Towards Conceptualization Of A Prototype For Quantum Database: A Complete Ecosystem

##plugins.themes.academic_pro.article.main##

Sayantan Chakraborty

Abstract

This study proposes a conceptualization of a prototype And a possibility to converge classical database and fully quantum database. This study mostly identifies the gap between this classical and quantum database and proposes a prototype that can be implemented in future products. It is a way that can be used in future industrial product development on hybrid quantum computers. The existing concept used to consider oracle as a black box in this study opens up the possibility for the quantum industry to develop the QASAM module so that we can create a fully quantum database instead of using a classical database as BlackBox.As the Toffoli gate is basically an effective NAND gate it is possible to run any algorithm theoretically in quantum computers. So we will propose a logical design for memory management for the quantum database, security enhancement model, Quantum Recovery Manager & automatic storage management model, and more for the quantum database which will ensure the quantum advantages. In this study, we will also explain the Quantum Vector Database as well as the possibility of improvement in duality quantum computing. It opens up a new scope, possibilities, and research areas in a new approach for quantum databases and duality quantum computing.

##plugins.themes.academic_pro.article.details##

Author Biography

Sayantan Chakraborty, Benett University

Ph.D scholar CSE department

How to Cite
Chakraborty, S. (2023). Towards Conceptualization Of A Prototype For Quantum Database: A Complete Ecosystem. International Journal of Next-Generation Computing, 14(4). https://doi.org/10.47164/ijngc.v14i4.1121

References

  1. AARONSON, S. 2021. Open problems related to quantum query complexity. ACM transactions on quantum computing 2, 4 (12), 1–9. DOI: https://doi.org/10.1145/3488559
  2. AMAZON-BRACKET. 2023. . https://aws.amazon.com/braket/.
  3. AMBAINIS, A. AND YAKARYILMAZ, A. 2015. Automata and quantum computing. arXiv (Cornell University).
  4. AZURE-QUANTUM. 2023. https://azure.microsoft.com/it-it/services/ quantum/.
  5. BEAUREGARD, S. 2002. Circuit for shor’s algorithm using 2n+ 3 qubits. arXiv preprint quant-ph/0205095. DOI: https://doi.org/10.26421/QIC3.2-8
  6. BERNSTEIN-VAZIRANI-ALGORITHM. 2023. https://qiskit.org/textbook/ ch-algorithms/bernstein-vazirani.html.
  7. BERRY, D. W. AND CHILDS, A. M. 2012. Black-box hamiltonian simulation and unitary implementa- tion. Quantum Information Computation 12, 1 (1), 29–62. DOI: https://doi.org/10.26421/QIC12.1-2-4
  8. BRAVO-PRIETO, C., LAROSE, R., CEREZO, M., SUBAS¸ I, Y., CINCIO, , AND COLES, P. J. 2019. Variational Quantum Linear Solver. arXiv (Cornell University).
  9. CHAKRABORTY, S. 2022a. A Prototype For Quantum Database in Hybrid Quantum. Techrxiv. DOI: https://doi.org/10.36227/techrxiv.20237202.v5
  10. CHAKRABORTY, S. 2022b. A Prototype For Quantum Database In Hybrid Quantum: A Complete Ecosystem. Research Square (Research Square). DOI: https://doi.org/10.21203/rs.3.rs-2156463/v2
  11. CHAKRABORTY, S. 2022c. Survey in Classical Database and Quantum database With Logical Design To Memory Management , File Structure and Authentication Module For Quantum Database. Techrxiv. DOI: https://doi.org/10.36227/techrxiv.20152532.v1
  12. CHI, D. P. 1997. Quantum database searching by a single query. https://arxiv.org/abs/quant-ph/9708005.
  13. CIRQ. 2020. Google. Cirq. https://cirq.readthedocs.io/en/stable/. CLEGG, B. 2021. Quantum computing. Icon Books.
  14. CLINTON, L., BAUSCH, J., AND CUBITT, T. S. 2021. Hamiltonian simulation algorithms for near-term quantum hardware. Nature Communications 12, 1 (8). DOI: https://doi.org/10.1038/s41467-021-25196-0
  15. CUOMO, D., CALEFFI, M., AND CACCIAPUOTI, A. S. 2020. Towards a distributed quantum computing ecosystem. IET quantum communication 1, 1 (7), 3–8. DOI: https://doi.org/10.1049/iet-qtc.2020.0002
  16. DAHLBERG, A., VAN DER VECHT, B., DONNE, C. D., SKRZYPCZYK, M., RAA, I. T., KOZŁOWSKI, W., AND WEHNER, S. 2022. NetQASM—a low-level instruction set architecture for hybrid quan- tum–classical programs in a quantum internet. Quantum science and technology 7, 3 (6), 035023. DOI: https://doi.org/10.1088/2058-9565/ac753f
  17. DIADAMO, S., GHIBAUDI, M., AND CRUISE, J. R. 2021. Distributed quantum computing and network control for accelerated VQE. IEEE transactions on quantum engineering 2, 1–21. DOI: https://doi.org/10.1109/TQE.2021.3057908
  18. DIAGRAM. 2022. Few figures are generated by. https://app.diagrams.net/.
  19. EISERT, J., JACOBS, K., PAPADOPOULOS, P., AND PLENIO, M. B. 2000. Optimal local implementation of nonlocal quantum gates. Physical Review A 62, 5, 052317. DOI: https://doi.org/10.1103/PhysRevA.62.052317
  20. FARRELLY, T. 2020. A review of Quantum Cellular Automata. Quantum 4, 368. DOI: https://doi.org/10.22331/q-2020-11-30-368
  21. FOWLER, A. G., MARIANTONI, M., MARTINIS, J. M., AND CLELAND, A. N. 2012. Surface codes: Towards practical large-scale quantum computation. Physical Review A 86, 3 (9). DOI: https://doi.org/10.1103/PhysRevA.86.032324
  22. GIDNEY, C. AND EKERA˚ , M. 2021. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433. DOI: https://doi.org/10.22331/q-2021-04-15-433
  23. GRASSL, M., LANGENBERG, B., ROETTELER, M., AND STEINWANDT, R. 2016. Applying Grover’s algorithm to AES: Quantum Resource Estimates. DOI: https://doi.org/10.1007/978-3-319-29360-8_3
  24. GUO, R., LUAN, X., XIANG, L., YAN, X., YI, X., LUO, J., CHENG, Q., XU, W., LUO, J., LIU, F., ET AL. 2022. Manu: a cloud native vector database management system. arXiv preprint arXiv:2206.13843. DOI: https://doi.org/10.14778/3554821.3554843
  25. GUPTA, D. 2005. Diffusion processes in advanced technological materials. DOI: https://doi.org/10.1007/978-3-540-27470-4
  26. HERMANS, S., POMPILI, M., BEUKERS, H., BAIER, S., BORREGAARD, J., AND HANSON, R. K. 2022. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 7911 (5), 663–668. DOI: https://doi.org/10.1038/s41586-022-04697-y
  27. HUAWEI-CLOUD. 2023. Quantum computing software HiQ. https://hiq.huaweicloud.com/.
  28. HAFFNER, H., ROOS, C. F., AND BLATT, R. 2008. Quantum computing with trapped ions. Physics Reports 469, 4 (12), 155–203. DOI: https://doi.org/10.1016/j.physrep.2008.09.003
  29. HANER, T. AND STEIGER, D. S. 2017. 0.5 petabyte simulation of a 45-qubit quantum circuit. Arxiv. DOI: https://doi.org/10.1145/3126908.3126947
  30. IBM. 2014. DB2 database architecture based on db2 documentation provided by IBM. https://www.ibm.com/docs/en/db2-for-zos/12?topic=SSEPEK 12.0.0/ home/%20src/tpc/db2z pdfmanuals.html.
  31. IBM. 2023. Quantum Experience. https://quantum-computing.ibm.com.
  32. JEFFERY, S. AND KIMMEL, S. 2017. Quantum algorithms for graph connectivity and formula evaluation. Quantum 1, 26. DOI: https://doi.org/10.22331/q-2017-08-17-26
  33. JOHNSON, J. R., DOUZE, M., AND JEG´ OU, H. 2021. Billion-Scale Similarity Search with GPUs. IEEE Transactions on Big Data 7, 3 (7), 535–547. DOI: https://doi.org/10.1109/TBDATA.2019.2921572
  34. KANIEWSKI, J. AND WEHNER, S. 2016. Device-independent two-party cryptography secure against sequential attacks. New Journal of Physics 18, 5 (5), 055004. DOI: https://doi.org/10.1088/1367-2630/18/5/055004
  35. LIU, B., RUAN, O., SHI, R., AND ZHANG, M. 2021. Quantum private set intersection cardinality based on bloom filter. Scientific Reports 11, 1 (8). DOI: https://doi.org/10.1038/s41598-021-96770-1
  36. LIU, Y. 2013. Deleting a marked state in quantum database in a duality computing mode. Chinese Science Bulletin 58, 24 (6), 2927–2931. DOI: https://doi.org/10.1007/s11434-013-5925-9
  37. LONG, G. AND LIU, Y. 2008. Duality quantum computing. Frontiers of Computer Science 2, 2 (6), 167–178. DOI: https://doi.org/10.1007/s11704-008-0021-z
  38. LONG, G. L. 2009. Searching an unsorted database in quantum computers and duality quantum comput- ers. In 2009 Fifth International Conference on Natural Computation. Vol. 5. IEEE, 588–592. DOI: https://doi.org/10.1109/ICNC.2009.687
  39. MICROSOFT. 2020. Microsoft. Q#. https://docs.microsoft.com/en-us/quantum/.
  40. OH, E. Y., LAI, X., WEN, J., AND DU, S. 2022. Distributed quantum computing with photons and atomic memories. arXiv (Cornell University). DOI: https://doi.org/10.1002/qute.202300007
  41. OPENQASM. 2022. OpenQASM Live Specification — OpenQASM Live Specification documentation. https://openqasm.com/.
  42. OPENQL. 2022. OpenQL Project. https://openql.org/.
  43. ORACLE. 2023. Oracle Database Documentation - Oracle Database. https://docs.oracle.com/ en/database/oracle/oracle-database/index.html.
  44. PEDNAULT, E. P. D., GUNNELS, J. A., NANNICINI, G., HORESH, L., AND WISNIEFF, R. 2019. Leveraging secondary storage to simulate deep 54-qubit sycamore circuits. arXiv (Cornell University).
  45. PIVOLUSKA, M. AND PLESCH, M. 2022. Implementation of quantum compression on IBM quantum computers. Scientific Reports 12, 1 (4). DOI: https://doi.org/10.1038/s41598-022-09881-8
  46. PROOS, J. AND ZALKA, C. 2003. Shor’s discrete logarithm quantum algorithm for elliptic curves. arXiv preprint quant-ph/0301141. DOI: https://doi.org/10.26421/QIC3.4-3
  47. PYQUIL. 2018. Welcome to the docs for pyQuil! — pyQuil 4.1.1 documentation. https://pyquil-docs.rigetti.com/en/stable/.
  48. QISKIT. 2020. IBM. Qiskit. https://qiskit.org/.
  49. QLDB. 2023. Crud Database - Amazon QLDB - AWS. https://aws.amazon.com/qldb/.
  50. QUANTOM, I. 2021. Quantom Processor. https://en.wikipedia.org/wiki/List of quantum processors.
  51. QUINTESSENCELABS. 2022. Breaking RSA Encryption - an Update on the State-of-the-Art - QuintessenceLabs. https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art/.
  52. QUTECH. 2021. Quantum Network Explorer (QNE) - Unlocking the power of quantum networks.
  53. QUTECH. 2023. Quantum Computing - QUTech. https://qutech.nl/research-engineering/quantum-computing.
  54. QUTUBE. 2023. The building blocks of a quantum computer. https://www.qutube.nl/quantum-computer-12/the-building-blocks-of-a-quantum-computer-177.
  55. RIVEST, R., SHAMIR, A., AND ADLEMAN, L. 1977. RSA (cryptosystem). https://en.wikipedia.org/wiki/RSA (cryptosystem).
  56. ROY, S., KOT, L., AND KOCH, C. 2013. Quantum databases. In Proc. CIDR. Number CONF.
  57. SHANGNAN, Z. 2021. Quantum data compression and Quantum cross entropy. arXiv (Cornell University).
  58. SHI, B., DING, D.-S., SHENG, Y., ZHOU, L., SHI, B., AND GUO, G. 2017. Quantum Secure Direct Communication with Quantum Memory. Physical Review Letters 118, 22 (5). DOI: https://doi.org/10.1103/PhysRevLett.118.220501
  59. SHI, R. 2021. Quantum Bloom Filter and its applications. IEEE transactions on quantum engineering 2, 1–11. DOI: https://doi.org/10.1109/TQE.2021.3054623
  60. SIMON’S-ALGORITHM. 2023. . https://qiskit.org/textbook/ch-algorithms/simon.html.
  61. TAL, A. 2019. Towards Optimal Separations between Quantum and Randomized Query Complexities. arXiv (Cornell University). DOI: https://doi.org/10.1109/FOCS46700.2020.00030
  62. VANDERSYPEN, L. M. K. AND CHUANG, I. L. 2005. NMR techniques for quantum control and com- putation. Reviews of Modern Physics 76, 4 (1), 1037–1069. DOI: https://doi.org/10.1103/RevModPhys.76.1037
  63. WANG, P., XING, L., GU, X., AND ZHU, C. 2013. Design and Implementation of Security Enhanced Module in Database. ICICSE. DOI: https://doi.org/10.1109/ICICSE.2013.20
  64. WANG, Y., UM, M., ZHANG, J., AN, S., LYU, M., ZHANG, J. N., DUAN, L., YUM, D., AND KIM, K. 2017. Single-qubit quantum memory exceeding ten-minute coherence time. Nature Photon- ics 11, 10 (9), 646–650. DOI: https://doi.org/10.1038/s41566-017-0007-1
  65. WEI, C., WU, B., WANG, S., LOU, R., ZHAN, C., LI, F., AND CAI, Y. 2020. Analyticdb-v: A hybrid analytical engine towards query fusion for structured and unstructured data. Proceedings of the VLDB Endowment 13, 12, 3152–3165. DOI: https://doi.org/10.14778/3415478.3415541
  66. WEI, S. AND LONG, G. L. 2016. Duality quantum computer and the efficient quantum simulations. Quantum Information Processing 15, 3 (3), 1189–1212. DOI: https://doi.org/10.1007/s11128-016-1263-6
  67. YIMSIRIWATTANA, A. AND LOMONACO, S. J. 2004. Distributed quantum computing: a distributed Shor algorithm. Proceedings of SPIE. DOI: https://doi.org/10.1117/12.546504
  68. YIMSIRIWATTANA, A. AND LOMONACO JR, S. J. 2004. Generalized ghz states and distributed quantum computing. arXiv preprint quant-ph/0402148. DOI: https://doi.org/10.1090/conm/381/07096
  69. YOSHIHARA, F., ASHHAB, S., FUSE, T., BAMBA, M., AND SEMBA, K. 2022. Hamiltonian of a flux qubit-LC oscillator circuit in the deep–strong-coupling regime. Scientific Reports 12, 1 (4). DOI: https://doi.org/10.1038/s41598-022-10203-1