Judgmental Feature Based Facial Expression Recognition and FER Datasets - A Comprehensive Study

##plugins.themes.academic_pro.article.main##

Mahesh M Goyani
Narendra M Patel

Abstract

Facial expressions play an equally important role as the verbal communication and tonal expressions. They echo the mental state of the person. Expressions can be modeled either by using descriptive features - coded using facial muscles, or judgmental features - coded using texture information. In this paper, we surveyed mainly judgmental feature based prominent methods. An image is rich and high dimensional data structure, which can result into considerable computation when processed directly. Various feature extraction techniques have been proposed to represent the image efficiently in lower dimensions which can be easily processed by a machine. Until now, most of the research was centered around the recognition of frontal face expressions. Recent work has been targeted on processing profile faces and spontaneous expressions by treatment of multimodal fusion. In addition to features, the dataset is another major aspect of pattern recognition. Multidimensional comparison of various facial expression databases is also derived in this paper. Moreover, the survey presents scientific challenges touching the performance of the system.

##plugins.themes.academic_pro.article.details##

How to Cite
Goyani, M. M. ., & Patel, N. M. . (2017). Judgmental Feature Based Facial Expression Recognition and FER Datasets - A Comprehensive Study. International Journal of Next-Generation Computing, 8(1), 62–81. https://doi.org/10.47164/ijngc.v8i1.123

References

  1. Abdenour, A., Pietikainen, M., and Ahonen, T. 2004. A discriminative feature space for detecting and recognizing faces. In IEEE Conference on Computer Vision and Pattern Recognition.
  2. Abdulrahman, M., Gwadabe, T. R., Abdu, F. J., and Eleyan, A. 2014. Gabor wavelet transform based facial expression recognition using pca and lbp. In 22nd IEEE International Conference on Signal Processing and Communications Applications. pp.2265-2268.
  3. Ahmed, F., Bari, H., and Hossain, E. 2014. Person-independent facial expression recognition based on compound local binary pattern. International Arab Journal of Information Technology Vol.11, No.2, pp.195-203.
  4. Ahmed, R., Meyer, A., Konik, H., and Bouakaz, S. 2013. Framework for reliable, realtime facial expression recognition for low resolution images. Pattern Recognition Letters Vol.34, No.10, pp.1159-1168.
  5. Ahonen, T., Hadid, A., and Pietikainen, M. 2006. Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.28, No.12.
  6. Almaev, T. R. and Valstar, M. F. 2013. Local gabor binary patterns from three orthogonal planes for automatic facial expression recognition. In Humaine Association Conference on A ective Computing and Intelligent Interaction. pp.356-361.
  7. Azmi, R. and Yegane, S. 2012. Facial expression recognition in the presence of occlusion using local gabor binary patterns. In 20th Iranina Conference on Electrical Engineering. pp.742-747.
  8. Bartlett, M. and Sejnowski, T. J. 1997. Independent components of face images: A representation for face recognition. In 4th Annual Joint Symposium on Neural Computation.
  9. Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., and Movellan, J. 2005. Recognizing facial expression: Machine learning and application to spontaneous behavior. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp.568-573.
  10. Bashyal, S. and Venayagamoorthy, G. K. 2008. Recognition of facial expressions using gabor wavelets and learning vector quantization. Engineering Applications of Arti cial Intelligence Vol.21, No.7, pp.1056-1064.
  11. Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. 1997. Eigenfaces vs. sherfaces: Recognition using class speci c linear projection. IEEE Transaction on Pattern Analysis and Machine Intelligence Vol.19, No.7.
  12. Black, M. and Yacoob, Y. 1997. Recognizing facial expressions in image sequences using local parameterized models of image motion. International Journal of Computer Vision Vol.25, No.1, pp.23-48.
  13. Brun, L. 1698. Mthode pour apprendre dessiner les passions.
  14. Brun, L. 1734. A method to learn to design the passions.
  15. Bulwer, J. 1649. Pathomyotamia. Humphrey Moseley, London.
  16. Chao, W., Ding, J., and Liu, J. 117. Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection. Signal Processing Vol.1, No.1-10, pp.2015.
  17. Chellappa, R., Sirohey, S., and Wilson, C. L. 1995. Human and machine recognition of faces: A survey. Proceedings of the IEEE Vol.83, No.5.
  18. Chen, F. 2007. Facial expression recognition by svm-based two-stage classi er on gabor features. In IAPR Conference on Machine Vision Applications. pp.6-9.
  19. Chen, J. and Shan, S. 2010. Wld: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.32, No.9, pp.1705-1720.
  20. Cohen, I., Garg, A., and Huang, T. S. 2000. Emotion recognition from facial expressions using multilevel hmm. In Neural information processing system.
  21. Cohen, I., Sebe, N., Garg, A., Chen, L., and Huang, T. S. 2003. Facial expression recognition from video sequences: temporal and static modeling. Computer Vision and Image Understanding Vol.91, No.1, pp.160-187.
  22. Connor, B. O. and Roy, K. 2013. Facial recognition using modi ed local binary pattern and random forest. International Journal of Arti cial Intelligence and Applications Vol.4, No.6.
  23. Cootes, T. F., Edwards, G. J., and Taylor, C. J. 2001. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.23, No.6.
  24. Corneanu, C. A., Marc, O., Cohn, J. F., and Sergio, E. 2016. Survey on rgb, 3d, thermal, and multimodal approaches for facial expression recognition: History, trends, and a ect-related applications. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.38, No.8.
  25. D. Huang, C. Shan, M. A. Y. W. and Chen, L. 2011. Local binary patterns and its application to facial image analysis: A survey. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews Vol.41, No.6.
  26. Darvin, C. 1872. The expression of the emotions in man and animals. J. Murray, London.
  27. Daugman, J. G. 1988. Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech and Signal Processing Vol.36, No.7.
  28. Deng, H., Jin, L., Zhen, L., and Huang, J. 2005. A new facial expression recognition method based on local gabor lter bank and pca plus lda. International Journal of Information Technology Vol.11, No.11, pp.86-96.
  29. Donato, G., Bartlett, M. S., Hager, J. C., Ekman, P., and Sejnowski, T. J. 1999. Classifying facial actions. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.21, No.10.
  30. Douglas-Cowie, E., Campbell, N., Cowie, R., and Roach, P. 2003. Emotional speech:towards a new generation of databases. Speech Communication Vol.40, No.1, pp.3360.
  31. Ekman, P. and Friesen, W. V. 1971. Constants across cultures in the face and emotion. Journal of Personality and Social Psychology Vol.17, No.2.
  32. Ekman, P. and Friesen, W. V. 1978. Facial action coding system: A technique for measurement of facial movement. Consulting Psychologists Press.
  33. Essa, I. A. and Pentland, A. P. 1995. Facial expression recognition using a dynamic model and motion energy. In IEEE International Conference on Computer Vision. pp.360-367.
  34. Essa, I. A. and Pentland, A. P. 1997. Coding, analysis, interpretation, and recognition of facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.19, No.7, pp.757-763.
  35. Fasel, B. and Luettin, J. 2003. Automatic facial expression analysis: A survey. Pattern Recognition Vol.36, No.1.
  36. Freire, D. 2002. Smile detection using local binary pattern and support vector machine. In 4th International Conference on Computer Vision Theory and Applications.
  37. Gao, Y., Leung, M., Hui, S. C., and Tananda, M. 2003. Facial expression recognition from line-based caricatures. IEEE Transactions on Systems, Man, and Cybernetics - Part A:Systems and Humans Vol.33, No.3.
  38. Gao, Y. S. and Leung, M. K. H. 2002. Face recognition using line edge map. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.24, No.6, pp.764-779.
  39. Gholami, B., Haddad, W. M., and Tannenbaum, A. R. 2010. Relevance vector machine learning for neonate pain intensity assessment using digital imaging. IEEE Transactions on Biomedical Engineering Vol.57, No.6.
  40. Grigorescu, S. E., Petkov, N., and Kruizinga, P. 2002. Comparison of texture features based on gabor lters. IEEE Transactions on Image Processing Vol.11, No.10, pp.11601167.
  41. Guo, Z., Zhang, L., and Zhang, D. 2010. A completed modeling of local binary pattern. IEEE Transactions on Image Processing Vol.19, No.6.
  42. He, X., Yan, S., Hu, Y., Niyogi, P., and Zhang, H. J. 2005. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.27, No.3, pp.328-340.
  43. Highfield, R., Wiseman, R., and Jenkins, R. 2009. How your looks betray personality. New Scientists.
  44. Hruz, M., Trojanova, J., and Zelezny, M. 2012. Local binary pattern based features for sign language recognition. Pattern Recognition and Image Analysis Vol.22, No.4.
  45. Huang, X., Wang, S. J., Zhao, G., and Piteikainen, M. 2015. Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. In IEEE International Conference on Computer Vision. pp.1-9.
  46. Huang, X., Zhao, G., Zheng, W., and Pietikinen, M. 2012. Spatiotemporal local monogenic binary patterns for facial expression recognition. IEEE Signal Processing Letters Vol.19, No.5, pp.243-246.
  47. Jabid, T., Kabir, M. H., and Chae, O. 2010. Robust facial expression recognition based on local directional pattern. ETRI Journal Vol.32, No.5.
  48. Ji, Q., Zhu, Z., and Lan, P. 2004. Real-time nonintrusive monitoring and prediction of driver fatigue. IEEE Transaction on Vehicular Technology Vol.53, No.4.
  49. Ji, Y. and Idrissi, K. 2012. Automatic facial expression recognition based on spatiotemporal descriptors. Pattern Recognition Letters Vol.33, pp.1373-1380.
  50. Kanade, T., Cohn, J. F., and Tian, Y. 2000. Comprehensive database for facial expression analysis. In 4th IEEE International Conference on Automatic Face and Gesture Recognition. pp.46-53.
  51. Kenji, M. 1991. Recognition of facial expression from optical ow. IEEE Transactions on Information and Systems Vol.74, No.10, pp.3474-3483.
  52. Liao, S., Fan, W., Chung, A. C. S., and Yeung, D. 2006. Facial expression recognition using advanced local binary patterns, tsallis entropies and global appearance features. In IEEE International Conference on Image Processing. pp.665-668.
  53. Lin, C.-H., Liu, C.-W., , and Chen, H.-Y. 2012. Image retrieval and classi cation using adaptive local binary patterns based on texture features. IET Image Processing Vol.6, No.7.
  54. Liu, C. and Wechsler, H. 2002. Gabor feature based classi cation using the enhanced sher linear discriminant model for face recognition. IEEE Transactions on Image Processing Vol.11, No.4, pp.467-476.
  55. Luo, Y., Wu, C., and Zhang, Y. 2013. Facial expression feature extraction using hybrid pca and lbp. The Journal of China Universities of Posts and Telecommunications Vol.20, No.2.
  56. Luo, Y., Zhang, T., and Zhang, Y. 2016. A novel fusion method of pca and ldp for facial expression feature extraction. Optik - International Journal for Light and Electron Optics Vol.127, No.2, pp.718-721.
  57. Lyons, M. and Akamatsu, S. 1998. Coding facial expressions with gabor wavelets. In 3rd IEEE Conference on Automatic Face and Gesture Recognition. pp.200-205.
  58. Lyons, M. J. 1999. Automatic classi cation of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.21, No.12.
  59. Maenappa, T., Ojala, T., Pietikainen, M., and Soriano, M. 2000. Robust texture classi cation by subsets of local binary patterns. In 15th International Conference on Pattern Recognition. pp.935-938.
  60. Majumder, A., Behera, L., and Subramanian, V. K. 2014. Emotion recognition from geometric facial features using self-organizing map. Pattern Recognition Vol.47, No.3, pp.12821293.
  61. Martinez, A. M. and Benavente, R. 1998. The ar face database. In CVC Technical Report.
  62. Mehrabian, A. 1968. Communication without words. Psychology Today Vol.2, pp.53-55.
  63. Microsoft. 2016. https://www.microsoft.com/cognitive-services/en-us/emotion-api.
  64. Moore, S. and Bowden, R. 2011. Local binary patterns for multi-view facial expression recognition. Computer Vision and Image Understanding Vol.115, No.4.
  65. Muhammad, G., Al-Hammadi, M. H., Hussain, M., and Bebis, G. 2014. Image forgery detection using steerable pyramid transform and local binary pattern. Machine Vision and Applications Vol.25, No.4.
  66. Nagi, G. M., Rahmat, R., Khalid, F., and Taufik, M. 2013. Region-based facial expression recognition in still images. Journal of Information Processing Systems Vol.9, No.1.
  67. Ojala, T., Pietikainen, M., and Harwood, D. 1996. A comparative study of texture measures with classi cation based on feature distributions. Pattern Recognition Vol.29, No.1.
  68. Ojala, T., Pietikainen, M., and Maenpaa, T. 2001. A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classi cation. In International Conference on Advances in Pattern Recognition. pp.399-408.
  69. Oliveira, L., Koerich, A., Mansano, M., and Britto, A. 2011. 2d principal component analysis for face and facial-expression recognition. Computing in Science and Engineering Vol.13, pp.9-13.
  70. Oshidarit, B. and Babak, A. 2010. An e ective feature extraction method for facial expression recognition using adaptive gabor wavelet. In IEEE International Conference on Progress in Informatics and Computing. pp.776-780.
  71. Otsuka, T. and Ohya, J. 1997. Recognizing multiple persons facial expressions using hmm based on automatic extraction of signi cant frames from image sequences. In International Conference on Image Processing. pp.546-549.
  72. Otsuka, T. and Ohya, J. 1998. Spotting segments displaying facial expression from image sequences using hmm. In 3rd IEEE International Conference on Automatic Face and Gesture Recognition. pp.442-447.
  73. Ouyang, Y., Sang, N., and Huang, R. 2013. Robust automatic facial expression detection method based on sparse representation plus lbp map. Optik - International Journal for Light and Electron Optics Vol.124, No.24.
  74. Owusu, E., Zhan, Y., and Mao, Q. R. 2014. A neural-adaboost based facial expression recognition system. Expert Systems With Applications Vol.41, No.7, pp.3383-3390.
  75. Palmer, A. 1987. An evaluation of the two-dimensional gabor lter model of simple receptive elds in cat striate cortex. Journal of Neurophysiology Vol.58, No.6, pp.1233-1258.
  76. Pantic, M., Pentland, A., Nijholt, A., and Huang, T. 2006. Human computing and machine understanding of human behavior: A survey. In International Conference on Multimodal Interfaces. pp.47-71.
  77. Pantic, M., Valstar, M., Rademaker, R., and Maat, L. 2005. Web-based database for facial expression analysis. In IEEE International Conference on Multimedia and Expo.
  78. Patela, B., Maheshwaria, R. P., and Ramanb, B. 2016. Compass local binary patterns for gender recognition of facial photographs and sketches. Neurocomputing Vol.218, No.19, pp.203-215.
  79. Rahulamathavan, Y., Phan, R. C.-W., Chambers, J. A., and Parish, D. J. 2013. Facial expression recognition in the encrypted domain based on local sher discriminant analysis. IEEE Transactions on A ective Computing Vol.4, No.1, pp.83-92.
  80. Reddy, T. G. and Sravanthi, T. 2013. Log-gabor lters and lda based facial expression recognition. IOSR Journal of VLSI and Signal Processing Vol.3, No.6, pp.37-43.
  81. Rosenblum, M., Yacoob, Y., and Davis, L. S. 1996. Human expression recognition from motion using a radial basis function network architecture. IEEE Transactions on Neural Networks Vol.7, No.5, pp.1121-1138.
  82. Satyanarayanamurty, G. 2014. Facial expression recognition based on features derived from the distinct lbp and glcm. International Journal of Image, Graphics and Signal Processing Vol.2, No.1, pp.68-77.
  83. Savran, A., Sankur, B., and Bilge, M. T. 2010. Facial action unit detection: 3d versus 2d modality. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops. pp.71-78.
  84. Schmidt, K. L. and Cohn, J. F. 2001. Dynamics of facial expression: Normative characteristics and individual di erences. In IEEE International Conference on Multimedia and Expo. pp.547-550.
  85. Shan, C. 2012. Smile detection by boosting pixel di erences. IEEE transactions on image processing Vol.21, No.1.
  86. Shan, C., Gong, S., and Mcowan, P. W. 2009. Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing Vol.27, No.6.
  87. Shih, F. Y., Chuang, C.-F., andWang, P. 2008. Performance comparisons of facial expression recognition in ja e database. International Journal of Pattern Recognition and Arti cial Intelligence Vol.22, No.3.
  88. Sirovich, L. and Kirby, M. 1987. Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America Vol.4, No.3.
  89. Smith, R. S. 2010. Facial expression detection using ltered local binary pattern features with ecoc classi ers and platt scaling. In Workshop on Applications of Pattern Analysis. pp.111118.
  90. Suwa, M., Sugie, N., and Fujimora, K. 1978. A preliminary note on pattern recognition of human emotional expression. In International Joint Conference on Pattern Recognition.pp.408-410.
  91. Swets, D. L. and Weng, J. J. 1996. Using discriminant eigen features for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.18, No.8.
  92. Taheri, S., Qiu, Q., and Chellappa, R. 2014. Structure-preserving sparse decomposition for facial expression analysis. IEEE Transactions on Image Processing Vol.23, No.8, pp.35903603.
  93. Tan, X., Chen, S., Zhou, Z. H., and Zhang, F. 2005. Recognizing partially occluded, expression variant faces from single training image per person with som and soft k-nn ensemble. IEEE Transactions on Neural Networks Vol.16, No.4, pp.875-886.
  94. Tang, M. and Chen, F. 2013. Facial expression recognition and its application based on curvelet transform and pso-svm. Optik - International Journal for Light and Electron Optics Vol.124, No.22, pp.5401-5406.
  95. Tian, Y. 2004. Evaluation of face resolution for expression analysis. In CVPR Workshop on Face Processing in Video.
  96. Tian, Y., Kanade, T., and Cohn, J. 2001. Recognizing action units for facial expression analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence Vol.23, No.2, pp.97-115.
  97. Tian, Y. L., Kanade, T., and Cohn, J. F. 2005. Facial expression analysis. In Handbook of Face Recognition. Springer, pp.247-275.
  98. Turk, M. A. and Pentland, A. P. 1991. Face recognition using eigenfaces. Journal of Cognitive Neuroscience Vol.3, No.1.
  99. Valstar, M., Jiang, B., Mehu, M., Pantic, M., and Scherer, K. 2011. The rst facial expression recognition and analysis challenge. In IEEE International Conference on Face and Gesture Recognition. pp.921-926.
  100. Valstar, M. F., Almaev, T., Girard, J. M., McKeown, G., Mehu, M., Yin, L., Pantic, M., and Cohn, J. F. 2015. Fera 2015 - second facial expression recognition and analysis challenge. In 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. pp.1-8.
  101. Viola, P. and Jones, M. J. 2004. Robust real-time face detection. International Journal of Computer Vision Vol.57, No.2.
  102. Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., Chen, F., and Wang, X. 2010. A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Transactions on Multimedia Vol.12, No.7.
  103. Wang, S., Liu, Z., Wang, Z., Wu, G., Shen, P., He, S., and Wang, X. 2013. Analyses of a multimodal spontaneous facial expression database. IEEE Transactions on A ective Computing Vol.4, No.1, pp.34-46.
  104. Wang, X., Liu, A., and Zhang, S. 2015. New facial expression recognition based on fsvm and knn. Optik - International Journal for Light and Electron Optics Vol.126, No.21, pp.3132-3134.
  105. Werghi, N., Berretti, S., and Bimbo, A. D. 2015. The mesh-lbp: A framework for extracting local binary patterns from discrete manifolds. IEEE Transactions on Image Processing Vol.24, No.1, pp.220-235.
  106. Whitehill, J., Littlewort, G., Fasel, I., Bartlett, M., and Movellan, J. 2009. Toward practical smile detection. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.31, No.11.
  107. Xibin, J., Xiyuan, B., Powers, D. M. W., and Yujian, L. 2013. Facial expression recognition based on block gabor wavelet fusion feature. Journal of Convergence Information Technology Vol.8, No.3, pp.282-289.
  108. Yacoob, Y. and Davis, L. S. 1996. Recognizing human facial expressions from long image sequences using optical ow. IEEE Transactions on Pattern Analysis and Machine Intelli-gence Vol.18, No.6.
  109. Yan, H., Poo, A. N., and Ang, M. H. 2012. Adaptive discriminative metric learning for facial expression recognition. IET Biometrics Vol.1, No.3.
  110. Yang, J., Zhang, D., Frangi, A. F., and Yang, J. 2004. Two-dimensional pca: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.26, No.1.
  111. Yang, P., Liu, Q., and Metaxas, D. 2009. Boosting encoded dynamic features for facial expression recognition. Pattern Recognition Letters Vol.30, No.2, pp.132-139.
  112. Yin, L., Wei, X., Sun, Y., Wang, J., and Rosato, M. J. 2006. A 3d facial expression database for facial behavior research. In IEEE International Conference on Automatic Face and Gesture Recognition. pp.211-216.
  113. Zeng, Z., Fu, Y., Roisman, G. I., Wen, Z., Hu, Y., , and Huang, T. S. 2006. Spontaneous emotional facial expression detection. Journal of Multimedia Vol.1, No.5, pp.1-8.
  114. Zeng, Z., Pantic, M., Roisman, G. I., and Huang, T. S. 2009. A survey of a ect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.31, No.1.
  115. Zhan, C., Li, W., Ogunbona, P., and Safaei, F. 2006. Facial expression recognition for multiplayer online games. In ACM International Conference Proceeding Series. pp.52-58.
  116. Zhan, C., Li, W., Ogunbona, P., and Safaei, F. 2008. A real-time facial expression recognition system for online games. International Journal of Computer Games Technology Vol.2008, No.10.
  117. Zhang, L., Chen, S., Wang, T., and Liu, Z. 2012. Automatic facial expression recognition based on hybrid features. Energy Procedia Vol.17, pp.1817-1823.
  118. Zhang, L., Tjondronegoro, D., and Chandran, V. 2014. Random gabor based templates for facial expression recognition in images with facial occlusion. Neurocomputing Vol.145, pp.451-464.
  119. Zhang, Z., Lyons, M., Schuster, M., Akamatsu, S., and Cedex, F.-S. 1998. Comparison between geometry-based and gabor-wavelets-bbsed facial expression recognition using multi-layer perceptron. In 3rd IEEE International Conference on Automatic Face and Gesture Recognition. pp.454-459.
  120. Zhao, G. and Pietikainen, M. 2007. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transaactions on Pattern Analysis and Machine Intelligence Vol.29, No.6.
  121. Zhi, R. and Ruan, Q. 2008. Facial expression recognition based on two-dimensional discriminant locality preserving projections. Neurocomputing Vol.71, No.7, pp.1730-1734.