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Correct cost estimates is an essential element to develop economic proposals and being competitive in the market.

Companies have to estimate the effort, time and cost before bidding for a project. An inaccurate estimate will
lead to money and market share loss. To do that the expected software development size has to be estimated early
in the development process. Many software models were presented in the literature to handle this task such as
expert judgment, analogy-based estimation, formal estimation models and combination-based estimation models.

These models were found to be risky and created many problems in practice related to availability of expertise and
inaccurate estimate. Soft Computing techniques were successfully used to solve a diversity of problems in software
engineering project cost estimation management. Earlier investigation proved that techniques such as Artificial
Neural Networks (ANNs) can solve many problems in the field of software engineering project cost estimation

management with promising results. In this paper, we propose two new models for software effort and function
point estimation using ANNs. Two types of ANNs will be explored; the Feedforward (FF) and the Radial Basic
Function (RBF) neural networks. The Albrecht data set with a number of attributes was used to provide our
results. Developed results shows that ANNs models can provide an accurate estimate for both the software effort

and number of function points.

General Terms: Algorithms, Management, Design, Experimentation, Theory.
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1. INTRODUCTION

Many governmental agencies, departments and private companies around the world spend billions
of dollars yearly on software development and maintenance. Many projects failed to accomplish
their requirements due to failure of existing software cost-estimation techniques in providing
accurate estimate before the project initiation. This is a serious financial problem for these
agencies. For example government departments and the US department of defense (DoD) spent
approximately 30 billion dollars every year in developing and maintenance of software [Boehm
1987]. Also a study by the US government on IT projects revealed the extent of that challenge
and stated that: 60% of projects were behind schedule, 50% of projects were over cost, and 45%
of delivered projects were unusable [Garmus and Herron 2002].
Software effort estimation is defined as the process of estimating the most accurate volume of

effort expressed in man-months that is required to develop or maintain software. This develop-
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ment in many cases depended on inaccurate or incomplete data. One reason is that each project
has a unique characteristic to estimate and its probability of success in many cases depend on the
team experience and the type of projects. Since late 1960s many researchers have been exploring
the problems of software effort estimation and presenting variety of models that can solve this
problem as given in [Nanus and Farr 1964].
Software effort estimation models are not only useful in computing effort or budgeting but

also help in avoiding risks, project planning, controlling resources and improving the company
stock investment. In the past, software engineers gave more attention to developing formal
model structure to estimate effort. Before the 70s software used to be estimated based on rules
of thumb or trial and error. In 1970 with the growing size of software systems, a number of
tools of automated software were presented. Barry Boehm [Boehm 1981], presented one of the
well-known models in the literature, the Constructive Cost Model (COCOMO). This model was
developed using sixty-three projects’ data during the 1960’s and 1970’s. More details about
this model can be found in Boehm’s book, ”Software Engineering Economics” [Boehm 1984].
Other popular methods for estimation in software engineering include: Analysis Effort method,
Evidence-based Scheduling [Harchol-Balter et al. 2003], Function Point Analysis [Rask et al.
1992], Parametric Estimating [Zeng and Rine 2004], PRICE Systems [Stewart 1991], Putnam
[Putnam and Myers 2003], SEER-SEM [Fischman et al. 2005] and many others. In [Kemerer
1987], Kemerer develop a famous study reporting the results of the comparative accuracy for four
software cost estimation models. They are the Function Points [Albrecht 1979], SLIM [Putnam
1978], COCOMO [Boehm 1981], and ESTIMACS.
Another trend of software estimation was presented in 1975 which is called Function Point

Analysis (FPA) for estimating the size and development effort. FPA provides a uniform method
to measure the functionality of a software system from the user point of view. The answer to the
question: Why we should use function points? Can be found in in [Furey 1997]. Authors claim
that FPA helps developers and users measure the size and complexity of software application
functions in a way that is useful to software users. FPA were used to measure and estimate
real-time and embedded software system in [Lavazza and Garavaglia 2009].
We can claim that even though there many articles written are many articles since 1960 provid-

ing numerous models to help in computing the effort for software projects, being able to provide
accurate effort estimation is still a challenge for many reasons. They include: 1) the cost drivers
to be considered along with the development environment might not be clearly specified; 2) the
uncertainty in collected measurement; 3) the estimation methods used which might have many
drawbacks and
In this paper, we are exploring the use of feedforward ANN (FF-ANN) and Radial Basis Func-

tion ANN (RBF-ANN) to build two non-parametric software effort estimation models. A data
set with four attributes: Kilo Line Of Code (KLOC), Methodology, Complexity and Experience
were used as input for the software effort estimation model provided by Bailey and Basili in [Bai-
ley and Basili 1981] from NASA software projects; while the FP model is utilizing the Inputs,
Outputs, Files, User Inquiries as input to estimate the number of FP for software project adopted
the Albrecht [Albrecht 1979; Albrecht and Gaffney 1983a]. We provide a brief description of
two well-known models for cost estimation in the literature for software effort estimation: the
COCOMO in Section 2 and the FP models in Section 3. Soft-Computing and its usage for effort
estimation is presented in Section 4. A brief description to the adopted types of ANN: the FF
and RBF models are presented in Section 5. The adopted criterion to evaluate the developed
models are presented in Section 6. In Section 7, we present the experimental results based
ANN. Finally, we provide a conclusion and future work for this research.

2. COCOMO MODEL

The Constructive Cost Model (COCOMO) is an algorithmic parametric software cost estimation
model developed by Barry W. Boehm. COCOMO model was first presented in Boehm’s 1981
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book Software Engineering Economics [Boehm 1984] for estimating effort, cost, and schedule
for software projects. model developed is based on 63 software projects at TRW Aerospace.
TRW Inc. was an American corporation involved in a variety of businesses, mainly aerospace,
automotive, and credit reporting. The model developed based on software projects with small
to medium size from 2,000 to 100,000 lines of code with variety of programming languages such
as assembly. The development methodology was based on the well-known waterfall model which
was the dominant software development process in 1981.
Boehm presented three types of COCOMO models with various accuracy. The first type is

known as Basic COCOMO. This model proves to be applicable in cases with quick and project
estimation. The second type is known as the Intermediate COCOMO. This model takes in con-
sideration number of attributes are called Cost Drivers to help improve the model estimation
accuracy. Finally, the Detailed COCOMO moreover studies the effect various phases of develop-
ment. Equation 1 shows the basic COCOMO model equation.

E = a(KLOC)b [person−months]

D = c(E)d [months]

P = E/D [count] (1)

E, D, P and KLOC stands for software effort computed in man-months, development time,
people required and Kilo Line Of Code, respectively.
The values of the parameters depend mainly on the class of software project. Software projects

were classified based on the complexity of the project into three categories. They are: Organic,
Semidetached and Embedded models [Benediktsson et al. 2003]. The values of the coefficients
a, b, c and d are given in Table I. These models are expected to give different results according
to the nature of software projects.

Table I: Basic COCOMO Models

Software project a b c d

Organic 2.4 1.05 2.5 0.38

Semi-Detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

3. WHY FUNCTION POINT ANALYSIS?

Software size is an essential factor that help in developing an initial estimate for software ef-
fort/cost during software development life cycle. COCOMO model provided this estimate based
on the KLOC. It was reported that KLOC produced many problems [DeMarco 1982; Jones 1986].
For example, in modern software programming, auto-generate tools produced large number of
line of codes. KLOC also changes with the developer’s experience, difference in programming lan-
guages, variation in the graphical user interface (GUI) code generation, and lack of functionality.
The estimation of KLOC under this condition seems uncertain to measure.
This is why Albrecht proposed his idea of computing the software size based on the system

functionality [Albrecht 1979; Albrecht and Gaffney 1983a]. He found that FPA:

(1) is an adequate tool to determine the size of application packages by counting all the functions
included in the package;

(2) can help users determine the benefit of an application package knowing the exact match
between the required functionality and provided functionality by the software package and
finally

(3) an informal way to estimate cost and resources required for software development and main-
tenance.
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3.1 Albrecht’s Function Points (FP)

In 1979 Albrecht [Albrecht 1979], published his article on FP methodology while he was working
at IBM. Albrecht’s function point gained acceptance during the 1980’s and 1990’s because of the
tempting benefits compared to the models based on the KLOC [Rask et al. 1992; Furey 1997].
Because FP is self-governing and independent of language type, platform, it can be used to identify
many productivity benefits. FP is designed to estimate the time required for a software project
development, and thereby the cost of the project and maintaining existing software systems.
The proposed FP is a non-parametric method. FP concerns about the logical view more than

the physical. Thus, attributes such as like coding algorithms, database structure, screen-shots are
not counted. FP is computed based on the analysis of project requirements. The requirements
help in identifying the number of function to be developed along with the complexity of each
function. Thus, there was no need to measure the size of Line of Code but only concern about
project functionality. Once the number of FP measured, the average number of function points
per month specified and the labor cost per month is estimated; the total budget can be computed.
Albrecht originally proposed four function types [Albrecht 1979]: files, inputs, outputs and
inquiries with one set of associated weights and ten General System Characteristics (GSC).
In 1983, the work developed in [Albrecht and Gaffney 1983a], proposed the expansion of the

function type, a set of three weighting values (i.e. simple, average, complex) and fourteen General
System Characteristics (GSCs) were proposed as given in Table II. In Albrecht FP, there are two
parts in the model, which are Unadjusted Function Point (UFP) and Adjusted Function Point
(AFP).

Table II: 1983 function types and weights

Function Type Simple Average Complex

External Input 3 4 6

External Output 4 5 7

Internal Files 7 10 15

External Files 5 7 10

External Inquiry 3 4 6

(1) The UFP consists of five components. They are:
(a) External Inputs (EI),
(b) External Outputs (EO),
(c) External Inquires (EQ),
(d) Internal Logical Files (ILF) and
(e) External Interface Files (EIF).

(2) There are 14 GSCs factors which affect the size of the project effort, and each is ranked
from ”0” means no effect to ”5” means essential. GSCs consists of 14 factors known as
f1, f2, . . . , f14. These factors are listed in listed in Table III. The sum of all factors is then
multiplied given in Equation 2 which constitute the Adjustment Factor (AF) defined in the
range [0.65, -1.35].

AF = 0.65 + 0.01

14∑
i=1

fi (2)

(3) Then, the Unadjusted FP is then multiplied by the AF to create the Adjusted Function Point
(AFP) count as given in Equation 3. The Adjusted FP value has values within 35% of the
original UFP figure.

Adjusted FP = Unadjusted FP ×AF (3)
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Table III: General System Characteristics (GSCs)

1 Data Communications

2 Distributed Functions

3 Performance

4 Heavily Used Configuration

5 Transaction Rate

6 Online Data Entry

7 End User Efficiency

8 Online Update

9 Complex Processing

10 Reusability

11 Installation Ease

12 Operational Ease

13 Multiple Sites

14 Facilitate Change

4. SOFT-COMPUTING FOR EFFORT ESTIMATION

In the past, Soft Computing techniques were explored to build both parametric and non-parametric
effort estimation models structures [Ryder 1995; Hodgkinson and Garratt 1999]. In [Kelly 1993],
the author explored the use of Artificial Neural Networks (ANN), Genetic Algorithms (GAs) and
Genetic Programming (GP) to provide a methodology for software cost estimation. Later authors
in [Dolado and andez 1998], provided a detailed study on using Genetic Programming (GP),
Neural Network (ANNs) and Linear Regression (LR) in solving the software project estimation.
Many data sets provided in [Albrecht and Gaffney 1983b; Matson et al. 1994] were explored with
promising results. In [Shepper and Schofield 1997], authors provided a survey on the cost esti-
mation models using artificial neural networks. ANN were used for software engineering project
management in [Kumar et al. 1994].

Examples of Software Estimation Techniques

Recently, many questions were introduced about the applicability of using Soft Computing
and Machine Learning Techniques to solve the software effort and cost estimation problems. For
example, can machine learning techniques used to tune the parameters of the COCOMO model?
or is it possible to estimate the number of function points using Genetic Algorithms?. In [Sheta
2006b], the author used Genetic Algorithms to tune the parameters of the COCOMO model with
number of variation in the model structure. Later on, many authors explored the same idea
with some modification [Mittal and Bhatia 2007a; 2007b; Uysal 2008; Sandhu et al. 2009] and
provided a comparison to the work presented in [Sheta 2006b]. Exploration of the advantages of
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the Takagi-Sugeno (TS) fuzzy logic technique on building a set of linear models over the domain
of possible software were investigated in [Sheta 2006a].
Authors in [Sheta et al. 2008] presented an extended work on the use of Soft Computing

Techniques to build a suitable model structure to estimation software effort for NASA software
projects. On doing this, Particle Swarm Optimization (PSO) was used to tune the parameters
of the COCOMO model. The performance of the developed models were evaluated using NASA
software projects data set [Bailey and Basili 1981]. Also, a comparison between COCOMO-PSO,
Artificial Neural Networks (ANNs), Halstead, Walston-Felix, Bailey-Basili and Doty models were
provided with excellent modeling results. Some of these models are parametric and some are
non-parametric.
A research studies presented two new models for software effort estimation using both Multigene

Symbolic Regression Genetic Programming (GP) [Aljahdali and Sheta 2013] and Fuzzy Logic
[Sheta and Aljahdali 2013] were presented. One model utilizes the Source Line Of Code (SLOC)
as input variable to estimate the Effort (E); while the second model utilize the Inputs, Outputs,
Files, and User Inquiries to estimate the Function Point (FP). The proposed models show better
estimation capabilities compared to other reported models in the literature. The validation results
are accepted based Albrecht data set. The same data set is adopted in this study. In Figure
1, we provide a general hierarchy of number of estimation techniques as presented in [Suri and
Ranjan 2012].

5. ARTIFICIAL NEURAL NETWORKS

A neural network is a massively parallel distributed processor non-parametric model. ANN has
the ability to recognize functions or pattern as long as it was trained with enough knowledge.
There are many similarities between ANN and the brain. They include:

(1) A learning process/algorithm is required.

(2) Synaptic weights are used to store the knowledge.

(3) The network is clever such that it can generalize.

ANN adopts a learning algorithm which is capable of updating the network weights such that
the objective criterion is accomplished. The basic building block of the neural network system is
the neuron which sends/receives information to/from various parts of the network architecture.
Each neuron collects inputs from a single or multiple sources and produces a single output in
accordance with a certain predetermined non-linear function.
ANN is created by interconnecting many of these simple neuron models in a known configu-

ration. The network weights are modified so as to minimize the difference between the network
output and the desired output. After finishing the learning process, the network will be capable
of generalization. It also can provide outputs based on specific inputs from the same domain of
the problem.

5.1 Multi-Layer Perceptron

Multi-Layer perceptron (MLP) is one of the most popular types of ANN for supervised learn-
ing. It became dominant in 1986 with the development of the Backpropagation (BP) algorithm
[Rumelhart and McCleland 1986]. The objective of the training process for MLP is to find the
best set of weights which minimize the error difference between the system response and pro-
duced response by ANN. The MLP weights are updated by using gradient descent technique in
the weight-space. Gradient descent can be viewed as a generalization of the popular least-mean-
square (LMS) algorithm.
A MLP network consists of three layers: input, hidden and output layers. In some applications

we could have more than one hidden layer. The number of neuron in the hidden layers depends
on the complexity of the system function to be modeled. The input signal broadcasts over the
network in a forward direction, layer by layer. The error backpropagation learning algorithm
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consists of two phases. The first is usually referred to as the presentation phase (i.e. forward
pass) and the second as the backpropagation phase (i.e. backward pass). In the presentation
phase an input vector ϕ is presented to the network resulting in an output y at the output layer
were the synaptic weights are all fixed. In the backpropagation phase the weights are adjusted
based on the error between the actual and desired outputs. In Figure 2 we show a two layer MLP
as presented in [Al-Hiary et al. 2008; Braik et al. 2008].

A Fully Connected Two Layer Feedforward Network

MLP is a fully connected network because all inputs/units in one layer are connected to all
units in the following layer, the first layer is known as the hidden layer h and the second layer
is the output layer. The depicted network consists of three inputs, two hidden units and two
outputs. The MLP can be represented mathematically as given in Equation 4 [Norgaard et al.
2000; Al-Hiary et al. 2008].

ŷi = F [φ, θ, x]

=

N∑
k=1

wk × φk

φk =

p∑
l=1

f(Wl × xl) (4)

where Wl are the weights for the nodes at the input layer, ŷi is the output signal, gi is the
function realized by the neural network and θ specifies the parameter vector, which contains all
the adjustable parameters of the network (weights wk, Wl and biases at each layer). f(. . . ) is the
sigmoidal function used in the ANN. This function are more likely to be tan sigmoid at the hidden
layer and linear at the output layer. MLP is trained by the backpropagation learning algorithm
to adjust the network weights such that the objective criteria is achieved (i.e. the network output
ŷ matches the desired input y). Typically, to achieve this match many input/output pairs are
used to train the network [Rebecca 1997].
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5.2 Radial Basis Function Networks (RBF)

Radial Basis Function (RBF) Networks has lots of similarity such as FF neural network. They
have been used successfully to solve variety of function approximation problems. They consists
of three layer with only one hidden layer. The main difference is that their sigmoid function are
in Gaussian format. RBF has many features makes it unique such as fast learning very good
interpolation.
To see how RBF network works, let us consider a set of N data points in the input space Rd,

together with their associated desired output values in R:

D = {(xi, yi) ∈ Rd ×R, 1 ≤ i ≤ N | f(xi) = yi} (5)

Assuming we are considering only one dimensional output function. RBF network can be used
to approximate a function f uses m functions ϕ. ϕ is the radial basis function defined as follows:

ϕj(u) = ϕj(|| x− cj ||) (6)

The cj are the locations of the centroids i.e., the centers of the RBF, while || .. || denotes as
the norm. x is the network input vector. The approximation of the function f may be expressed
as a linear combination of the RBFs as f̂(x) given in Equation 7.

f̂(x) =
M∑
j=1

wjϕj(|| x− cj ||) (7)

The most common radial basis function, in practice, is a Gaussian kernel given by:

ϕj(|| x− cj ||) = e
−(

(||x−cj ||)
rj

)2

(8)

where rj is the width factor of the kernel j.

Once the general shape of the ϕj function is chosen, the purpose of the RBF algorithm is to
find the parameters cj , rj and wj to best fit the function f . By fitting, we mean that the global
Mean-Square Error (MSE) between the desired outputs yi for all data input points xi, 1 6 i 6 N
and the estimated outputs ŷ(x) is minimized. The MSE is given in Equation 9.

MSE =
1

N

N∑
i=1

(yi − f̂(xi))
2

=
1

N

N∑
i=1

(yi − ŷi)
2 (9)

6. MODEL EVALUATION

The performance of the developed two models; the KLOC and the FP models based on ANNs
shall be evaluated using number of evaluation criteria. They are:

(1) The Variance-Accounted-For (VAF):

V AF = [1− var(y − ŷ)

var(y)
]× 100% (10)

(2) The Mean Magnitude of Relative Error (MMRE), defined as:

MMRE =
1

N

N∑
i=1

|yi − ŷi|
yi

(11)
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where y and ŷ are the observed effort from previous projects and the estimated effort based on
the proposed models and n is the number of measurements used in the experiments, respectively.

7. EXPERIMENTAL RESULTS

To develop our effort estimation and FP estimation models, we used sets of data provided by
[Bailey and Basili 1981] and [Albrecht 1979; Albrecht and Gaffney 1983a].

(1) Effort Estimation Data Set 1: A data set was provided by Bailey and Basili in [Bailey
and Basili 1981] from NASA software projects is used to develop ANN model for software
effort estimation. The data set consists of four attributes: KLOC, Methodology, Complexity,
Experience and Effort for 18 software projects. In this second case, we are considering KLOC,
Methodology, Complexity, Experience as inputs for the ANN model (See Equation 12). The
data set was sorted for experimental use.

E = ANN(KLOC,Methodology, Complexity, Experience) (12)

(2) FP Estimation Data Set 2: In the FP modeling process, we adopted the Albrecht data
set [Albrecht 1979; Albrecht and Gaffney 1983a]. In this case, our goal is to build an ANN
model that relates the main inputs: Inputs, Outputs, Files and Inquiries to the FP as output
(See Equation 13).

E = ANN(Inputs,Outputs, F iles, Inquiries) (13)

7.1 Developed ANN Model for Effort Computation

We developed a neural network model to estimate the software effort taking into consideration
four attributes. They are the KLOC, Methodology, Complexity and Experience. We ran the
ANN Matlab Toolbox to develop our results. The data was split to 50% for training and the
other 50% for testing the model. We used the BackPropoagation learning algorithm to train the
ANN. This algorithm involves two stages: Forward propagation and backward propagation. In
Forward propagation, a training pattern’s input is propagated through the network to generate
the output pattern based on the initial selected weights. While in Backward propagation the
difference between the input and output values of all output and hidden neurons are propagated
back to adjust the ANN weights.
We proposed a FF-ANN with two layers; one hidden with tan sigmoid transfer function and

one neuron in the output layer with linear sigmoid function. The hidden layer had three neurons.
The maximum number of epochs was set to 300. For the RBF, we used a network with spread
constant of three and number of hidden nodes equals 18. The RBF convergence after running
ten epochs.
In Figure 3, we show the observed and estimated effort based both the feedforward and RBF

networks. In Table I, we also show the computed values of the observed software effort in real
project and the estimated effort based FF-ANN and RBF-ANN. The computed MMRE and VAF
for the two developed models are shown in Table IV. It was found the FF-ANN model was able
to provide a better results than the RBF model.

Table IV: Computed Criterion for the Effort Estimation Model

Criteria Effort based FF-ANNs Effort based RBF-ANNs

MMRE 0.026168 0.25555

VAF 99.978% 98.78%
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Observed and Estimated Effort Using (a) Feedforward ANNs (b) RBF Network

Table V: Observed and Estimated Effort Using ANN based on KLOC

KLOC Methodology Complexity Experience Effort FF-ANN RBF-ANN

2.1 28 19 20 5 4.9515 7.8479
3.1 26 18 6 7 7.4872 7.4044
4.2 19 23 12 9 8.7503 9.3551
5 29 21 14 8.4 7.7272 0.6594
7.8 31 18 16 7.3 6.9956 16.395
9.7 27 21 16 15.6 17.896 21.855
10.5 34 19 21 10.3 10.328 2.655
12.5 27 23 18 23.9 23.006 23.915
12.8 26 25 16 18.9 18.103 16.454
21.5 31 27 20 28.5 28.726 32.546
31.1 35 21 18 39.6 39.58 36.186
46.2 20 21 14 96 95.794 88.788
46.5 10 21 16 79 79.019 80.366
54.5 20 29 16 90.8 90.922 90.185
78.6 35 33 16 98.7 98.731 103.62
90.2 30 21 16 115.8 115.8 118.58
97.5 29 29 14 98.4 98.387 102.4
100.8 34 33 16 138.3 138.29 131.29

7.2 Developed ANN Model for FP Computation

We developed a neural network model for the effort taking into consideration the four main
attributes of the FP. These attributes are: Inputs, Outputs, Files and Inquiries as presented
in [Albrecht 1979]. The proposed ANNs were developed with a four-input single-output model.
The ANN output is the number of function points for software projects. In this case, we also
divided the data set to half-and-half; for both training and testing. A FF-ANN, with two layers,
was used with three neurons in the hidden layer and one neuron in the output layer. FF-ANN
convergences to the minimum error after small number of iteration.
For the RBF, we used a network with 18 hidden node, which is the total number of the data set.

In Figure 4, we show the observed and estimated function points based on both the feedforward
and RBF networks. The computed MMRE and VAF for the two developed models are shown in
Table VI. In Table VII, we also show the computed values of the observed FP in real project and
the estimated FP based FF-ANN and RBF-ANN. In this case also, it was found the FF-ANN
estimation results was better results than the RBF results.
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Observed and Estimated Function Points Using (a) Feedforward ANNs (b) RBF Network

Table VI: Computed Criterion for the FP Estimation Model

Criteria Effort based FF-ANNs Effort based RBF-ANNs

MMRE 0.13647 0.16541

VAF 99.276% 98.011%

Table VII: Observed and Estimated Effort Using ANN based on Function Point

Inputs Outputs Files Inquiries FP FF-ANN FP RBF-ANN FP

34 14 5 0 100 175.73 143.19
15 15 3 6 199 141.82 119.43
7 12 8 13 209 192.45 188.28
33 17 5 8 224 214.39 223.97
12 15 15 0 260 212.71 205.2
13 19 23 0 283 338.36 334.4
17 17 5 15 289 291.72 234.17
27 20 6 24 400 433.89 370.34
28 41 11 16 417 485.13 511.87
70 27 12 0 428 465.46 434.73
10 69 9 1 431 451.5 542.33
25 28 22 4 500 399.12 446.59
41 27 5 29 512 497.09 493.97
28 38 9 24 512 538.82 532.1
42 57 5 12 606 593.28 581.12
45 64 16 14 680 715.25 770.58
43 40 35 20 682 688.06 840.83
61 68 11 0 694 689.2 703.56
40 60 12 20 759 717.02 727.95
40 60 15 20 794 734.8 758.2
48 66 50 13 1235 1239.2 1137.9
69 112 39 21 1572 1563.8 1429.1
25 150 60 75 1750 1762 1778.3
193 98 36 70 1902 1897.2 1929.9

8. CONCLUSIONS AND FUTURE WORK

Estimating the cost of development for software projects is an essential element for the success of
any project manager. Many software parametric models were introduced in the literature. In this
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paper, we provided two neural network models to estimate effort and number of function points for
software projects. The effort model utilized the KLOC, Methodology, Complexity and Experience
as input variables to estimate the Effort; while the second model utilized the Inputs, Outputs,
Files, User Inquiries to estimate the Function Point of software project. Developed results showed
that ANNs models can provide competitive results with high accuracy with respect to the VAF
and MMRE. We plan to explore other soft computing techniques to handle the effort estimation
problem.
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