Multi-label Classification Performance using Deep Learning
##plugins.themes.academic_pro.article.main##
Abstract
Understanding and using extensive, elevated, and heterogeneous biological data continues to be a major obstacle in the transformation of medical services. Digital health records, neuroimaging, sensor readings, and literature, which are all complicated, heterogeneous, inadequately labelled, and frequently unorganized, are all growing in contemporary biology and medicine. Prior to building prediction or sorting designs in front of the attributes, conventional information retrieval and statistical modelling predicates need to do data augmentation to extract useful and more durable features from the information. In the case of complex material and inadequate technical understanding, a variety of problems along both phases. The most recent convolutional technological advancements offer new, efficient frameworks to create end-to-end teaching methods from massive information. Therefore, in paper, we examine the most recent research on using deep techniques to improve the medical field. We propose that deeper learning technologies may be the means of converting large-scale physiological data into enhancing human ability based on the reviewed studies. We additionally draw attention to some drawbacks and the requirement for better technique design and application, particularly in terms of simplicity of comprehension for subject matter experts and social researchers. In order to bridge deeper learning models with natural interpretability, we examine these problems and recommend creating comprehensive and meaningful decipherable architectures.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Awachat, S., Raipure, S., and Kalambe, K. 2022. A technical review on knowledge intensive nlp for pre-trained language development. International Journal of Health Sciences Vol.6(S2), pp.9591–9602. DOI: https://doi.org/10.53730/ijhs.v6nS2.7510
- Bellazzi, R. and Zupa, B. 2008. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform Vol.77, pp.81–97. DOI: https://doi.org/10.1016/j.ijmedinf.2006.11.006
- Bengio, Y., Courville, A., and Vincent, P. 2013. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell Vol.35, pp.1798–828. DOI: https://doi.org/10.1109/TPAMI.2013.50
- Chen, Y., L, L., G-Q, Z., and et al. 2015. Phenome-driven disease genetics prediction toward DOI: https://doi.org/10.1093/bioinformatics/btv245
- drug discovery. Bioinformatics Vol.31, pp.276–83.
- Collins, F. and Varmus, H. 2015. A new initiative on precision medicine. N Engl J DOI: https://doi.org/10.1056/NEJMp1500523
- Med Vol.372, pp.793–5.
- Gottlieb, A., Stein, G., Ruppin, E., and et al. 2013. A method for inferring medical
- diagnoses from patient similarities. BMC Med Vol.11, pp.194.
- Hripcsak, G. and Albers, D. 2013. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc Vol.20, pp.117–21. DOI: https://doi.org/10.1136/amiajnl-2012-001145
- Jensen, P., Jensen, L., and Brunak, S. 2012. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet Vol.13, pp.395–405. DOI: https://doi.org/10.1038/nrg3208
- Libbrecht, M. and Noble, W. 2015. Machine learning applications in genetics and genomics. DOI: https://doi.org/10.1038/nrg3920
- Nat Rev Genet Vol.16, pp.321–32.
- Luo, J., Wu, M., Gopukumar, D., and et al. 2016. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights Vol.8, pp.1–10. DOI: https://doi.org/10.4137/BII.S31559
- Lyman, G. and Moses, H. 2016. Biomarker tests for molecularly targeted therapies — the key to unlocking precision medicine. N Engl J Med Vol.375, pp.4–6. DOI: https://doi.org/10.1056/NEJMp1604033
- Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. T. 2018. Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformat-ics Vol.19, No.1236-1246. DOI: https://doi.org/10.1093/bib/bbx044
- Tatonetti, N., Ye, P., Daneshjou, R., and et al. 2012. ata-driven prediction of drug effects and interactions. SciTransl Med Vol.4, pp.125–31. DOI: https://doi.org/10.1126/scitranslmed.3003377
- Wang, B., Mezlini, A., Demir, F., and et al. 2014. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods Vol.11, pp.333–7. DOI: https://doi.org/10.1038/nmeth.2810
- Wang, F., Zhang, P., Wang, X., and et al. 2014. Clinical risk prediction by exploring high-order feature correlations. AMIA Annual Symposium Vol.2014, pp.1170–9.
- Xu, R., Li, L., and Wang, Q. 2014. driskkb: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text. BMC Bioinformatics Vol.15, pp.105 DOI: https://doi.org/10.1186/1471-2105-15-105