possible states of the system load in
the form of a risk (hyper)cube. By maintaining VM-PM allocation for each of these states,
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the best allocation can be quickly determined as long as the actual workload stays within the
risk cube space. By monitoring the system workload, the risk cube is continuously refined and
kept up-to-date to reflect the changing workload demands. Our experimental study shows that
SOPRAN, in comparison with a state-of-the-art MFR scheme, is applicable to a broader range of
workload patterns, can fulfill SLA requirements, achieves much less overhead and migration rate
using slightly higher resource consumption. These advantages make SOPRAN more suitable and
reliable for online virtual machines management in large scale data centers.
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