A Novel Communication Architecture and Control System for TeleBot: A Multi-Modal Telepresence Robot for Disabled Officers

##plugins.themes.academic_pro.article.main##

Sevugarajan Sundarapandian
Jong-Hoon Kim
Shadeh Ferris-Francis
Jerry Miller
Nagarajan Prabakar
Christopher Charters
Hunter Michko

Abstract

There is an incredible need to help disabled veterans and police officers to remotely perform patrolling and law enforcement duties. Currently a disabled officer is medically retired following a severe duty related injury, depriving the individual of a career and the talent of an experienced officer in his/her prime. This results in billions of dollars of wasted talents and resources. This paper presents a detailed development and analysis of a telepresence robot designated as TeleBot# to assess how it can be used to help disabled officers return to active duty. The principal contribution of this paper comprises of robust communication architecture for efficient human interaction with the robot that almost resembles a law enforcement officer and capable of receiving commands that are issued by a disabled officer from a remote location. Two high definition cameras in the head assembly of TeleBot wirelessly transmit live video stream of the TeleBots visual field to the remote operator wearing a virtual reality based stereoscopic display. Additionally, a voice recognition system enables the TeleBot to greet people and accept voice based commands from the operator. The user-friendly software embedded on the system provides seamless communication between the officer at a remote location and the public through TeleBot. The striking factor of this design is affordability in terms of cost.

##plugins.themes.academic_pro.article.details##

How to Cite
Sevugarajan Sundarapandian, Jong-Hoon Kim, Shadeh Ferris-Francis, Jerry Miller, Nagarajan Prabakar, Christopher Charters, & Hunter Michko. (2016). A Novel Communication Architecture and Control System for TeleBot: A Multi-Modal Telepresence Robot for Disabled Officers. International Journal of Next-Generation Computing, 7(3), 222–237. https://doi.org/10.47164/ijngc.v7i3.120

References

  1. Atmel Corporation, USA. 2015. Atmel microcontollers, Atmel Corporation, 1600 Technology Drive, San jose, CA. 95110, U.S.A.
  2. Babuska, I., Banerjee, U., and Osborn, J. E. 2004. Generalized finite element methods: Main ideas, results, and perspective. Int. Journal of Comp. Methods Vol.1, No.1, pp.67–103. Barbosa. 2013. Bitsophia software Ltd.
  3. Becevic, M., Clarke, M. A., M.Alnijoumi, M., Sohal, H. S., A.Boren, S., Kim, M. S., and Mutrux, R. 2015. Robotic telepresence in a medical intensive care unitclinicians perceptions. Perspectives in Health Information Management. Summer, pp.1–9.
  4. Cibert, C. and Hugel, V. 2013. Compliant intervertebral mechanism for humanoid backbone: Kinematic modeling and optimization. Mechanism and Machine Theory. Vol. 66, pp.32–35.
  5. Creative Commons, USA. 2015. Mbed LPC1768 micro-controller, Creative Commons, 444 Castro street, Suite 900, Mountain View, California, 94041, U.S.A.
  6. Dassault Systemes SolidWorks Corporation, U. 2015. 175 Wyman Street, Waltham, MA 02451., USA.
  7. Fong, T. W. 2012. The human exploration telerobotics project. Global Space Exploration Conference, Washington.
  8. Forrest, A., Laval, B. E., Lim, D., Williams, D., Trembanis, A., Marinova, M., Shepard, R., Brady, A., Slater, G., Gernhardt, M., and Kay, C. M. 2010. Performance evaluation of underwater platforms in the context of space exploration. Planetary and Space Science. Vol.58, 4, pp.706–716.
  9. Gilbert, S. and Fix, G. 1973. An Analysis of The Finite Element Method. Prentice Hall. ISBN 0-13-032946-0.
  10. Giullian, N., Ricks, D., Atherton, A., Colton, M., Goodrich, M., and Brinton, B. 2010. Detailed requirements for robots in autism therapy. Proceedings of the IEEE International Conference on Systems Man and Cybernetics.
  11. Hannaford, B., Rosen, J., Friedman, D., King, H., Roan, P., Cheng, L., Glozman, D., Ma, J., Kosari, S., and White, L. 2013. Raven-ii: An open platform for surgical robotics research. IEEE Transactions on Biomedical Engineering. Vol.60, pp.954–995.
  12. Heyer, C. 2010. Human robot interaction and future industrial robotics applications. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.
  13. Kong, M., Du, Z., Fu, L., Jia, Z., and Wu, D. 2005. A robot-assisted orthopedic telesurgery system. Engineering in Medicine and Biology Society, 27th Annual International Conference of the IEEE-EMBS.
  14. Lee, H., Choi, J. J., and Kwak, S. S. 2015. The impact of telepresence robot types on the perceived presence of a remote sender. International Journal of Software Engineering and Its Applications. Vol.9, 1, pp.107–116.
  15. Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., and Millian, J. D. R. 2015. Towards independence: A bci telepresence robot for people with severemotor disabilities. Proceedings of the IEEE, Vol. 103, No. 6.
  16. Lum, M., Friedman, D., Rosen, J., Sankaranarayanan, G., King, H., Fodero, K., Leuschke, R., Sinanan, M., and Hannaford, B. 2009. The raven - design and validation of a telesurgery system. International Journal of Robotics Research. Vol.28, pp.1183–1197.
  17. Makerbot Replicator, U. 2015. MakerBot industries, LLC, One MetroTech Center, 21st Fl, Brooklyn, NY 11201 USA.
  18. Maxbotix LV-EZ1 sensor, U. 2015. MaxBotix inc., 13860 Shawkia Drive, Brainerd, MN 56401, USA.
  19. Mazzini, F., Kettler, D., Guerrero, J., and Dubowsky, S. 2011. Tactile robotic mapping of unknown surfaces, with application to oil wells. IEEE Transactions on Instrumentation and Measurement. Vol.60, 2, pp.420–429.
  20. Nagendran, A., Steed, A., Kelly, B., and Pan, Y. 2015. Symmetric telepresence using robotic humanoid surrogates. Comp. Anim. Virtual Worlds. Vol.26, 1, pp.271–280.
  21. Newman, J., Kuppersmith, R., and OMalley, B. J. 2011. Robotics and telesurgery in otolaryngology. Otolaryngol Clin North Am. Vol.44, 6, pp.1317–1331.
  22. Oh, J. H., Hanson, D., Kim, W. S., Kim, J. Y., and Park, I. W. 2006. Design of android type humanoid robot albert hubo. Proceedings of IEEE/RSJ Int. Conf. Intell.Robot.Syst., Beijing, China. .
  23. Parallax Inc, U. 2015. 599 Menlo Drive, Suite 100, Rocklin, CA 95765., USA.
  24. Parker, L. and Drape, J. 1998. Robotics applications in maintenance and repair , 2nd. ed. Vol. 1. John Wiley and Sons, Inc, Hoboken, NJ.
  25. Pololu Corporation, U. 2015. 920 Pilot Rd., Las Vegas, NV 89119., USA.
  26. Real-Time Innovations, U. 2015. 232 E. Java Drive, Sunnyvale, CA 94089, USA.
  27. Reddy, J. N. 2006. An Introduction to the Finite Element Method, 3rd ed. McGraw-Hill, ISBN 9780071267618.
  28. Robotis Inc, U. 2015. Robotis CM-700 Controller, Robotis Dynamixel MX-106R and MX-64 servo actuators Robotis Inc, 1 Technology Dr., Suite F213 Irvine. CA 92618., USA.
  29. Scassellati, B. 2009. Affective prosody recognition for human-robot interaction. Microsoft Researchs External Research Symposium, Redmond, WA, USA.
  30. Stone, R. 1992. Virtual reality and telepresence. Robotica. Vol.10, pp.461–467.
  31. Tinelli, A., Malvasi, A., Gustapane, S., Buscarini, M., Gill, I., amd F.R. Nezhat, M. S., and Mettler, L. 2011. Robotic assisted surgery in gynecology: current insights and future perspectives. Recent Pat Biotechnol. Vol.5, 1, pp.12–24.
  32. UBUNTU Operating System, U. 2015. Canonical Group Limited, 5th floor, Blue Fin Building, 110 Southwark Street, SE1 0SU, London, UK.
  33. Vermeersch, P., Sampsel, D. D., and Kleman, C. 2015. Acceptability and usability of a telepresence robot for geriatric primary care: A pilot. Geriatric Nursing. Vol.36, pp.234– 238.
  34. YEI Technology, U. 2015. YEI Technology 3D Space Sensor and MoCAP Studio, YEI Technology, 630 second street, Portsmouth, Ohio 45662, USA.
  35. Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. 2005. The Finite Element Method: Its Basis and Fundamentals, 6th. ed. Butterworth-Heinemann. ISBN 0750663200., Hoboken, NJ.